
Numerical features

▶ Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to Rn.

▶ Most non-numerical features can be conveniently transformed
to numerical ones.
For example:
▶ Colors {blue, red , yellow} can be represented by

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(one-hot encoding)

▶ Words can be embedded into vector spaces by various means
(word2vec etc.)

▶ A black-and-white picture of x × y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.
(Even though this is not the best way of representing images.)

1

Numerical features

▶ Throughout this lecture we assume that all features are
numerical, i.e., feature vectors belong to Rn.

▶ Most non-numerical features can be conveniently transformed
to numerical ones.
For example:
▶ Colors {blue, red , yellow} can be represented by

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(one-hot encoding)

▶ Words can be embedded into vector spaces by various means
(word2vec etc.)

▶ A black-and-white picture of x × y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.
(Even though this is not the best way of representing images.)

1

Basic Problems

We consider two basic problems:

▶ (Binary) classification

Our goal: Classify inputs into
two categories.

2

Basic Problems

We consider two basic problems:

▶ (Binary) classification

Our goal: Classify inputs into
two categories.

▶ Regressin

Our goal: Find
a (hypothesized) functional
dependency in data.

2

Binary classification in Rn

Our goal:
▶ Given a set D of training examples of the form (x⃗ , c) where

x⃗ ∈ Rn and c ∈ {0, 1},

▶ construct a hypothesized categorization function h ∈ H that is
consistent with D, i.e.,

h(x⃗) = c for all training examples (x⃗ , c) ∈ D

Comments:
▶ In practice, we often do not strictly demand h(x⃗) = c for all training

examples (x⃗ , c) ∈ D (often it is impossible)
▶ We are more interested in good generalization, that is how well h

classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)

3

Binary classification in Rn

Our goal:
▶ Given a set D of training examples of the form (x⃗ , c) where

x⃗ ∈ Rn and c ∈ {0, 1},
▶ construct a hypothesized categorization function h ∈ H that is

consistent with D, i.e.,
h(x⃗) = c for all training examples (x⃗ , c) ∈ D

Comments:
▶ In practice, we often do not strictly demand h(x⃗) = c for all training

examples (x⃗ , c) ∈ D (often it is impossible)
▶ We are more interested in good generalization, that is how well h

classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)

3

Binary classification in Rn

Our goal:
▶ Given a set D of training examples of the form (x⃗ , c) where

x⃗ ∈ Rn and c ∈ {0, 1},
▶ construct a hypothesized categorization function h ∈ H that is

consistent with D, i.e.,
h(x⃗) = c for all training examples (x⃗ , c) ∈ D

Comments:
▶ In practice, we often do not strictly demand h(x⃗) = c for all training

examples (x⃗ , c) ∈ D (often it is impossible)
▶ We are more interested in good generalization, that is how well h

classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized
function h on a test set.)

3

Hypothesis Spaces

We consider two kinds of hypothesis spaces:
▶ Linear (affine) classifiers (this lecture)

▶ Non-linear classifiers (kernel SVM, neural networks) (later
lectures)

4

Hypothesis Spaces

We consider two kinds of hypothesis spaces:
▶ Linear (affine) classifiers (this lecture)

▶ Non-linear classifiers (kernel SVM, neural networks) (later
lectures)

4

Linear Classifier – Example

5

Length and Scalar Product of Vectors

▶ We consider vectors x⃗ = (x1, . . . , xn) ∈ Rm.

▶ Euclidean metric on vectors: ||x⃗ || =
√∑n

i=1 x
2
i

The distance between two vectors (points) x⃗ , y⃗ is ||x⃗ − y⃗ ||.
▶ Scalar product x⃗ · y⃗ of vectors x⃗ = (x1, . . . , xn) and

y⃗ = (y1, . . . , yn) defined by

x⃗ · y⃗ =
n∑

i=1

xiyi

▶ Recall that x⃗ · y⃗ = ||x⃗ || ||y⃗ || cos θ where θ is the angle between
x⃗ and y⃗ . That is x⃗ · y⃗ is the length of the projection of y⃗ on x⃗
multiplied by ||x⃗ ||.

▶ Note that x⃗ · x⃗ = ||x⃗ ||2

6

Length and Scalar Product of Vectors

▶ We consider vectors x⃗ = (x1, . . . , xn) ∈ Rm.

▶ Euclidean metric on vectors: ||x⃗ || =
√∑n

i=1 x
2
i

The distance between two vectors (points) x⃗ , y⃗ is ||x⃗ − y⃗ ||.

▶ Scalar product x⃗ · y⃗ of vectors x⃗ = (x1, . . . , xn) and
y⃗ = (y1, . . . , yn) defined by

x⃗ · y⃗ =
n∑

i=1

xiyi

▶ Recall that x⃗ · y⃗ = ||x⃗ || ||y⃗ || cos θ where θ is the angle between
x⃗ and y⃗ . That is x⃗ · y⃗ is the length of the projection of y⃗ on x⃗
multiplied by ||x⃗ ||.

▶ Note that x⃗ · x⃗ = ||x⃗ ||2

6

Length and Scalar Product of Vectors

▶ We consider vectors x⃗ = (x1, . . . , xn) ∈ Rm.

▶ Euclidean metric on vectors: ||x⃗ || =
√∑n

i=1 x
2
i

The distance between two vectors (points) x⃗ , y⃗ is ||x⃗ − y⃗ ||.
▶ Scalar product x⃗ · y⃗ of vectors x⃗ = (x1, . . . , xn) and

y⃗ = (y1, . . . , yn) defined by

x⃗ · y⃗ =
n∑

i=1

xiyi

▶ Recall that x⃗ · y⃗ = ||x⃗ || ||y⃗ || cos θ where θ is the angle between
x⃗ and y⃗ . That is x⃗ · y⃗ is the length of the projection of y⃗ on x⃗
multiplied by ||x⃗ ||.

▶ Note that x⃗ · x⃗ = ||x⃗ ||2

6

Linear Classifier

A linear classifier h[w⃗] is determined by a vector of weights
w⃗ = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given x⃗ = (x1, . . . , xn) ∈ Rn,

h[w⃗](x⃗) :=

{
1 w0 +

∑n
i=1 wi · xi ≥ 0

0 w0 +
∑n

i=1 wi · xi < 0

More succinctly:

h(x⃗) = sgn

(
w0 +

n∑
i=1

wi · xi

)
where sgn(y) =

{
1 y ≥ 0
0 y < 0

We define separating hyperplane determined by w⃗ as the set of all
x⃗ ∈ Rn satisfying w0 +

∑n
i=1 wi · xi = 0.

7

Linear Classifier

A linear classifier h[w⃗] is determined by a vector of weights
w⃗ = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given x⃗ = (x1, . . . , xn) ∈ Rn,

h[w⃗](x⃗) :=

{
1 w0 +

∑n
i=1 wi · xi ≥ 0

0 w0 +
∑n

i=1 wi · xi < 0

More succinctly:

h(x⃗) = sgn

(
w0 +

n∑
i=1

wi · xi

)
where sgn(y) =

{
1 y ≥ 0
0 y < 0

We define separating hyperplane determined by w⃗ as the set of all
x⃗ ∈ Rn satisfying w0 +

∑n
i=1 wi · xi = 0.

7

Linear Classifier

A linear classifier h[w⃗] is determined by a vector of weights
w⃗ = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given x⃗ = (x1, . . . , xn) ∈ Rn,

h[w⃗](x⃗) :=

{
1 w0 +

∑n
i=1 wi · xi ≥ 0

0 w0 +
∑n

i=1 wi · xi < 0

More succinctly:

h(x⃗) = sgn

(
w0 +

n∑
i=1

wi · xi

)
where sgn(y) =

{
1 y ≥ 0
0 y < 0

We define separating hyperplane determined by w⃗ as the set of all
x⃗ ∈ Rn satisfying w0 +

∑n
i=1 wi · xi = 0.

7

8

8

8

8

Linear Classifier – Geometry

9

Linear Classifier – Notation

Given x⃗ = (x1, . . . , xn) ∈ Rn we define an augmented feature vector

~x = (x0, x1, . . . , xn) where x0 = 1

This makes the notation for the linear classifier more succinct:

h[w⃗](x⃗) = sgn(w⃗ ·~x)

10

Linear Classifier – Notation

Given x⃗ = (x1, . . . , xn) ∈ Rn we define an augmented feature vector

~x = (x0, x1, . . . , xn) where x0 = 1

This makes the notation for the linear classifier more succinct:

h[w⃗](x⃗) = sgn(w⃗ ·~x)

10

Linear Classifier – Learning

0

0

0 0

1

1

1

▶ classification in the plane using
a linear classifier

▶ if a point is incorrectly classified,
the learning algorithm turns the
line (hyperplane) to improve the
classification

11

Perceptron Learning

▶ Given a training set

D = {(x⃗1, c1) , (x⃗2, c2)) , . . . , (x⃗p, cp))}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ A weight vector w⃗ ∈ Rn+1 is consistent with D if

h[w⃗](x⃗k) = sgn(w⃗ ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector w⃗ ∈ Rn+1 which is
consistent with D.

▶ Our goal is to find a consistent w⃗ assuming that D is linearly
separable.

12

Perceptron Learning

▶ Given a training set

D = {(x⃗1, c1) , (x⃗2, c2)) , . . . , (x⃗p, cp))}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ A weight vector w⃗ ∈ Rn+1 is consistent with D if

h[w⃗](x⃗k) = sgn(w⃗ ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector w⃗ ∈ Rn+1 which is
consistent with D.

▶ Our goal is to find a consistent w⃗ assuming that D is linearly
separable.

12

Perceptron Learning

▶ Given a training set

D = {(x⃗1, c1) , (x⃗2, c2)) , . . . , (x⃗p, cp))}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ A weight vector w⃗ ∈ Rn+1 is consistent with D if

h[w⃗](x⃗k) = sgn(w⃗ ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector w⃗ ∈ Rn+1 which is
consistent with D.

▶ Our goal is to find a consistent w⃗ assuming that D is linearly
separable.

12

Perceptron Learning

▶ Given a training set

D = {(x⃗1, c1) , (x⃗2, c2)) , . . . , (x⃗p, cp))}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ A weight vector w⃗ ∈ Rn+1 is consistent with D if

h[w⃗](x⃗k) = sgn(w⃗ ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector w⃗ ∈ Rn+1 which is
consistent with D.

▶ Our goal is to find a consistent w⃗ assuming that D is linearly
separable.

12

Perceptron Learning

▶ Given a training set

D = {(x⃗1, c1) , (x⃗2, c2)) , . . . , (x⃗p, cp))}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and ck ∈ {0, 1}.

Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ A weight vector w⃗ ∈ Rn+1 is consistent with D if

h[w⃗](x⃗k) = sgn(w⃗ ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector w⃗ ∈ Rn+1 which is
consistent with D.

▶ Our goal is to find a consistent w⃗ assuming that D is linearly
separable.

12

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),

▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)

▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Perceptron – Learning Algorithm

Online learning algorithm:
Idea: Cyclically go through the training examples in D and adapt weights.
Whenever an example is incorrectly classified, turn the hyperplane so that
the example becomes closer to it’s correct half-space.

Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e., the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning rate.

Theorem (Rosenblatt)
If D is linearly separable, then there is t∗ such that w⃗ (t∗) is
consistent with D.

13

Example

Training set:

D = {((2,−1), 1), ((2, 1), 1), ((1, 3), 0)}

That is

x⃗1 = (2,−1)
x⃗2 = (2, 1)
x⃗3 = (1, 3)

~x1 = (1, 2,−1)
~x2 = (1, 2, 1)
~x3 = (1, 1, 3)

c1 = 1
c2 = 1
c3 = 0

Assume that the initial vector w⃗ (0) is w⃗ (0) = (0,−1, 1).
Consider ε = 1.

14

Example: Separating by w⃗ (0)

−1 1 2 3

−3

−2

−1

1

2

3

4

x⃗1

x⃗2

x⃗3

Denoting w⃗ (0) =
(w0,w1,w2) = (0,−1, 1)
the blue separating line is given
by w0 + w1x1 + w2x2 = 0.

The red vector normal to
the blue line is (w1,w2).

The points on the side of
(w1,w2) are assigned 1 by the
classifier, the others zero.
(In this case x⃗3 is assigned one
and x⃗1, x⃗2 are assigned zero, all
of this is inconsistent with
c1 = 1, c2 = 1, c3 = 0.)

15

Example: Computing w⃗ (1)

We have

w⃗ (0) ·~x1 = (0,−1, 1) · (1, 2,−1) = 0 − 2 − 1 = −3

thus

sgn
(
w⃗ (0) ·~x1

)
= 0

and thus

sgn
(
w⃗ (0) ·~x1

)
− c1 = 0 − 1 = −1

(I.e., x⃗1 is not correctly classified, and w⃗ (0) is not consistent with D.)
Hence,

w⃗ (1) = w⃗ (0) −
(
sgn
(
w⃗ (0) ·~x1

)
− c1

)
·~x1

= w⃗ (0) +~x1

= (0,−1, 1) + (1, 2,−1)
= (1, 1, 0)

16

Example: Separating by w⃗ (1)

−1 1 2 3

−3

−2

−1

1

2

3

4

x⃗1

x⃗2

x⃗3

17

Example: Computing w⃗ (2)

We have

w⃗ (1) ·~x2 = (1, 1, 0) · (1, 2, 1) = 1 + 2 = 3

thus

sgn
(
w⃗ (1) ·~x2

)
= 1

and thus

sgn
(
w⃗ (1) ·~x2

)
− c2 = 1 − 1 = 0

(I.e., x⃗2 is currently correctly classified by w⃗ (1). However, as we will see, x⃗3 is
not well classified.)
Hence,

w⃗ (2) = w⃗ (1) = (1, 1, 0)

18

Example: Computing w⃗ (3)

We have

w⃗ (2) ·~x3 = (1, 1, 0) · (1, 1, 3) = 1 + 1 = 2

thus

sgn
(
w⃗ (2) ·~x3

)
= 1

and thus

sgn
(
w⃗ (2) ·~x3

)
− c3 = 1 − 0 = 1

(This means that x⃗3 is not well classified, and w⃗ (2) is not consistent with D.)
Hence,

w⃗ (3) = w⃗ (2) −
(
sgn
(
w⃗ (2) ·~x3

)
− c3

)
·~x3

= w⃗ (2) −~x3

= (1, 1, 0)− (1, 1, 3)
= (0, 0,−3)

19

Example: Separating by w⃗ (3)

−1 1 2 3

−3

−2

−1

1

2

3

4

x⃗1

x⃗2

x⃗3

20

Example: Computing w⃗ (4)

We have

w⃗ (3) ·~x1 = (0, 0,−3) · (1, 2,−1) = 3

thus

sgn
(
w⃗ (3) ·~x1

)
= 1

and thus

sgn
(
w⃗ (3) ·~x1

)
− c1 = 1 − 1 = 0

(I.e., x⃗1 is currently correctly classified by w⃗ (3). However, we shall see that x⃗2 is
not.)
Hence,

w⃗ (4) = w⃗ (3) = (0, 0,−3)

21

Example: Computing w⃗ (5)

We have

w⃗ (4) ·~x2 = (0, 0,−3) · (1, 2, 1) = −3

thus

sgn
(
w⃗ (4) ·~x2

)
= 0

and thus

sgn
(
w⃗ (4) ·~x2

)
− c2 = 0 − 1 = −1

(I.e., x⃗2 is not correctly classified, and w⃗ (4) is not consistent with D.)
Hence,

w⃗ (5) = w⃗ (4) −
(
sgn
(
w⃗ (4) ·~x2

)
− c2

)
·~x2

= w⃗ (4) +~x2

= (0, 0,−3) + (1, 2, 1)
= (1, 2,−2)

22

Example: Separating by w⃗ (5)

−1 1 2 3

−3

−2

−1

1

2

3

4

x⃗1

x⃗2

x⃗3

23

Example: The result

The vector w⃗ (5) is consistent with D:

sgn
(
w⃗ (5) ·~x1

)
= sgn ((1, 2,−2) · (1, 2,−1)) = sgn(7) = 1 = c1

sgn
(
w⃗ (5) ·~x2

)
= sgn ((1, 2,−2) · (1, 2, 1)) = sgn(3) = 1 = c2

sgn
(
w⃗ (5) ·~x3

)
= sgn ((1, 2,−2) · (1, 1, 3)) = sgn(−3) = 0 = c3

24

Perceptron – Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),

▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.

25

Perceptron – Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)

▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.

25

Perceptron – Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.

25

Perceptron – Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors w⃗ (0), w⃗ (1), w⃗ (2),
▶ w⃗ (0) is randomly initialized close to 0⃗ = (0, . . . , 0)
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− ck

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
sgn
(
w⃗ (t) ·~xk

)
− ck

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.

25

Linear Regression – Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

26

Linear Regression – Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

NO!

26

Linear Regression – Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

possibly YES!

26

Linear Regression

Our goal:
▶ Given a set D of training examples of the form (x⃗ , f) where

x⃗ ∈ Rn and f ∈ R,

▶ construct a hypothesized function h ∈ H such that
h(x⃗) ≈ f for all training examples (x⃗ , f) ∈ D

Here ≈ means that the values are somewhat close to each
other w.r.t. an appropriate error function E .

In what follows we use the squared error defined by

E =
1
2

∑
(x⃗ ,f)∈D

(h(x⃗)− f)2

Our goal is to minimize E .

The main reason is that this function has nice mathematical properties (as
opposed, e.g., to

∑
(⃗x,f)∈D |h(x⃗)− f |).

27

Linear Regression

Our goal:
▶ Given a set D of training examples of the form (x⃗ , f) where

x⃗ ∈ Rn and f ∈ R,
▶ construct a hypothesized function h ∈ H such that

h(x⃗) ≈ f for all training examples (x⃗ , f) ∈ D

Here ≈ means that the values are somewhat close to each
other w.r.t. an appropriate error function E .

In what follows we use the squared error defined by

E =
1
2

∑
(x⃗ ,f)∈D

(h(x⃗)− f)2

Our goal is to minimize E .

The main reason is that this function has nice mathematical properties (as
opposed, e.g., to

∑
(⃗x,f)∈D |h(x⃗)− f |).

27

Linear Regression

Our goal:
▶ Given a set D of training examples of the form (x⃗ , f) where

x⃗ ∈ Rn and f ∈ R,
▶ construct a hypothesized function h ∈ H such that

h(x⃗) ≈ f for all training examples (x⃗ , f) ∈ D

Here ≈ means that the values are somewhat close to each
other w.r.t. an appropriate error function E .

In what follows we use the squared error defined by

E =
1
2

∑
(x⃗ ,f)∈D

(h(x⃗)− f)2

Our goal is to minimize E .

The main reason is that this function has nice mathematical properties (as
opposed, e.g., to

∑
(⃗x,f)∈D |h(x⃗)− f |).

27

Linear Function Approximation

▶ Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and fk ∈ R.

▶ Our goal: Find w⃗ so that h[w⃗](x⃗k) = w⃗ ·~xk is close to fk for
every k = 1, . . . , p.
Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 =

1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

28

Linear Function Approximation

▶ Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and fk ∈ R.

▶ Our goal: Find w⃗ so that h[w⃗](x⃗k) = w⃗ ·~xk is close to fk for
every k = 1, . . . , p.
Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 =

1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

28

Linear Function Approximation

▶ Given a set D of training examples:

D = {(x⃗1, f1) , (x⃗2, f2) , . . . , (x⃗p, fp)}

Here x⃗k = (xk1 . . . , xkn) ∈ Rn and fk ∈ R.

▶ Our goal: Find w⃗ so that h[w⃗](x⃗k) = w⃗ ·~xk is close to fk for
every k = 1, . . . , p.
Recall that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

▶ Squared Error Function:

E (w⃗) =
1
2

p∑
k=1

(w⃗ ·~xk − fk)
2 =

1
2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

28

Error function

29

Gradient of the Error Function

Consider the gradient of the error function:

∇E (w⃗) =

(
∂E

∂w0
(w⃗), . . . ,

∂E

∂wn
(w⃗)

)
=

p∑
k=1

(w⃗ ·~xk − fk) ·~xk

What is the gradient ∇E(w⃗) ? It is a vector in Rn+1 which points in the
direction of the steepest ascent of E (it’s length corresponds to the steepness).
Note that here the vectors ~xk are fixed parameters of E !

Fakt
If ∇E (w⃗) = 0⃗ = (0, . . . , 0), then w⃗ is a global minimum of E .

This follows from the fact that E is a convex
paraboloid that has a unique extreme which is a
minimum.

30

Gradient of the Error Function

Consider the gradient of the error function:

∇E (w⃗) =

(
∂E

∂w0
(w⃗), . . . ,

∂E

∂wn
(w⃗)

)
=

p∑
k=1

(w⃗ ·~xk − fk) ·~xk

What is the gradient ∇E(w⃗) ? It is a vector in Rn+1 which points in the
direction of the steepest ascent of E (it’s length corresponds to the steepness).
Note that here the vectors ~xk are fixed parameters of E !

Fakt
If ∇E (w⃗) = 0⃗ = (0, . . . , 0), then w⃗ is a global minimum of E .

This follows from the fact that E is a convex
paraboloid that has a unique extreme which is a
minimum.

30

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1

∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Gradient of the error function

Consider n = 1, which means that w⃗ = (w0,w1) and we write x
instead of x⃗ since x⃗ ∈ Rn = R1 = R.

Then the model is h[w⃗](x) = w0 + w1 · x .

Consider a concrete training set:

T = {(2, 1), (3, 2), (4, 5)}
= {(x1, f1), (x2, f2), (x3, f3)}

The augmented feature vectors are: (1, 2), (1, 3), (1, 4).

E (w0,w1) =
1
2 [(w0+w1 ·2−1)2+(w0+w1 ·3−2)2+(w0+w1 ·4−5)2]

∂E
∂w0

= (w0+w1 ·2−1) ·1+(w0+w1 ·3−2) ·1+(w0+w1 ·4−5) ·1
∂E
∂w1

= (w0+w1 ·2−1) ·2+(w0+w1 ·3−2) ·3+(w0+w1 ·4−5) ·4

∇E (w⃗) = (∂E
∂w0

, ∂E
∂w1

) =
(w0+w1 ·2−1)·(1, 2)+(w0+w1 ·3−2)·(1, 3)+(w0+w1 ·4−5)·(1, 4)

31

Function Approximation – Learning

Gradient Descent:
▶ Weights w⃗ (0) are initialized randomly close to 0⃗.

▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:
w⃗ (t+1) = w⃗ (t) − ε · ∇E (w⃗ (t))

= w⃗ (t) − ε ·
p∑

k=1

(
w⃗ (t) ·~xk − fk

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− fk

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence w⃗ (0), w⃗ (1), w⃗ (2), . . .
converges (component-wisely) to the global minimum of E .

32

Function Approximation – Learning

Gradient Descent:
▶ Weights w⃗ (0) are initialized randomly close to 0⃗.
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε · ∇E (w⃗ (t))

= w⃗ (t) − ε ·
p∑

k=1

(
w⃗ (t) ·~xk − fk

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− fk

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence w⃗ (0), w⃗ (1), w⃗ (2), . . .
converges (component-wisely) to the global minimum of E .

32

Function Approximation – Learning

Gradient Descent:
▶ Weights w⃗ (0) are initialized randomly close to 0⃗.
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε · ∇E (w⃗ (t))

= w⃗ (t) − ε ·
p∑

k=1

(
w⃗ (t) ·~xk − fk

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− fk

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence w⃗ (0), w⃗ (1), w⃗ (2), . . .
converges (component-wisely) to the global minimum of E .

32

Function Approximation – Learning

Gradient Descent:
▶ Weights w⃗ (0) are initialized randomly close to 0⃗.
▶ In (t + 1)-th step, w⃗ (t+1) is computed as follows:

w⃗ (t+1) = w⃗ (t) − ε · ∇E (w⃗ (t))

= w⃗ (t) − ε ·
p∑

k=1

(
w⃗ (t) ·~xk − fk

)
·~xk

= w⃗ (t) − ε ·
p∑

k=1

(
h[w⃗ (t)](x⃗k)− fk

)
·~xk

Here 0 < ε ≤ 1 is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence w⃗ (0), w⃗ (1), w⃗ (2), . . .
converges (component-wisely) to the global minimum of E .

32

Training set:

D = {(x1, f1), (x2, f2), (x3, f3)} = {(0, 0), (2, 1), (2, 2)}

Note that input vectors are one dimensional, so we write them as numbers.
That is

x1 = 0
x2 = 2
x3 = 2

~x1 = (1, 0)
~x2 = (1, 2)
~x3 = (1, 2)

f1 = 0
f2 = 1
f3 = 2

Assume that the initial vector w⃗ (0) is w⃗ (0) = (w
(0)
0 ,w

(0)
1) = (0, 2).

Consider ε = 1
10 .

33

34

Training set: D = {(x1, f1), (x2, f2), (x3, f3)} = {(0, 0), (2, 1), (2, 2)}
Augmented input vectors: ~x1 = (1, 0), ~x2 = (1, 2), ~x1 = (1, 2)

∇E (w⃗) =

(
∂E

∂w0
(w⃗),

∂E

∂w1
(w⃗)

)
= (w0 + w1 · x1 − f1) ·~x1

+ (w0 + w1 · x2 − f2) ·~x2

+ (w0 + w1 · x3 − f3) ·~x3

For w⃗ (0) = (0, 2) we have

∇E (w⃗ (0)) =(0 + 2 · 0 − 0) · (1, 0)
+ (0 + 2 · 2 − 1) · (1, 2)
+ (0 + 2 · 2 − 2) · (1, 2) = (3, 6) + (2, 4) = (5, 10)

Finally, w⃗ (1) is computed by

w⃗ (1) = w⃗ (0) − ε · ∇E (w⃗ (0)) = (0, 2)− 1
10

· (5, 10) = (−1/2, 1)

35

36

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Linear Regression - Animation

37

Finding the Minimum in Dimension One

Assume n = 1. Then the error function E is

E (w0,w1) =
1
2

p∑
k=1

(w0 + w1xk − fk)
2

Minimize E w.r.t. w0 a w1:

∂E

∂w0
= 0 ⇔ w0 = f̄ − w1x̄ ⇔ f̄ = w0 + w1x̄

where x̄ = 1
p

∑p
k=1 xk a f̄ = 1

p

∑p
k=1 fk

∂E

∂w1
= 0 ⇔ w1 =

1
p

∑p
k=1(fk − f̄)(xk − x̄)

1
p

∑p
k=1(xk − x̄)2

i.e. w1 = cov(f , x)/var(x)

38

Finding the Minimum in Dimension One

Assume n = 1. Then the error function E is

E (w0,w1) =
1
2

p∑
k=1

(w0 + w1xk − fk)
2

Minimize E w.r.t. w0 a w1:

∂E

∂w0
= 0 ⇔ w0 = f̄ − w1x̄ ⇔ f̄ = w0 + w1x̄

where x̄ = 1
p

∑p
k=1 xk a f̄ = 1

p

∑p
k=1 fk

∂E

∂w1
= 0 ⇔ w1 =

1
p

∑p
k=1(fk − f̄)(xk − x̄)

1
p

∑p
k=1(xk − x̄)2

i.e. w1 = cov(f , x)/var(x)

38

Finding the Minimum in Dimension One

Assume n = 1. Then the error function E is

E (w0,w1) =
1
2

p∑
k=1

(w0 + w1xk − fk)
2

Minimize E w.r.t. w0 a w1:

∂E

∂w0
= 0 ⇔ w0 = f̄ − w1x̄ ⇔ f̄ = w0 + w1x̄

where x̄ = 1
p

∑p
k=1 xk a f̄ = 1

p

∑p
k=1 fk

∂E

∂w1
= 0 ⇔ w1 =

1
p

∑p
k=1(fk − f̄)(xk − x̄)

1
p

∑p
k=1(xk − x̄)2

i.e. w1 = cov(f , x)/var(x)

38

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Effect of Outliers

39

Maximum Likelihood vs Least Squares (Dim 1)
Fix a training set D = {(x1, f1) , (x2, f2) , . . . , (xp, fp)}
Assume that each fk has been generated randomly by

fk = (w0 + w1 · xk) + ϵk

where w0,w1 are unknown weights, and ϵk are independent, normally
distributed noise values with mean 0 and some variance σ2

How "probable" is it to generate the correct f1, . . . , fp ?
40

Maximum Likelihood vs Least Squares (Dim 1)

How "probable" is it to generate the correct f1, . . . , fp ?

The following conditions are equivalent:

▶ w0,w1 minimize the squared error E

▶ w0,w1 maximize the likelihood (i.e., the "probability") of generating
the correct values f1, . . . , fp using fk = (w0 + w1 · xk) + ϵk

40

Comments on Linear Models

▶ Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

▶ Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

▶ Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

▶ Linear models are prone to outliers.

41

Comments on Linear Models

▶ Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

▶ Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

▶ Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

▶ Linear models are prone to outliers.

41

Comments on Linear Models

▶ Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

▶ Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

▶ Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

▶ Linear models are prone to outliers.

41

Comments on Linear Models

▶ Linear models are parametric, i.e., they have a fixed form with
a small number of parameters that need to be learned from
data (as opposed, e.g., to decision trees where the structure is
not fixed in advance).

▶ Linear models are stable, i.e., small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

▶ Linear models are less likely to overfit (low variance) the
training data but sometimes tend to underfit (high bias).

▶ Linear models are prone to outliers.

41

