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Numerical features

» Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to R".
» Most non-numerical features can be conveniently transformed
to numerical ones.
For example:
» Colors {blue, red, yellow} can be represented by

{(1,0,0),(0,1,0),(0,0,1)}
(one-hot encoding)

» Words can be embedded into vector spaces by various means
(word2vec etc.)

» A black-and-white picture of x x y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.

(Even though this is not the best way of representing images.)
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We consider two basic problems:

» (Binary) classification

Our goal: Classify inputs into
two categories.

> Regressin

Our goal: Find
a (hypothesized) functional
dependency in data.
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Binary classification in R”

Our goal:
> Given a set D of training examples of the form (X, ¢) where
X € R" and c € {0,1},
» construct a hypothesized categorization function h € H that is
consistent with D, i.e.,
h(xX) = c for all training examples (X, c) € D
Comments:
» In practice, we often do not strictly demand h(X) = ¢ for all training
examples (X, c) € D (often it is impossible)
» \We are more interested in good generalization, that is how well h
classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)
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Hypothesis Spaces

We consider two kinds of hypothesis spaces:

> Linear (affine) classifiers (this lecture)

» Non-linear classifiers (kernel SVM, neural networks) (later
lectures)




Linear Classifier — Example
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Length and Scalar Product of Vectors

» We consider vectors X = (xi1,...,x,) € R™.

» Euclidean metric on vectors: [|X]| = /> 14 x?
The distance between two vectors (points) X, y is ||X — y||.

» Scalar product X - y of vectors X = (x1,...,x,) and
Y =(1,--.,yn) defined by

n
Ry = xyi
i—1

» Recall that X - ¥ = ||X|| ||/]| cos @ where 6 is the angle between
X and ¥. That is X - ¥ is the length of the projection of y on X
multiplied by ||X]].

> Note that X- X = ||x]|?
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Linear Classifier

A linear classifier h[w] is determined by a vector of weights
w = (wp, wi, ..., w,) € R™1 as follows:

Given X = (x1,...,xn) € R",

I wo+> ywi-x>0
0 W0+27:1Wi‘xi<0

H[W](X) := {

More succinctly:

- 1 y>
h(X) = sgn <W0 + Z w; - Xi> where  sgn(y) = { y =0

P 0 y<0

We define separating hyperplane determined by w as the set of all
X € R" satisfying wo + > w; - x; = 0.
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Linear Classifier — Geometry
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Linear Classifier — Notation

Given X = (x1,...,x,) € R" we define an augmented feature vector

X = (x0,X1,-.-,%Xn) where xp =1
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Linear Classifier — Notation

Given X = (x1,...,x,) € R" we define an augmented feature vector
bl b g

X = (x0,X1,-.-,%Xn) where xp =1

This makes the notation for the linear classifier more succinct:

Hlw](%) = sgn(w - )

10



Linear Classifier — Learning

0 1 » classification in the plane using
.O a linear classifier
° > if a point is incorrectly classified,

the learning algorithm turns the
line (hyperplane) to improve the
classification

11



Perceptron Learning

» Given a training set

D= {(x1,c1),(%,)),--- (X, )}

Here X, = (Xkl . ,an) €R"and ¢, € {0, 1}
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Perceptron Learning

» Given a training set
D= {()?17 Cl) ) ()?27 C2)) D) ()?l” CP))}
Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.
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Perceptron Learning

» Given a training set
D= {()_{17 Cl) ’ ()?27 C2)) 1y ()?l” CP))}

Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.

Recall that X, = (Xk07Xk1 e 7Xk,,) where xig = 1.

» A weight vector w € R™*! is consistent with D if

hW](Xk) = sgn(w - %) = ¢, forall k=1,...,p

D is linearly separable if there is a vector w € R™! which is
consistent with D.

» Our goal is to find a consistent w assuming that D is linearly
separable.

12



Perceptron — Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights.

Whenever an example is incorrectly classified, turn the hyperplane so that

the example becomes closer to it's correct half-space.
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Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(®) w(®) w(@) .

» w(® is randomly initialized close to 0 = (0,...,0)
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Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(© ) w®) W( )

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:
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Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(© ) w®) W( )

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:

vT/’(Hl) _ W(t) — e (h[W(f)](fk) — Ck) - Xk

= w® — ¢. (sgn <VT/'(t) -ik) — ck) - Xy

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < & < 1 is a learning rate.
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Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(© ) w®) W( )

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:

vT/’(Hl) _ W(t) — e (h[W(f)](fk) — Ck) - Xk

= w® — ¢. (sgn <VT/'(t) -ik) — ck) - Xy

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < & < 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t* such that w(t") is
consistent with D.

13



Example

Training set:

D ={((2,-1),1),((2,1),1),((1,3),0)}

That is
X = (2,-1) o= (1,2,-1)
% o= (2,1) % = (1,2,1)
X3 = (1,3) X3 = (1,1,3)
T = 1
C =
G = 0

Assume that the initial vector w(®) is w(®) = (0, -1, 1).
Consider € = 1.

14



Example: Separating by w(®)

Denoting w(® =

(W()v wi, W2) = (0) _17 1)

the blue separating line is given
by wop + wixy + waxo = 0.

The red vector normal to
the blue line is (wi, wy).

The points on the side of

(w1, wp) are assigned 1 by the
classifier, the others zero.

(In this case X3 is assigned one
and X, x> are assigned zero, all
of this is inconsistent with
a=1c=1cc=0)

15



Example: Computing w(l)
We have
w0 .5 = (0,-1,1)-(1,2,-1)=0-2—1=—3
thus
sgn (W(O) -§1> =0
and thus
sgn (VT/’(O) -il) —cg=0-1=-1

(l.e., X1 is not correctly classified, and w(® is not consistent with D.)
Hence,

VI_;(]') e M_;(O) — <5gn (V‘_}(O) . %1) _ C].) . %1
= (0,-1,1)+(1,2,-1)
= (1,1,0)

16



. — 1)
Example: Separating by w!

17



Example: Computing w®
We have
w) % =(1,1,0)-(1,2,1) =1+2=3
thus
sgn (W(l) -ig) =1
and thus
sgn(vT/'(l)&g) —o=1—-1=0
(le., % is currently correctly classified by w*). However, as we will see, X; is
not well classified.)

Hence,

w® =wl = (1,1,0)

18



Example: Computing w(3)
We have
w® %3 =(1,1,0)-(1,1,3) =1+1=2
thus
sgn (W(Q) &3) =1
and thus
sgn(vV(z) -i3) —=1-0=1

(This means that x5 is not well classified, and w® is not consistent with D.)
Hence,

w® = 3 _ (sgn <v|7(2) &3) - c3> %3
= w54
= (1,1,0)—(1,1,3)
= (0,0,-3)

19



. — 3)
Example: Separating by w!
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Example: Computing w(*
We have
w® %y =(0,0,-3)-(1,2,-1) =3
thus
sgn (VT/’(3) -il) =1
and thus
sgn(vT/'(3)'§1> —cq=1-1=0
(le., X1 is currently correctly classified by w(®). However, we shall see that X, is
not.)

Hence,

w® = w® = (0,0, -3)

21



Example: Computing w(®)
We have
w®) % =(0,0,-3)-(1,2,1) = -3
thus
sgn (W(4) -§2> =0
and thus
sgn (W(“) -iz) —=0-1=-1

(l.e., %> is not correctly classified, and w® is not consistent with D.)
Hence,

w® = w® (sg,, (w(‘” .;2) - C2> %o
= (0,0,-3)+(1,2,1)
= (1727 _2)

22



. — 5)
Example: Separating by w!

23



Example: The result

5)

The vector w(®) is consistent with D:

sgn (vT/’(5) -§1> =sgn((1,2,-2)-(1,2,-1))=sgn(7) =1=q

sgn (vT/’(‘r’) -§2> =sgn((1,2,-2)-(1,2,1)) =sgn(3) = 1=

sgn (vT/’(5) -§3) =sgn((1,2,-2)-(1,1,3)) =sgn(—3) =0=c3

24



Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®, w(®) w®@ .
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Batch learning algorithm:

Compute a sequence of weight vectors w(®, w(®) w®@ .

» w9 is randomly initialized close to 0 = (0, ..., 0)
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Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®), w1 w(2)

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t+ 1)-th

w(t+1)

step, w(tT1) is computed as follows:

w(® - g.zp: (h[w(ﬂ](zk)fck) R
k=1
P
IO 70 .5) o). %
w 3 kzz:l(sgn (W Xk) Ck) Xk

Here 0 < ¢ < 1 is a learning rate.
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Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®), w1 w(2)

» w(® is randomly initialized close to 0 = (0, ... ,0)
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step, w(tT1) is computed as follows:
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P
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Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age
(years)

DBH
(inch)

97|

12.5

93

12.5

88

8.0

81

9.5

75

16.5

57|

11.0

52

10.5

45

9.0

28

6.0

15

1.5

12

1.0

[ 1]

1.0

DBH (inch)

15

—
<

Oak Diameter vs. Age

T O

1

TR R

40 60 80
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100
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Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age ||[DBH
(years)||(inch)
97 125
93| 12.5
88| 8.0
81 9.5
75| 16.5
57| 11.0
52| 10.5
45| 9.0
28 6.0
15 1.5
12 1.0
11 1.0

DBH (inch)

Oak Diameter vs. Age
F T T T T T T T T T A

15 [ —

[y
(=1
T
|

0 20 40 60 80 100
Age (years)

NO!
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Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Oak Diameter vs. Age
Age |DBH F ! T ! T ! T e ! T A
(years)||(inch) 1% B 7
07 125
93| 12.5
88 8.0
81 9.5
75| 16.5
57| 11.0
52| 10.5
45 9.0
28 6.0
0 1 ] 1 | 1 | 1 | | |

15 1.5 0 20 40 60 80 100
12 1.0 Age (years)

[ 11 10
possibly YESI

—_
(=]

DBH (inch)
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Linear Regression

Our goal:

» Given a set D of training examples of the form (X, f) where
X eR"and f € R,
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» Given a set D of training examples of the form (X, f) where
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» construct a hypothesized function h € H such that
h(X) = f for all training examples (x,f) € D

Here ~ means that the values are somewhat close to each
other w.r.t. an appropriate error function E.
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Linear Regression

Our goal:

» Given a set D of training examples of the form (X, f) where
X €R"and f € R,
» construct a hypothesized function h € H such that
h(X) = f for all training examples (x,f) € D
Here &~ means that the values are somewhat close to each
other w.r.t. an appropriate error function E.

In what follows we use the squared error defined by

1 =
E= > (h(x)-f)?
(x,f)eD
Our goal is to minimize E.

The main reason is that this function has nice mathematical properties (as
opposed, e.g., to Z()?,f)eD |h(X) — f| ).
27



Linear Function Approximation

» Given a set D of training examples:

D={(,h), 02 R), (X, fp)}

Here X = (Xk1 ..., Xkn) € R" and f, € R.
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Linear Function Approximation

» Given a set D of training examples:
D= {()?17 fl) ) ()_(’27 f2) P (;[h fp)}
Here X = (Xk1 ..., Xkn) € R" and f, € R.
» Our goal: Find w so that h[w](xk) = w - X is close to f; for

every k=1,...,p.

Recall that X, = (Xko, XK1« - -y an) where xo = 1.
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Linear Function Approximation

» Given a set D of training examples:

D={(x1,h),(% ), .-, (X, fp)}

Here X = (Xk1 ..., Xkn) € R" and f, € R.

» Our goal: Find w so that h[w](xk) = w - X is close to f; for
every k=1,...,p

Recall that X = (xko, X1 - - - , Xkn) Where xxo = 1.

» Squared Error Function:

N~
-
§1
><l
|
;H
I
N
[]=
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Error function
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Gradient of the Error Function

Consider the gradient of the error function:

VE(vv)z(aE(vv), OB ) éka—fk %

6 wo Whn

What is the gradient VE(w) ? It is a vector in R"™! which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xx are fixed parameters of E!

30



Gradient of the Error Function
Consider the gradient of the error function:

4 OF | OE "
VE(w) = (8W0(W)’ ; > > (W% — i) -
k=1

n

What is the gradient VE(w) ? It is a vector in R"™! which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xx are fixed parameters of E!

IfVE(W) =0=(0,...,0), then w is a global minimum of E.

This follows from the fact that E is a convex

paraboloid that has a unique extreme which is a
minimum.

e

30



Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.
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Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
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Gradient of the error function
Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wo+wy-2—1)-14+(wo+wy-3—2)-14+(wo+w;-4—5)-1

Owg
OE
ows
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Gradient of the error function
Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wo+wy-2—1)-14+(wo+wy-3—2)-14+(wo+w;-4—5)-1

Owg

9B — (wo+wp-2—1)-24(wo+wi-3—2)-34+(wo+w;-4—5)-4

Owy
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Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wo + wy - x

Consider a concrete training set:
T = {(2,1),(3,2),(4,5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).

E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wp+wyp-2—1)-1+(wo+w1-3—-2)-1+(wo+wi-4—5)-1

owg
JE = (wo+w1-2—1)-24(wo+wi-3—2)-3+(wo+w-4—5)-4
VE(W) = (Fus» 9hey) =

(wo+w1-2—1)-(1,2)+(wo+wi-3—2)-(1,3)+(wp+w1-4—5)-(1,4)
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Function Approximation — Learning

Gradient Descent:

> Weights w(©) are initialized randomly close to 0.
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Gradient Descent:
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wtt)  — ) o, VE(w®)

p
R COE AR
k=1

p
- w0 . Z (h[vv(t)](%k) - fk) - Xk
k=1

Here 0 < ¢ < 1 is a learning rate.

Note that the algorithm is almost similar to the batch perceptron algorithm!
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Function Approximation — Learning

Gradient Descent:
> Weights w(©) are initialized randomly close to 0.

» In (t + 1)-th step, w(tt1) is computed as follows:
wtt)  — ) o, VE(w®)

p
R COE AR
k=1

p
- w0 . Z (h[vv(t)](%k) - fk) - Xk
k=1

Here 0 < ¢ < 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzeni
For sufficiently small ¢ > 0 the sequence w(®, w1 w2
converges (component-wisely) to the global minimum of E.
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Training set:

D= {(XL fl)7 (X27 f2)7 (X37 f3)} = {(07 0)7 (27 1), (27 2)}

Note that input vectors are one dimensional, so we write them as numbers.

That is

xx = 0 X1 = (1,0)
X = 2 X2 = (1,2)
x3 = 2 X3 = (1,2
i =0

f =

i = 2

Assume that the initial vector w(%) is w(®) = (Wéo), w{?) = (0,2).

; _ 1
Consider € = i6-

33



(mlvfl)

(0)

1 u'I £
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Training set: D = {(x1, f1), (x2, f2), (x3, )} = {(0,0),(2,1),(2,2)}
Augmented input vectors: X3 = (1,0), X» = (1,2), X1 = (1,2)

(VV)7

—~
3!
N

= (W0+W1'X1—f1)-§1

VEW) = (o (@) 5 ()

aWO 8w1
+ (W +wp - xo0 — ) - %o

+ (W +wy - x3 — f3) - X3

For w(® = (0,2) we have

VE(W®)=(0+2-0-0)-(1,0)
+(0+2-2-1)-(1,2)
+(0+2-2—-2)-(1,2) = (3,6) + (2,4) = (5,10)

Finally, w(1) is computed by

L 5.10) = (—1/2,1)

v = 5O — . VEW®) = (0,2) — 10
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(z1, f1)

P

/4
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Linear Regression - Animation

Linear regression by gradient descent

Error function
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Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p
2
E(wo, wr) E wo + wixk — fx)
k:
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Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p

2

E(wo, wr) E wo + wixk — fx)
k:

Minimize E w.r.t. wp a wy:

87E:0 = WOZF—Wl)_( = F:WO—I-Wl)_(
8W0

c_ 1\P £F_1\P
where X =23 4 g xk a f=230 1
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Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p

2

E(wo, wr) E wo + wixk — fx)
k:

Minimize E w.r.t. wp a wy:

87E:0 = WOZF—Wl)_( = F:WO—I-Wl)_(
8W0
Where)'(:%Z’ljzlxk a f:l b1tk
OE 5 21 (fc = )k — %)
— =0 & w= T—p =
owy D ke (ke — %)

i.e. wi = cov(f,x)/var(x)
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Effect of Outliers
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Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D = {(x1, 1), (X2, 1), ..., (Xp, fp)}
Assume that each f; has been generated randomly by
fie = (wo + wa - Xxi) + €x

where wy, w; are unknown weights, and ¢, are independent, normally

distributed noise values with mean 0 and some variance o2
1
TR, K s
fk ot ',r'/’f 0\
« ;
A//" D) |
X
How "probable" is it to generate the correct fi,...,f, 7
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Maximum Likelihood vs Least Squares (Dim 1)

&
(UT,)*,/U/"QYL : \‘I .
fo [ o gl 14
] '// |
e :
/,// ° :
X
How "probable" is it to generate the correct f,...,f, ?

The following conditions are equivalent:
» wp, w; minimize the squared error E

» wp, w; maximize the likelihood (i.e., the "probability") of generating
the correct values f1,. .., f, using fx = (wo + wy - xk) + €«
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Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).
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Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

» Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

» Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

» Linear models are prone to outliers.
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