Numerical features

» Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to R".

Numerical features

» Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to R".
» Most non-numerical features can be conveniently transformed
to numerical ones.
For example:
» Colors {blue, red, yellow} can be represented by

{(1,0,0),(0,1,0),(0,0,1)}
(one-hot encoding)

» Words can be embedded into vector spaces by various means
(word2vec etc.)

» A black-and-white picture of x x y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.

(Even though this is not the best way of representing images.)

Basic Problems

We consider two basic problems:

» (Binary) classification

Our goal: Classify inputs into
two categories.

Basic Problems

We consider two basic problems:

» (Binary) classification

Our goal: Classify inputs into
two categories.

> Regressin

Our goal: Find
a (hypothesized) functional
dependency in data.

Binary classification in R”

Our goal:

> Given a set D of training examples of the form (X, ¢) where
X € R" and c € {0,1},

Binary classification in R”

Our goal:
> Given a set D of training examples of the form (X, ¢) where
X €R" and ¢ € {0,1},
» construct a hypothesized categorization function h € H that is
consistent with D, i.e.,
h(x) = ¢ for all training examples (X,c) € D

Binary classification in R”

Our goal:
> Given a set D of training examples of the form (X, ¢) where
X € R" and c € {0,1},
» construct a hypothesized categorization function h € H that is
consistent with D, i.e.,
h(xX) = c for all training examples (X, c) € D
Comments:
» In practice, we often do not strictly demand h(X) = ¢ for all training
examples (X, c) € D (often it is impossible)
» \We are more interested in good generalization, that is how well h
classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)

Hypothesis Spaces

We consider two kinds of hypothesis spaces:

> Linear (affine) classifiers (this lecture)

Hypothesis Spaces

We consider two kinds of hypothesis spaces:

> Linear (affine) classifiers (this lecture)

» Non-linear classifiers (kernel SVM, neural networks) (later
lectures)

Linear Classifier — Example

diameter

weight

Length and Scalar Product of Vectors

» We consider vectors X = (xi1,...,x,) € R™.

Length and Scalar Product of Vectors

» We consider vectors X = (xi1,...,x,) € R™.

» Euclidean metric on vectors: [|X]| = /> 14 x?

The distance between two vectors (points) X,y is ||X — y||.

Length and Scalar Product of Vectors

» We consider vectors X = (xi1,...,x,) € R™.

» Euclidean metric on vectors: [|X]| = /> 14 x?
The distance between two vectors (points) X, y is ||X — y||.

» Scalar product X - y of vectors X = (x1,...,x,) and
Y =(1,--.,yn) defined by

n
Ry = xyi
i—1

» Recall that X - ¥ = ||X|| ||/]| cos @ where 6 is the angle between
X and ¥. That is X - ¥ is the length of the projection of y on X
multiplied by ||X]].

> Note that X- X = ||x]|?

Linear Classifier

A linear classifier h[w] is determined by a vector of weights
w = (wp, wi, ..., w,) € R™1 as follows:

Linear Classifier

A linear classifier h[w] is determined by a vector of weights
w = (wp, wi, ..., w,) € R™1 as follows:

Given X = (x1,...,xn) € R",

1 wo+3 2 wi x>0
0 W0+27:1Wi‘xi<0

H[W](X) := {

Linear Classifier

A linear classifier h[w] is determined by a vector of weights
w = (wp, wi, ..., w,) € R™1 as follows:

Given X = (x1,...,xn) € R",

I wo+> ywi-x>0
0 W0+27:1Wi‘xi<0

H[W](X) := {

More succinctly:

- 1 y>
h(X) = sgn <W0 + Z w; - Xi> where sgn(y) = { y =0

P 0 y<0

We define separating hyperplane determined by w as the set of all
X € R" satisfying wo + > w; - x; = 0.

wy + wyT + waTy

0

wy = —3 3
w =2
We = 1
2
wo + wiz) + wazs > 0
3 (wlst) B (21 1)
-2 -1 2 3
-1
wo + Wy + weTy < ()|

wp + wyxy + wezy =0

wy = —3
w; =2
We = 1

‘n'., -

Wiy + Wals

0]

(wlﬂwZ) o (21 1)

wy + Wiy + wary < ()|

-1

n
w

h R ol NI

o (¢h,25)
'lul ——
We = 1
wo + wiz) + wazs > 0
3 . —Wp
V5 Jw? + w? (wi,wz) =(2,1)
2 -1 1 2 3
-1
Wy + W) + waTy < ()|

wy + wyzy + wazy = 0

Wy = —3
w) = 2
i}

e ==

wo +

w1y -+

Wy + W Iy +

-2

1 —(wo + wyz}] + waz?y)

1/w?+w§

Linear Classifier — Geometry

ﬂ(f’”?/ —) My)
/
/

™M 2l
oy + Z M X, >0
(X,/*-/ /n)
(’I M \
AN !“"“.‘; +i T X, {
—_—E
d f m,i"
~=q

‘“‘:”D < "L\\
= . W, + v =

Linear Classifier — Notation

Given X = (x1,...,x,) € R" we define an augmented feature vector

X = (x0,X1,-.-,%Xn) where xp =1

10

Linear Classifier — Notation

Given X = (x1,...,x,) € R" we define an augmented feature vector
bl b g

X = (x0,X1,-.-,%Xn) where xp =1

This makes the notation for the linear classifier more succinct:

Hlw](%) = sgn(w -)

10

Linear Classifier — Learning

0 1 » classification in the plane using
.O a linear classifier
° > if a point is incorrectly classified,

the learning algorithm turns the
line (hyperplane) to improve the
classification

11

Perceptron Learning

» Given a training set

D= {(x1,c1),(%,)),--- (X,)}

Here X, = (Xkl . ,an) €R"and ¢, € {0, 1}

12

Perceptron Learning

» Given a training set

D= {()?17 Cl) ’ ()?27 C2)) 1y ()?I” CP))}
Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.

Recall that X, = (Xk07Xk1 R ,Xk,,) where xig = 1.

12

Perceptron Learning

» Given a training set
D= {()?17 Cl)) ()?27 C2)) D) ()?l” CP))}
Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.
Recall that X, = (Xk07Xk1 e 7Xk,,) where xig = 1.
» A weight vector w € R™*! is consistent with D if

hW](Xk) = sgn(w - %) = ¢, forall k=1,...,p

12

Perceptron Learning

» Given a training set
D= {()?17 Cl)) ()?27 C2)) D) ()?l” CP))}
Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.
Recall that X, = (Xk07Xk1 e 7Xk,,) where xig = 1.
» A weight vector w € R™*! is consistent with D if

hW](Xk) = sgn(w - %) = ¢, forall k=1,...,p

D is linearly separable if there is a vector w € R™! which is
consistent with D.

12

Perceptron Learning

» Given a training set
D= {()_{17 Cl) ’ ()?27 C2)) 1y ()?l” CP))}

Here X = (Xk1 ..., Xkn) € R" and ¢, € {0,1}.

Recall that X, = (Xk07Xk1 e 7Xk,,) where xig = 1.

» A weight vector w € R™*! is consistent with D if

hW](Xk) = sgn(w - %) = ¢, forall k=1,...,p

D is linearly separable if there is a vector w € R™! which is
consistent with D.

» Our goal is to find a consistent w assuming that D is linearly
separable.

12

Perceptron — Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights.

Whenever an example is incorrectly classified, turn the hyperplane so that

the example becomes closer to it's correct half-space.

13

Perceptron — Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights.

Whenever an example is incorrectly classified, turn the hyperplane so that

the example becomes closer to it's correct half-space.

Compute a sequence of weight vectors w(®) w(®) w(@) .

13

Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(®) w(®) w(@) .

» w(® is randomly initialized close to 0 = (0,...,0)

13

Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(©) w®) W()

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:

vT/’(Hl) _ W(t) — e (h[W(f)](fk) — Ck) - Xk

13

Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(©) w®) W()

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:

vT/’(Hl) _ W(t) — e (h[W(f)](fk) — Ck) - Xk

= w® — ¢. (sgn <VT/'(t) -ik) — ck) - Xy

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < & < 1 is a learning rate.

13

Perceptron — Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors w(©) w®) W()

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t 4 1)-th step, w(t*1) is computed as follows:

vT/’(Hl) _ W(t) — e (h[W(f)](fk) — Ck) - Xk

= w® — ¢. (sgn <VT/'(t) -ik) — ck) - Xy

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < & < 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t* such that w(t") is
consistent with D.

13

Example

Training set:

D ={((2,-1),1),((2,1),1),((1,3),0)}

That is
X = (2,-1) o= (1,2,-1)
% o= (2,1) % = (1,2,1)
X3 = (1,3) X3 = (1,1,3)
T = 1
C =
G = 0

Assume that the initial vector w(®) is w(®) = (0, -1, 1).
Consider € = 1.

14

Example: Separating by w(®)

Denoting w(® =

(W()v wi, W2) = (0) _17 1)

the blue separating line is given
by wop + wixy + waxo = 0.

The red vector normal to
the blue line is (wi, wy).

The points on the side of

(w1, wp) are assigned 1 by the
classifier, the others zero.

(In this case X3 is assigned one
and X, x> are assigned zero, all
of this is inconsistent with
a=1c=1cc=0)

15

Example: Computing w(l)
We have
w0 .5 = (0,-1,1)-(1,2,-1)=0-2—1=—3
thus
sgn (W(O) -§1> =0
and thus
sgn (VT/’(O) -il) —cg=0-1=-1

(l.e., X1 is not correctly classified, and w(® is not consistent with D.)
Hence,

VI_;(]') e M_;(O) — <5gn (V‘_}(O) . %1) _ C].) . %1
= (0,-1,1)+(1,2,-1)
= (1,1,0)

16

. — 1)
Example: Separating by w!

17

Example: Computing w®
We have
w) % =(1,1,0)-(1,2,1) =1+2=3
thus
sgn (W(l) -ig) =1
and thus
sgn(vT/'(l)&g) —o=1—-1=0
(le., % is currently correctly classified by w*). However, as we will see, X; is
not well classified.)

Hence,

w® =wl = (1,1,0)

18

Example: Computing w(3)
We have
w® %3 =(1,1,0)-(1,1,3) =1+1=2
thus
sgn (W(Q) &3) =1
and thus
sgn(vV(z) -i3) —=1-0=1

(This means that x5 is not well classified, and w® is not consistent with D.)
Hence,

w® = 3 _ (sgn <v|7(2) &3) - c3> %3
= w54
= (1,1,0)—(1,1,3)
= (0,0,-3)

19

. — 3)
Example: Separating by w!

20

Example: Computing w(*
We have
w® %y =(0,0,-3)-(1,2,-1) =3
thus
sgn (VT/’(3) -il) =1
and thus
sgn(vT/'(3)'§1> —cq=1-1=0
(le., X1 is currently correctly classified by w(®). However, we shall see that X, is
not.)

Hence,

w® = w® = (0,0, -3)

21

Example: Computing w(®)
We have
w®) % =(0,0,-3)-(1,2,1) = -3
thus
sgn (W(4) -§2> =0
and thus
sgn (W(“) -iz) —=0-1=-1

(l.e., %> is not correctly classified, and w® is not consistent with D.)
Hence,

w® = w® (sg,, (w(‘” .;2) - C2> %o
= (0,0,-3)+(1,2,1)
= (1727 _2)

22

. — 5)
Example: Separating by w!

23

Example: The result

5)

The vector w(®) is consistent with D:

sgn (vT/’(5) -§1> =sgn((1,2,-2)-(1,2,-1))=sgn(7) =1=q

sgn (vT/’(‘r’) -§2> =sgn((1,2,-2)-(1,2,1)) =sgn(3) = 1=

sgn (vT/’(5) -§3) =sgn((1,2,-2)-(1,1,3)) =sgn(—3) =0=c3

24

Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®, w(®) w®@ .

25

Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®, w(®) w®@ .

» w9 is randomly initialized close to 0 = (0, ..., 0)

25

Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®), w1 w(2)

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t+ 1)-th

w(t+1)

step, w(tT1) is computed as follows:

w(® - g.zp: (h[w(ﬂ](zk)fck) R
k=1
P
IO 70 .5) o). %
w 3 kzz:l(sgn (W Xk) Ck) Xk

Here 0 < ¢ < 1 is a learning rate.

25

Perceptron — Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors w(®), w1 w(2)

» w(® is randomly initialized close to 0 = (0, ... ,0)

» In (t+ 1)-th

w(t+1)

step, w(tT1) is computed as follows:

w(® - g.zp: (h[w(ﬂ](zk)fck) R
k=1
P
IO 70 .5) o). %
w 3 kzz:l(sgn (W Xk) Ck) Xk

Here 0 < ¢ < 1 is a learning rate.

25

Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age
(years)

DBH
(inch)

97|

12.5

93

12.5

88

8.0

81

9.5

75

16.5

57|

11.0

52

10.5

45

9.0

28

6.0

15

1.5

12

1.0

[1]

1.0

DBH (inch)

15

—
<

Oak Diameter vs. Age

T O

1

TR R

40 60 80
Age (years)

100

26

Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age ||[DBH
(years)||(inch)
97 125
93| 12.5
88| 8.0
81 9.5
75| 16.5
57| 11.0
52| 10.5
45| 9.0
28 6.0
15 1.5
12 1.0
11 1.0

DBH (inch)

Oak Diameter vs. Age
F T T T T T T T T T A

15 [—

[y
(=1
T
|

0 20 40 60 80 100
Age (years)

NO!

26

Linear Regression — Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Oak Diameter vs. Age
Age |DBH F ! T ! T ! T e ! T A
(years)||(inch) 1% B 7
07 125
93| 12.5
88 8.0
81 9.5
75| 16.5
57| 11.0
52| 10.5
45 9.0
28 6.0
0 1] 1 | 1 | 1 | | |

15 1.5 0 20 40 60 80 100
12 1.0 Age (years)

[11 10
possibly YESI

—_
(=]

DBH (inch)

26

Linear Regression

Our goal:

» Given a set D of training examples of the form (X, f) where
X eR"and f € R,

27

Linear Regression

Our goal:

» Given a set D of training examples of the form (X, f) where
X€R"and f € R,

» construct a hypothesized function h € H such that
h(X) = f for all training examples (x,f) € D

Here ~ means that the values are somewhat close to each
other w.r.t. an appropriate error function E.

27

Linear Regression

Our goal:

» Given a set D of training examples of the form (X, f) where
X €R"and f € R,
» construct a hypothesized function h € H such that
h(X) = f for all training examples (x,f) € D
Here &~ means that the values are somewhat close to each
other w.r.t. an appropriate error function E.

In what follows we use the squared error defined by

1 =
E= > (h(x)-f)?
(x,f)eD
Our goal is to minimize E.

The main reason is that this function has nice mathematical properties (as
opposed, e.g., to Z()?,f)eD |h(X) — f|).
27

Linear Function Approximation

» Given a set D of training examples:

D={(,h), 02 R), (X, fp)}

Here X = (Xk1 ..., Xkn) € R" and f, € R.

28

Linear Function Approximation

» Given a set D of training examples:
D= {()?17 fl)) ()_(’27 f2) P (;[h fp)}
Here X = (Xk1 ..., Xkn) € R" and f, € R.
» Our goal: Find w so that h[w](xk) = w - X is close to f; for

every k=1,...,p.

Recall that X, = (Xko, XK1« - -y an) where xo = 1.

28

Linear Function Approximation

» Given a set D of training examples:

D={(x1,h),(%), .-, (X, fp)}

Here X = (Xk1 ..., Xkn) € R" and f, € R.

» Our goal: Find w so that h[w](xk) = w - X is close to f; for
every k=1,...,p

Recall that X = (xko, X1 - - - , Xkn) Where xxo = 1.

» Squared Error Function:

N~
-
§1
><l
|
;H
I
N
[]=

28

Error function

-- .-.\\s\\\“: Xy

AR

/
’:.0031"

Gradient of the Error Function

Consider the gradient of the error function:

VE(vv)z(aE(vv), OB) éka—fk %

6 wo Whn

What is the gradient VE(w) ? It is a vector in R"™! which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xx are fixed parameters of E!

30

Gradient of the Error Function
Consider the gradient of the error function:

4 OF | OE "
VE(w) = (8W0(W)’ ; > > (W% — i) -
k=1

n

What is the gradient VE(w) ? It is a vector in R"™! which points in the
direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors Xx are fixed parameters of E!

IfVE(W) =0=(0,...,0), then w is a global minimum of E.

This follows from the fact that E is a convex

paraboloid that has a unique extreme which is a
minimum.

e

30

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

31

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).

31

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

31

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:

T = {(2,1).(3,2),(4,5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).

E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

Owg

31

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:

T = {(2,1).(3,2),(4,5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).

E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9E — (wo+wp-2—-1)-1+(wo+wi-3—2)-1+(wo+w;-4-5) 1

Owg

31

Gradient of the error function
Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wo+wy-2—1)-14+(wo+wy-3—2)-14+(wo+w;-4—5)-1

Owg
OE
ows

31

Gradient of the error function
Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wp + wy - x.

Consider a concrete training set:
T = {(27 1)’ (37 2)7 (4? 5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).
E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wo+wy-2—1)-14+(wo+wy-3—2)-14+(wo+w;-4—5)-1

Owg

9B — (wo+wp-2—1)-24(wo+wi-3—2)-34+(wo+w;-4—5)-4

Owy

31

Gradient of the error function

Consider n = 1, which means that w = (wp, wy) and we write x
instead of X since X € R” =Rl = R.

Then the model is h[w](x) = wo + wy - x

Consider a concrete training set:
T = {(2,1),(3,2),(4,5)}
= {(Xl,f]_),(X2,f—2),(X3,f},)}
The augmented feature vectors are: (1,2),(1,3),(1,4).

E(wo, w1) = 3[(wo+wi-2—1)>+(wo+wi-3—2)2+(wo+wy-4—5)?]

9 — (wp+wyp-2—1)-1+(wo+w1-3—-2)-1+(wo+wi-4—5)-1

owg
JE = (wo+w1-2—1)-24(wo+wi-3—2)-3+(wo+w-4—5)-4
VE(W) = (Fus» 9hey) =

(wo+w1-2—1)-(1,2)+(wo+wi-3—2)-(1,3)+(wp+w1-4—5)-(1,4)

31

Function Approximation — Learning

Gradient Descent:

> Weights w(©) are initialized randomly close to 0.

32

Function Approximation — Learning

Gradient Descent:
> Weights w(©) are initialized randomly close to 0.
» In (t + 1)-th step, w(tt1) is computed as follows:
wtt) —) o, VE(w®)

32

Function Approximation — Learning

Gradient Descent:
> Weights w(©) are initialized randomly close to 0.
» In (t + 1)-th step, w(tt1) is computed as follows:
wtt) —) o, VE(w®)

p
R COE AR
k=1

p
- w0 . Z (h[vv(t)](%k) - fk) - Xk
k=1

Here 0 < ¢ < 1 is a learning rate.

Note that the algorithm is almost similar to the batch perceptron algorithm!

32

Function Approximation — Learning

Gradient Descent:
> Weights w(©) are initialized randomly close to 0.

» In (t + 1)-th step, w(tt1) is computed as follows:
wtt) —) o, VE(w®)

p
R COE AR
k=1

p
- w0 . Z (h[vv(t)](%k) - fk) - Xk
k=1

Here 0 < ¢ < 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzeni
For sufficiently small ¢ > 0 the sequence w(®, w1 w2
converges (component-wisely) to the global minimum of E.

32

Training set:

D= {(XL fl)7 (X27 f2)7 (X37 f3)} = {(07 0)7 (27 1), (27 2)}

Note that input vectors are one dimensional, so we write them as numbers.

That is

xx = 0 X1 = (1,0)
X = 2 X2 = (1,2)
x3 = 2 X3 = (1,2
i =0

f =

i = 2

Assume that the initial vector w(%) is w(®) = (Wéo), w{?) = (0,2).

; _ 1
Consider € = i6-

33

(mlvfl)

(0)

1 u'I £

34

Training set: D = {(x1, f1), (x2, f2), (x3,)} = {(0,0),(2,1),(2,2)}
Augmented input vectors: X3 = (1,0), X» = (1,2), X1 = (1,2)

(VV)7

—~
3!
N

= (W0+W1'X1—f1)-§1

VEW) = (o (@) 5 ()

aWO 8w1
+ (W +wp - xo0 —) - %o

+ (W +wy - x3 — f3) - X3

For w(® = (0,2) we have

VE(W®)=(0+2-0-0)-(1,0)
+(0+2-2-1)-(1,2)
+(0+2-2—-2)-(1,2) = (3,6) + (2,4) = (5,10)

Finally, w(1) is computed by

L 5.10) = (—1/2,1)

v = 5O — . VEW®) = (0,2) — 10

35

(z1, f1)

P

/4

36

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

50

T
100

lterations

T
150

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}

o -
- o
> g g
[T
(=]
(= o _|
j=}
o

L
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

-4 -2 0 2 4

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Linear Regression - Animation

Linear regression by gradient descent

Error function

(=]
S
j=}
o |)
[=]
s |
[=]
[t=}
o -
= o
> g g
[T
(=]
(= o _|
j=}
o
o

T T T
50 100 150

lterations

T
200

37

Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p
2
E(wo, wr) E wo + wixk — fx)
k:

38

Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p

2

E(wo, wr) E wo + wixk — fx)
k:

Minimize E w.r.t. wp a wy:

87E:0 = WOZF—Wl)_(= F:WO—I-Wl)_(
8W0

c_ 1\P £F_1\P
where X =23 4 g xk a f=230 1

38

Finding the Minimum in Dimension One
Assume n = 1. Then the error function E is

p

2

E(wo, wr) E wo + wixk — fx)
k:

Minimize E w.r.t. wp a wy:

87E:0 = WOZF—Wl)_(= F:WO—I-Wl)_(
8W0
Where)'(:%Z’ljzlxk a f:l b1tk
OE 5 21 (fc =)k — %)
— =0 & w= T—p =
owy D ke (ke — %)

i.e. wi = cov(f,x)/var(x)

38

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D = {(x1, 1), (X2, 1), ..., (Xp, fp)}
Assume that each f; has been generated randomly by
fie = (wo + wa - Xxi) + €x

where wy, w; are unknown weights, and ¢, are independent, normally

distributed noise values with mean 0 and some variance o2
1
TR, K s
fk ot ',r'/’f 0\
« ;
A//" D) |
X
How "probable" is it to generate the correct fi,...,f, 7

40

Maximum Likelihood vs Least Squares (Dim 1)

&
(UT,)*,/U/"QYL : \‘I .
fo [o gl 14
] '// |
e :
/,// ° :
X
How "probable" is it to generate the correct f,...,f, ?

The following conditions are equivalent:
» wp, w; minimize the squared error E

» wp, w; maximize the likelihood (i.e., the "probability") of generating
the correct values f1,. .., f, using fx = (wo + wy - xk) + €«

40

Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

41

Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

» Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

41

Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

» Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

» Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

41

Comments on Linear Models

» Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

» Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

» Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

» Linear models are prone to outliers.

41

