
Logistic Regression & SVM
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What about classification using regression?

Binary classification: Desired outputs 0 and 1
... we want to capture the probability distribution of the classes
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What about classification using regression?

Binary classification: Desired outputs 0 and 1
... we want to capture the probability distribution of the classes

... logistic sigmoid 1
1+e−(w⃗·~x) is much better!
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Logistic Regression

Logistic regression model h[w⃗ ] is determined by a vector of
weights w⃗ = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given x⃗ = (x1, . . . , xn) ∈ Rn,

h[w⃗ ](x⃗) :=
1

1 + e−(w0+
∑n

k=1 wkxk)
=

1
1 + e−w⃗ ·~x

Here

~x = (x0, x1, . . . , xn) where x0 = 1

is the augmented feature vector.
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But what is the meaning of the sigmoid?

The model gives probability h[w⃗ ](x⃗) of the class 1 given an input x⃗ .
But why do we model such probability using 1/(1 + e−w⃗ ·~x) ??
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But what is the meaning of the sigmoid?

The model gives probability h[w⃗ ](x⃗) of the class 1 given an input x⃗ .
But why do we model such probability using 1/(1 + e−w⃗ ·~x) ??

Denote by h̄ the probability P(Y = 1 | X = x⃗), i.e., the "true"
probability of the class 1 given features x⃗ .

The probability h̄ cannot be easily modeled using a linear function
(the probabilities are between 0 and 1).
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The model gives probability h[w⃗ ](x⃗) of the class 1 given an input x⃗ .
But why do we model such probability using 1/(1 + e−w⃗ ·~x) ??

Denote by h̄ the probability P(Y = 1 | X = x⃗), i.e., the "true"
probability of the class 1 given features x⃗ .

What about odds of the class 1?

odds(h̄) =
h̄/(1 − h̄)

Better, at least it is unbounded on one side ... 4



But what is the meaning of the sigmoid?

The model gives probability h[w⃗ ](x⃗) of the class 1 given an input x⃗ .
But why do we model such probability using 1/(1 + e−w⃗ ·~x) ??

Denote by h̄ the probability P(Y = 1 | X = x⃗), i.e., the "true"
probability of the class 1 given features x⃗ .

What about log odds (aka logit) of the class 1?

logit(h̄) =
log(h̄/(1 − h̄))

Looks almost linear, at least for probabilities not too close to 0 or 1
...
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But what is the meaning of the sigmoid?

Assume that h̄ is the true probability of the class 1 for an "object"
with features x⃗ ∈ Rn. Put

log(h̄/(1 − h̄)) = w⃗ ·~x

Then

log((1 − h̄)/h̄)) = −w⃗ ·~x

and

(1 − h̄)/h̄ = e−w⃗ ·~x

and

h̄ =
1

1 + e−w⃗ ·~x = h[w⃗ ](x⃗)

That is, if we model log odds using a linear function, the probability is obtained
by applying the logistic sigmoid on the result of the linear function.
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Logistic Regression

▶ Given a set D of training samples:

D = {(x⃗1, c1) , (x⃗2, c2) , . . . , (x⃗p, cp)}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that h[w⃗ ](x⃗k) = 1 /
(
1 + e−w⃗ ·~xk

)
where

~xk = (xk0, xk1 . . . , xkn), here xk0 = 1
Our goal: Find w⃗ such that for every k = 1, . . . , p we have
that h[w⃗ ](x⃗k) ≈ ck

▶ Binary Cross-entropy:

E (w⃗) = −
p∑

k=1

ck log(h[w⃗ ](x⃗k)) + (1−ck) log(1−h[w⃗ ](x⃗k))
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Gradient of the Error Function

Consider the gradient of the error function:

∇E (w⃗) =

(
∂E

∂w0
(w⃗), . . . ,

∂E

∂wn
(w⃗)

)
=

p∑
k=1

(h[w⃗ ](x⃗k)− ck) ·~xk

Fakt
If ∇E (w⃗) = 0⃗ = (0, . . . , 0), then w⃗ is a global minimum of E .
This follows from the fact that E is convex.

Note that using the squared error with the logistic sigmoid would
lead to a non-convex error with several minima!
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Logistic Regression – Learning

Gradient Descent:
▶ Weights w⃗ (0) are initialized randomly close to 0⃗.

▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:
w⃗ (t+1) = w⃗ (t) − ε · ∇E (w⃗ (t))

= w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

Here 0 < ε ≤ 1 is the learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence w⃗ (0), w⃗ (1), w⃗ (2), . . .
converges (in a component-wise manner) to the global minimum of
the error function E .
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Logistic Regression - Using the Trained Model

Assume that we have already trained our logistic regression model,
i.e., we have a vector of weights w⃗ = (w0,w1, . . . ,wn).

The model is the function h[w⃗ ] which for a given feature vector
x⃗ = (x1, . . . , xn) returns the probability

h[w⃗ ](x⃗) =
1

1 + e−(w0+
∑n

k=1 wkxk)

that x⃗ belongs to the class 1.

To decide whether a given x⃗ belongs to the class 1 we use h[w⃗ ] as
a Bayes classifier: Assign x⃗ to the class 1 iff h[w⃗ ](x⃗) ≥ 1/2.
Other thresholds can also be used depending on the application and properties
of the model. In such a case, given a threshold ξ ∈ [0, 1], assign x⃗ to
the class 1 iff h[w⃗ ](x⃗) ≥ ξ.
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Maximum Likelihood vs Cross-entropy (Dim 1)
Fix a training set D = {(x1, c1) , (x2, c2) , . . . , (xp, cp)}
Generate a sequence c ′1, . . . , c

′
p ∈ {0, 1}p where each c ′k has been

generated independently by the Bernoulli trial generating 1 with
probability

h[w0,w1](xk) =
1

1 + e−(w0+w1·xk )

and 0 otherwise.

Here w0,w1 are unknown weights.

How "probable" is it to generate the correct classes c1, . . . , cp ?

The following conditions are equivalent:
▶ w0,w1 minimize the binary cross-entropy E

▶ w0,w1 maximize the likelihood (i.e., the "probability") of generating
the correct values c1, . . . , cp using the above described Bernoulli
trials (i.e., that c ′k = ck for all k = 1, . . . , p)

Note that the above equivalence is a property of the cross-entropy and is not
dependent on the "implementation" of h[w0,w1](xk) using the logistic sigmoid.
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SVM Idea – Which Linear Classifier is the Best?

Benefits of maximum margin:
▶ Intuitively, maximum margin is good w.r.t. generalization.
▶ Only the support vectors (those on the magin) matter, others

can, in principle, be ignored.
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Support Vector Machines (SVM)

Notation:

▶ w⃗ = (w0,w1, . . . ,wn) a vector of weights,

▶ w⃗ = (w1, . . . ,wn) a vector of all weights except w0,

▶ x⃗ = (x1, . . . , xn) a (generic) feature vector.

▶ ~x = (x0, x1, . . . , xn) an augmented feature vector where x0 = 1.

Consider a linear classifier:

h[w⃗ ](x⃗) :=

{
1 w0 +

∑n
i=1 wi · xi = w⃗ ·~x ≥ 0

−1 w0 +
∑n

i=1 wi · xi = w⃗ ·~x < 0

The distance of x⃗ from the separating hyperplane determined by w⃗ is

d [w⃗ ](x⃗) =
|w⃗ ·~x|
∥w⃗∥

Recall that w⃗ ·~x is positive for x⃗ on the side to which w⃗ points and negative on
the opposite side.
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Margin

▶ Given a training set

D = {(x⃗1, y1) , (x⃗2, y2) , . . . , (x⃗p, yp)}

Here x⃗k = (xk1 . . . , xkn) ∈ X ⊆ Rn and yk ∈ {−1, 1}.

▶ Assume that D is linearly separable, let w⃗ be consistent with D.

Margin of w⃗ is twice the minimum distance between feature vectors
x⃗k and the separating hyperplane determined by w⃗ , i.e.,

2min
k

d [w⃗ ](x⃗k) = 2min
k

|w⃗ ·~xk |
∥w⃗∥

▶ Our goal is to find w⃗ consistent with D that maximizes the margin.
Note that to maximize the margin it suffices to maximize mink

|w⃗·~xk |
∥w⃗∥ over

w⃗ consistent with D.

14
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Finding the Maximum Margin Classifier

We want to maximize the minimum distance of the feature vectors
x⃗k from the separating hyperplane determined by w⃗ .

Formally, we use the following:

To maximize the margin, find w⃗ maximizing

min
k

|w⃗ ·~xk |
||w⃗ ||

(= the distance of closest x⃗k ’s to the sep. hyperplane)

over the following constraints

w⃗ ·~xk > 0 for all k satisfying yk = 1

w⃗ ·~xk < 0 for all k satisfying yk = −1

(the contraints make sure that w⃗ is consistent with the training set D)
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To maximize the margin, find w⃗ maximizing

min
k

|w⃗ ·~xk |
||w⃗ ||

over the following constraints

w⃗ ·~xk > 0 for all k satisfying yk = 1

w⃗ ·~xk < 0 for all k satisfying yk = −1

can be made more succinct:
To maximize the margin, find w⃗ maximizing

min
k

yk · w⃗ ·~xk
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) > 0
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To maximize the margin, find w⃗ maximizing

min
k

yk · w⃗ ·~xk
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) > 0

Observation: For every w⃗ satisfying mink(yk · w⃗ ·~xk) > 0 there is
w⃗ ′ satisfying mink(yk · w⃗ ′ ·~xk) = 1 such that

min
k

yk · w⃗ ·~xk
∥w⃗∥

= min
k

yk · w⃗ ′ ·~xk
∥w⃗ ′∥

Proof: Just consider w⃗ ′ = w⃗/ξ where ξ = mink(yk · w⃗ ·~xk).
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To maximize the margin, find w⃗ maximizing

min
k

yk · w⃗ ·~xk
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) = 1

can be further simplified to
To maximize the margin, find w⃗ maximizing

1
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) = 1
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To maximize the margin, find w⃗ maximizing

1
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) = 1

can be adjusted by loosening the constraints:
To maximize the margin, find w⃗ maximizing

1
∥w⃗∥

over min
k
(yk · w⃗ ·~xk) ≥ 1

If the latter is solved by w⃗ ′ with mink(yk · w⃗ ′ ·~xk) > 1, then

min
k

yk · w⃗ ′ ·~xk∣∣∣∣w⃗ ′∣∣∣∣ >
1∣∣∣∣w⃗ ′∣∣∣∣ ≥ 1

||w⃗ ||
=

mink yk · w⃗ ·~xk
||w⃗ ||

for all w⃗ satisfying mink(yk · w⃗ ·~xk) = 1 which contradicts the fact
that the maximum margin is attained by such a w⃗ .
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To maximize the margin, find w⃗ maximizing

1
∥w⃗∥

over min
k

yk · w⃗ ·~xk ≥ 1

can be turned into
To maximize the margin, find w⃗ minimizing

||w⃗ || over min
k

yk · w⃗ ·~xk ≥ 1

and, finally,

To maximize the margin, find w⃗ minimizing

w⃗ · w⃗ over yk · w⃗ ·~xk ≥ 1 for all k

Indeed, just note that ||w⃗ || =
√

w⃗ · w⃗ .
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SVM – Optimization

Assume a given training set

D = {(x⃗1, y1)) , (x⃗2, y2) , . . . , (x⃗p, yp)}

Here x⃗k = (xk1 . . . , xkn) ∈ X ⊆ Rn and yk ∈ {−1, 1}.
(recall x̃k = (xk0, xk1, . . . , xkn) where xk0 = 1)

Margin maximization as a quadratic optimization problem:

Find w⃗ minimizing

w⃗ · w⃗

under the constraints

yk · w⃗ ·~xk ≥ 1 for all k

Support vectors are vectors x⃗k closest to the optimal separating
hyperplane, i.e., those satisfying yk · w⃗ ·~xk = 1 for a minimizing w⃗ .

23



Example

Training set:

D = {((0, 0),−1), ((1, 1), 1), ((0, 3), 1)}

That is

x⃗1 = (0, 0)
x⃗2 = (1, 1)
x⃗3 = (0, 3)

~x1 = (1, 0, 0)
~x2 = (1, 1, 1)
~x3 = (1, 0, 3)

y1 = −1
y2 = 1
y3 = 1

24



25



Find w⃗ minimizing w2
1 + w2

2 under the constraints

(−1) · (1w0 + 0w1 + 0w2) = −w0 ≥ 1
1 · (1w0 + 1w1 + 1w2) = w0 + w1 + w2 ≥ 1

1 · (1w0 + 0w1 + 3w2) = w0 + 3w2 ≥ 1

Can be solved using a quadratic programming solver.

To solve by hand, assume that we know that x⃗1 and x⃗2 are support
vectors.

Find w⃗ minimizing w2
1 + w2

2 under the constraints

−w0 = 1
w0 + w1 + w2 = 1

w0 + 3w2 ≥ 1

Note that the equality constraints correspond to our assumption that x⃗1 and x⃗2

are support vectors.
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Find w⃗ minimizing w2
1 + w2

2 under the constraints

−w0 = 1
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can be transformed to
Find w⃗ minimizing w2

1 + w2
2 under the constraints

w1 + w2 = 2
3w2 ≥ 2
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Find w⃗ minimizing w2
1 + w2

2 under the constraints

w1 + w2 = 2
3w2 ≥ 2

Substituting w2 = 2 − w1 into the quadratic function we obtain

w2
1 + (2 − w1)

2 = w2
1 + w2

1 − 4w1 + 4 = 2w2
1 − 4w1 + 4

substituting w2 = 2 − w1 into the inequality 3w2 ≥ 2 we obtain

6 − 3w1 ≥ 2

which reduces our problem to

Find w⃗ minimizing 2w2
1 − 4w1 + 4 under the constraint w1 ≤ 4

3
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Find w⃗ minimizing 2w2
1 − 4w1 + 4 under the constraint w1 ≤ 4

3

Is solved by

w1 = 1

From w2 = 2 − w1 we obtain

w2 = 2 − 1 = 1

From −w0 = 1 we obtain

w0 = −1

The final model is

h[w⃗ ](x⃗) = −1 + x1 + x2

The separating hyperplane is determined by

−1 + x1 + x2 = 0
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SVM – Optimization

▶ Need to optimize a quadratic function subject to linear
constraints.

▶ Quadratic optimization problems are a well-known class of
mathematical programming problems for which efficient
methods (and tools) exist.

But why the SVM have been so successful?
... the improvement by finding the maximum margin classifier does not seem to
be so strong ... right?

The answer lies in their ability to deal with non-linearly separable
sets in an efficient way using so called kernel trick (see a later
lecture).
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Comments on Algorithms

▶ The main bottleneck of SVM’s is in complexity of quadratic
programming (QP). A naive QP solver has cubic complexity.

▶ For small problems any general purpose optimization algorithm
can be used.

▶ For large problems this is usually not possible, many methods
avoiding direct solution have been devised.

▶ These methods usually decompose the optimization problem
into a sequence of smaller ones. Intuitively,
▶ start with a (smaller) subset of training examples.
▶ Find an optimal solution using any solver.
▶ Afterwards, only support vectors matter in the solution! Leave

only them in the training set, and add new training examples.
▶ This iterative procedure decreases the (general) cost function.
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Soft-margin SVM

Tradeo-off few misclassifications with a wide margin for the rest.

Find w⃗ minimizing

w⃗ · w⃗ + C
∑
k

ζk C is a hyperparameter

under the constraints

yk · w⃗ ·~xk ≥ 1 − ζk for all k

ζk ≥ 0 for all k

which is the same as the following unconstrained optimization:

Find w⃗ minimizing the hinge loss

w⃗ · w⃗ + C
∑
k

max(0, 1 − yk · w⃗ ·~xk)
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Hard vs Soft Margin SVM

Source: Dishaa Agarwal https://www.analyticsvidhya.com/blog/2021/04/insight-into-svm-support-

vector-machine-along-with-code/
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Comments on SVM

▶ SVMs were originally proposed by Boser, Guyon and Vapnik in
1992 and gained increasing popularity in late 1990s.

▶ SVMs are currently among the best performers for a number
of classification tasks ranging from text to genomic data.

▶ SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

▶ SVM techniques have been extended to a number of tasks
such as regression [Vapnik et al. ’97], principal component
analysis [Schölkopf et al. ’99], etc.
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