Numerical features

- Throughout this lecture we assume that all features are numerical, i.e., feature vectors belong to \mathbb{R}^{n}.

Numerical features

- Throughout this lecture we assume that all features are numerical, i.e., feature vectors belong to \mathbb{R}^{n}.
- Most non-numerical features can be conveniently transformed to numerical ones.
For example:
- Colors $\{$ blue, red, yellow $\}$ can be represented by

$$
\{(1,0,0),(0,1,0),(0,0,1)\}
$$

(one-hot encoding)

- Words can be embedded into vector spaces by various means (word2vec etc.)
- A black-and-white picture of $x \times y$ pixels can be encoded as a vector of $x y$ numbers that capture the shades of gray of the pixels.
(Even though this is not the best way of representing images.)

Basic Problems

We consider two basic problems:

- (Binary) classification

Our goal: Classify inputs into two categories.

Basic Problems

We consider two basic problems:

- (Binary) classification

Our goal: Classify inputs into two categories.

- Regressin

Our goal: Find
a (hypothesized) functional dependency in data.

Binary classification in \mathbb{R}^{n}

Our goal:

- Given a set D of training examples of the form (\vec{x}, c) where $\vec{x} \in \mathbb{R}^{n}$ and $c \in\{0,1\}$,

Binary classification in \mathbb{R}^{n}

Our goal:

- Given a set D of training examples of the form (\vec{x}, c) where $\vec{x} \in \mathbb{R}^{n}$ and $c \in\{0,1\}$,
- construct a hypothesized categorization function $h \in \mathcal{H}$ that is consistent with D, i.e.,

$$
h(\vec{x})=c \text { for all training examples }(\vec{x}, c) \in D
$$

Binary classification in \mathbb{R}^{n}

Our goal:

- Given a set D of training examples of the form (\vec{x}, c) where $\vec{x} \in \mathbb{R}^{n}$ and $c \in\{0,1\}$,
- construct a hypothesized categorization function $h \in \mathcal{H}$ that is consistent with D, i.e.,

$$
h(\vec{x})=c \text { for all training examples }(\vec{x}, c) \in D
$$

Comments:

- In practice, we often do not strictly demand $h(\vec{x})=c$ for all training examples $(\vec{x}, c) \in D$ (often it is impossible)
- We are more interested in good generalization, that is how well h classifies new instances that do not belong to D.
(Recall that we usually evaluate accuracy of the resulting hypothesized function h on a test set.)

Hypothesis Spaces

We consider two kinds of hypothesis spaces:

- Linear (affine) classifiers (this lecture)

Hypothesis Spaces

We consider two kinds of hypothesis spaces:

- Linear (affine) classifiers (this lecture)

- Non-linear classifiers (kernel SVM, neural networks) (later lectures)

Linear Classifier - Example

Length and Scalar Product of Vectors

- We consider vectors $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$.

Length and Scalar Product of Vectors

- We consider vectors $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$.
- Euclidean metric on vectors: $\|\vec{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$

The distance between two vectors (points) \vec{x}, \vec{y} is $\|\vec{x}-\vec{y}\|$.

Length and Scalar Product of Vectors

- We consider vectors $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{m}$.
- Euclidean metric on vectors: $\|\vec{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$

The distance between two vectors (points) \vec{x}, \vec{y} is $\|\vec{x}-\vec{y}\|$.

- Scalar product $\vec{x} \cdot \vec{y}$ of vectors $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, \ldots, y_{n}\right)$ defined by

$$
\vec{x} \cdot \vec{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

- Recall that $\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos \theta$ where θ is the angle between \vec{x} and \vec{y}. That is $\vec{x} \cdot \vec{y}$ is the length of the projection of \vec{y} on \vec{x} multiplied by $\|\vec{x}\|$.
- Note that $\vec{x} \cdot \vec{x}=\|\vec{x}\|^{2}$

Linear Classifier

A linear classifier $h[\vec{w}]$ is determined by a vector of weights $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n+1}$ as follows:

Linear Classifier

A linear classifier $h[\vec{w}]$ is determined by a vector of weights $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n+1}$ as follows:

Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
h[\vec{w}](\vec{x}):= \begin{cases}1 & w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i} \geq 0 \\ 0 & w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i}<0\end{cases}
$$

Linear Classifier

A linear classifier $h[\vec{w}]$ is determined by a vector of weights $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n+1}$ as follows:

Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
h[\vec{w}](\vec{x}):= \begin{cases}1 & w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i} \geq 0 \\ 0 & w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i}<0\end{cases}
$$

More succinctly:

$$
h(\vec{x})=\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i}\right) \quad \text { where } \quad \operatorname{sgn}(y)= \begin{cases}1 & y \geq 0 \\ 0 & y<0\end{cases}
$$

We define separating hyperplane determined by \vec{w} as the set of all $\vec{x} \in \mathbb{R}^{n}$ satisfying $w_{0}+\sum_{i=1}^{n} w_{i} \cdot x_{i}=0$.

Linear Classifier - Geometry

Linear Classifier - Notation

Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we define an augmented feature vector

$$
\tilde{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \quad \text { where } x_{0}=1
$$

Linear Classifier - Notation

Given $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we define an augmented feature vector

$$
\tilde{x}=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \quad \text { where } x_{0}=1
$$

This makes the notation for the linear classifier more succinct:

$$
h[\vec{w}](\vec{x})=\operatorname{sgn}(\vec{w} \cdot \tilde{x})
$$

Linear Classifier - Learning

- classification in the plane using a linear classifier
- if a point is incorrectly classified, the learning algorithm turns the line (hyperplane) to improve the classification

Perceptron Learning

- Given a training set

$$
\left.\left.D=\left\{\left(\vec{x}_{1}, c_{1}\right),\left(\vec{x}_{2}, c_{2}\right)\right), \ldots,\left(\vec{x}_{p}, c_{p}\right)\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $c_{k} \in\{0,1\}$.

Perceptron Learning

- Given a training set

$$
\left.\left.D=\left\{\left(\vec{x}_{1}, c_{1}\right),\left(\vec{x}_{2}, c_{2}\right)\right), \ldots,\left(\vec{x}_{p}, c_{p}\right)\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $c_{k} \in\{0,1\}$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.

Perceptron Learning

- Given a training set

$$
\left.\left.D=\left\{\left(\vec{x}_{1}, c_{1}\right),\left(\vec{x}_{2}, c_{2}\right)\right), \ldots,\left(\vec{x}_{p}, c_{p}\right)\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $c_{k} \in\{0,1\}$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.

- A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is consistent with D if

$$
h[\vec{w}]\left(\vec{x}_{k}\right)=\operatorname{sgn}\left(\vec{w} \cdot \tilde{x}_{k}\right)=c_{k} \quad \text { for all } k=1, \ldots, p
$$

Perceptron Learning

- Given a training set

$$
\left.\left.D=\left\{\left(\vec{x}_{1}, c_{1}\right),\left(\vec{x}_{2}, c_{2}\right)\right), \ldots,\left(\vec{x}_{p}, c_{p}\right)\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $c_{k} \in\{0,1\}$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.

- A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is consistent with D if

$$
h[\vec{w}]\left(\vec{x}_{k}\right)=\operatorname{sgn}\left(\vec{w} \cdot \tilde{x}_{k}\right)=c_{k} \quad \text { for all } k=1, \ldots, p
$$

D is linearly separable if there is a vector $\vec{w} \in \mathbb{R}^{n+1}$ which is consistent with D.

Perceptron Learning

- Given a training set

$$
\left.\left.D=\left\{\left(\vec{x}_{1}, c_{1}\right),\left(\vec{x}_{2}, c_{2}\right)\right), \ldots,\left(\vec{x}_{p}, c_{p}\right)\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $c_{k} \in\{0,1\}$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.

- A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is consistent with D if

$$
h[\vec{w}]\left(\vec{x}_{k}\right)=\operatorname{sgn}\left(\vec{w} \cdot \tilde{x}_{k}\right)=c_{k} \quad \text { for all } k=1, \ldots, p
$$

D is linearly separable if there is a vector $\vec{w} \in \mathbb{R}^{n+1}$ which is consistent with D.

- Our goal is to find a consistent \vec{w} assuming that D is linearly separable.

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$
- $\ln (t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\varepsilon \cdot\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k}
$$

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot\left(\operatorname{sgn}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $k=(t \bmod p)+1$, i.e., the examples are considered cyclically, and $0<\varepsilon \leq 1$ is a learning rate.

Perceptron - Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space.
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot\left(\operatorname{sgn}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $k=(t \bmod p)+1$, i.e., the examples are considered cyclically, and $0<\varepsilon \leq 1$ is a learning rate.

Theorem (Rosenblatt)

If D is linearly separable, then there is t^{*} such that $\vec{w}^{\left(t^{*}\right)}$ is consistent with D.

Example

Training set:

$$
D=\{((2,-1), 1),((2,1), 1),((1,3), 0)\}
$$

That is

$$
\begin{array}{ll}
\vec{x}_{1}=(2,-1) & \tilde{x}_{1}=(1,2,-1) \\
\vec{x}_{2}=(2,1) & \tilde{x}_{2}=(1,2,1) \\
\vec{x}_{3}=(1,3) & \tilde{x}_{3}=(1,1,3) \\
& \\
c_{1}=1 & \\
c_{2}=1 & \\
c_{3}=0 &
\end{array}
$$

Assume that the initial vector $\vec{w}^{(0)}$ is $\vec{w}^{(0)}=(0,-1,1)$.
Consider $\varepsilon=1$.

Example: Separating by $\vec{w}^{(0)}$

Denoting $\vec{w}^{(0)}=$ $\left(w_{0}, w_{1}, w_{2}\right)=(0,-1,1)$ the blue separating line is given by $w_{0}+w_{1} x_{1}+w_{2} x_{2}=0$.

The red vector normal to the blue line is $\left(w_{1}, w_{2}\right)$.

The points on the side of (w_{1}, w_{2}) are assigned 1 by the classifier, the others zero. (In this case \vec{x}_{3} is assigned one and \vec{x}_{1}, \vec{x}_{2} are assigned zero, all of this is inconsistent with $c_{1}=1, c_{2}=1, c_{3}=0$.)

Example: Computing $\vec{w}^{(1)}$

We have

$$
\vec{w}^{(0)} \cdot \tilde{x}_{1}=(0,-1,1) \cdot(1,2,-1)=0-2-1=-3
$$

thus

$$
\operatorname{sgn}\left(\vec{w}^{(0)} \cdot \tilde{x}_{1}\right)=0
$$

and thus

$$
\operatorname{sgn}\left(\vec{w}^{(0)} \cdot \tilde{x}_{1}\right)-c_{1}=0-1=-1
$$

(I.e., \vec{x}_{1} is not correctly classified, and $\vec{w}^{(0)}$ is not consistent with D.)

Hence,

$$
\begin{aligned}
\vec{w}^{(1)} & =\vec{w}^{(0)}-\left(\operatorname{sgn}\left(\vec{w}^{(0)} \cdot \tilde{x}_{1}\right)-c_{1}\right) \cdot \tilde{x}_{1} \\
& =\vec{w}^{(0)}+\tilde{x}_{1} \\
& =(0,-1,1)+(1,2,-1) \\
& =(1,1,0)
\end{aligned}
$$

Example: Separating by $\vec{w}^{(1)}$

Example: Computing $\vec{w}^{(2)}$

We have

$$
\vec{w}^{(1)} \cdot \tilde{x}_{2}=(1,1,0) \cdot(1,2,1)=1+2=3
$$

thus

$$
\operatorname{sgn}\left(\vec{w}^{(1)} \cdot \tilde{x}_{2}\right)=1
$$

and thus

$$
\operatorname{sgn}\left(\vec{w}^{(1)} \cdot \tilde{x}_{2}\right)-c_{2}=1-1=0
$$

(I.e., \vec{x}_{2} is currently correctly classified by $\vec{w}^{(1)}$. However, as we will see, \vec{x}_{3} is not well classified.)
Hence,

$$
\vec{w}^{(2)}=\vec{w}^{(1)}=(1,1,0)
$$

Example: Computing $\vec{w}^{(3)}$

We have

$$
\vec{w}^{(2)} \cdot \widetilde{x}_{3}=(1,1,0) \cdot(1,1,3)=1+1=2
$$

thus

$$
\operatorname{sgn}\left(\vec{w}^{(2)} \cdot \tilde{x}_{3}\right)=1
$$

and thus

$$
\operatorname{sgn}\left(\vec{w}^{(2)} \cdot \tilde{x}_{3}\right)-c_{3}=1-0=1
$$

(This means that \vec{x}_{3} is not well classified, and $\vec{w}^{(2)}$ is not consistent with D.) Hence,

$$
\begin{aligned}
\vec{w}^{(3)} & =\vec{w}^{(2)}-\left(\operatorname{sgn}\left(\vec{w}^{(2)} \cdot \tilde{x}_{3}\right)-c_{3}\right) \cdot \tilde{x}_{3} \\
& =\vec{w}^{(2)}-\tilde{x}_{3} \\
& =(1,1,0)-(1,1,3) \\
& =(0,0,-3)
\end{aligned}
$$

Example: Separating by $\vec{w}^{(3)}$

Example: Computing $\vec{w}^{(4)}$

We have

$$
\vec{w}^{(3)} \cdot \tilde{x}_{1}=(0,0,-3) \cdot(1,2,-1)=3
$$

thus

$$
\operatorname{sgn}\left(\vec{w}^{(3)} \cdot \tilde{x}_{1}\right)=1
$$

and thus

$$
\operatorname{sgn}\left(\vec{w}^{(3)} \cdot \tilde{x}_{1}\right)-c_{1}=1-1=0
$$

(I.e., \vec{x}_{1} is currently correctly classified by $\vec{w}^{(3)}$. However, we shall see that \vec{x}_{2} is not.)
Hence,

$$
\vec{w}^{(4)}=\vec{w}^{(3)}=(0,0,-3)
$$

Example: Computing $\vec{w}^{(5)}$

We have

$$
\vec{w}^{(4)} \cdot \tilde{x}_{2}=(0,0,-3) \cdot(1,2,1)=-3
$$

thus

$$
\operatorname{sgn}\left(\vec{w}^{(4)} \cdot \tilde{x}_{2}\right)=0
$$

and thus

$$
\operatorname{sgn}\left(\vec{w}^{(4)} \cdot \tilde{x}_{2}\right)-c_{2}=0-1=-1
$$

(I.e., \vec{x}_{2} is not correctly classified, and $\vec{w}^{(4)}$ is not consistent with D.)

Hence,

$$
\begin{aligned}
\vec{w}^{(5)} & =\vec{w}^{(4)}-\left(\operatorname{sgn}\left(\vec{w}^{(4)} \cdot \tilde{x}_{2}\right)-c_{2}\right) \cdot \tilde{x}_{2} \\
& =\vec{w}^{(4)}+\tilde{x}_{2} \\
& =(0,0,-3)+(1,2,1) \\
& =(1,2,-2)
\end{aligned}
$$

Example: Separating by $\vec{w}^{(5)}$

Example: The result

The vector $\vec{w}^{(5)}$ is consistent with D :

$$
\begin{aligned}
& \operatorname{sgn}\left(\vec{w}^{(5)} \cdot \tilde{x}_{1}\right)=\operatorname{sgn}((1,2,-2) \cdot(1,2,-1))=\operatorname{sgn}(7)=1=c_{1} \\
& \operatorname{sgn}\left(\vec{w}^{(5)} \cdot \tilde{x}_{2}\right)=\operatorname{sgn}((1,2,-2) \cdot(1,2,1))=\operatorname{sgn}(3)=1=c_{2} \\
& \operatorname{sgn}\left(\vec{w}^{(5)} \cdot \tilde{x}_{3}\right)=\operatorname{sgn}((1,2,-2) \cdot(1,1,3))=\operatorname{sgn}(-3)=0=c_{3}
\end{aligned}
$$

Perceptron - Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$

Perceptron - Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$

Perceptron - Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(\operatorname{sgn}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $0<\varepsilon \leq 1$ is a learning rate.

Perceptron - Learning Algorithm

Batch learning algorithm:
Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$.

- $\vec{w}^{(0)}$ is randomly initialized close to $\overrightarrow{0}=(0, \ldots, 0)$
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(\operatorname{sgn}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}\right)-c_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $0<\varepsilon \leq 1$ is a learning rate.

Linear Regression - Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age (years)	DBH (inch)
97	12.5
93	12.5
88	8.0
81	9.5
75	16.5
57	11.0
52	10.5
45	9.0
28	6.0
15	1.5
12	1.0
11	1.0

Oak Diameter vs. Age

Linear Regression - Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

| Age
 (years) | DBH
 (inch) |
| ---: | ---: | ---: |
| 97 | 12.5 |
| 93 | 12.5 |
| 88 | 8.0 |
| 281 | 9.5 |
| 75 | 16.5 |
| 57 | 11.0 |
| 52 | 10.5 |
| 45 | 9.0 |
| 28 | 6.0 |
| 15 | 1.5 |
| 12 | 1.0 |
| 11 | 1.0 |

Linear Regression - Oaks in Wisconsin

This example is from How to Lie with Statistics by Darrell Huff (1954)

Age (years)	DBH (inch)
97	12.5
93	12.5
288	8.0
81	9.5
75	16.5
57	11.0
52	10.5
45	9.0
28	6.0
15	1.5
12	1.0
11	1.0

Linear Regression

Our goal:

- Given a set D of training examples of the form (\vec{x}, f) where $\vec{x} \in \mathbb{R}^{n}$ and $f \in \mathbb{R}$,

Linear Regression

Our goal:

- Given a set D of training examples of the form (\vec{x}, f) where $\vec{x} \in \mathbb{R}^{n}$ and $f \in \mathbb{R}$,
- construct a hypothesized function $h \in \mathcal{H}$ such that

$$
h(\vec{x}) \approx f \text { for all training examples }(\vec{x}, f) \in D
$$

Here \approx means that the values are somewhat close to each other w.r.t. an appropriate error function E.

Linear Regression

Our goal:

- Given a set D of training examples of the form (\vec{x}, f) where $\vec{x} \in \mathbb{R}^{n}$ and $f \in \mathbb{R}$,
- construct a hypothesized function $h \in \mathcal{H}$ such that

$$
h(\vec{x}) \approx f \text { for all training examples }(\vec{x}, f) \in D
$$

Here \approx means that the values are somewhat close to each other w.r.t. an appropriate error function E.
In what follows we use the squared error defined by

$$
E=\frac{1}{2} \sum_{(\vec{x}, f) \in D}(h(\vec{x})-f)^{2}
$$

Our goal is to minimize E.
The main reason is that this function has nice mathematical properties (as opposed, e.g., to $\left.\sum_{(\vec{x}, f) \in D}|h(\vec{x})-f|\right)$.

Linear Function Approximation

- Given a set D of training examples:

$$
D=\left\{\left(\vec{x}_{1}, f_{1}\right),\left(\vec{x}_{2}, f_{2}\right), \ldots,\left(\vec{x}_{p}, f_{p}\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $f_{k} \in \mathbb{R}$.

Linear Function Approximation

- Given a set D of training examples:

$$
D=\left\{\left(\vec{x}_{1}, f_{1}\right),\left(\vec{x}_{2}, f_{2}\right), \ldots,\left(\vec{x}_{p}, f_{p}\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $f_{k} \in \mathbb{R}$.

- Our goal: Find \vec{w} so that $h[\vec{w}]\left(\overrightarrow{x_{k}}\right)=\vec{w} \cdot \tilde{x}_{k}$ is close to f_{k} for every $k=1, \ldots, p$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.

Linear Function Approximation

- Given a set D of training examples:

$$
D=\left\{\left(\vec{x}_{1}, f_{1}\right),\left(\vec{x}_{2}, f_{2}\right), \ldots,\left(\vec{x}_{p}, f_{p}\right)\right\}
$$

Here $\vec{x}_{k}=\left(x_{k 1} \ldots, x_{k n}\right) \in \mathbb{R}^{n}$ and $f_{k} \in \mathbb{R}$.

- Our goal: Find \vec{w} so that $h[\vec{w}]\left(\overrightarrow{x_{k}}\right)=\vec{w} \cdot \tilde{x}_{k}$ is close to f_{k} for every $k=1, \ldots, p$.
Recall that $\tilde{x}_{k}=\left(x_{k 0}, x_{k 1} \ldots, x_{k n}\right)$ where $x_{k 0}=1$.
- Squared Error Function:

$$
E(\vec{w})=\frac{1}{2} \sum_{k=1}^{p}\left(\vec{w} \cdot \tilde{x}_{k}-f_{k}\right)^{2}=\frac{1}{2} \sum_{k=1}^{p}\left(\sum_{i=0}^{n} w_{i} x_{k i}-f_{k}\right)^{2}
$$

Error function

Error Surface of a Linear Neuron with Two Input Weights

Gradient of the Error Function

Consider the gradient of the error function:

$$
\nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}(\vec{w}), \ldots, \frac{\partial E}{\partial w_{n}}(\vec{w})\right)=\sum_{k=1}^{p}\left(\vec{w} \cdot \tilde{x}_{k}-f_{k}\right) \cdot \tilde{x}_{k}
$$

What is the gradient $\nabla E(\vec{w})$? It is a vector in \mathbb{R}^{n+1} which points in the direction of the steepest ascent of E (it's length corresponds to the steepness). Note that here the vectors \tilde{x}_{k} are fixed parameters of E !

Gradient of the Error Function

Consider the gradient of the error function:

$$
\nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}(\vec{w}), \ldots, \frac{\partial E}{\partial w_{n}}(\vec{w})\right)=\sum_{k=1}^{p}\left(\vec{w} \cdot \tilde{x}_{k}-f_{k}\right) \cdot \tilde{x}_{k}
$$

What is the gradient $\nabla E(\vec{w})$? It is a vector in \mathbb{R}^{n+1} which points in the direction of the steepest ascent of E (it's length corresponds to the steepness). Note that here the vectors \tilde{x}_{k} are fixed parameters of E !

Fakt
If $\nabla E(\vec{w})=\overrightarrow{0}=(0, \ldots, 0)$, then \vec{w} is a global minimum of E.

This follows from the fact that E is a convex paraboloid that has a unique extreme which is a minimum.

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.
$E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right]$

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.
$E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right]$
$\frac{\partial E}{\partial w_{0}}$

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.

$$
\begin{aligned}
& E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right] \\
& \frac{\partial E}{\partial w_{0}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 1+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 1+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 1
\end{aligned}
$$

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.

$$
\begin{aligned}
& E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right] \\
& \frac{\partial E}{\partial w_{0}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 1+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 1+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 1 \\
& \frac{\partial E}{\partial w_{1}}
\end{aligned}
$$

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.

$$
\begin{aligned}
& E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right] \\
& \frac{\partial E}{\partial w_{0}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 1+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 1+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 1 \\
& \frac{\partial E}{\partial w_{1}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 2+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 3+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 4
\end{aligned}
$$

Gradient of the error function

Consider $n=1$, which means that $\vec{w}=\left(w_{0}, w_{1}\right)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^{n}=\mathbb{R}^{1}=\mathbb{R}$.

Then the model is $h[\vec{w}](x)=w_{0}+w_{1} \cdot x$.
Consider a concrete training set:

$$
\begin{aligned}
\mathcal{T} & =\{(2,1),(3,2),(4,5)\} \\
& =\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}
\end{aligned}
$$

The augmented feature vectors are: $(1,2),(1,3),(1,4)$.

$$
\begin{aligned}
& E\left(w_{0}, w_{1}\right)=\frac{1}{2}\left[\left(w_{0}+w_{1} \cdot 2-1\right)^{2}+\left(w_{0}+w_{1} \cdot 3-2\right)^{2}+\left(w_{0}+w_{1} \cdot 4-5\right)^{2}\right] \\
& \frac{\partial E}{\partial w_{0}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 1+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 1+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 1 \\
& \frac{\partial E}{\partial w_{1}}=\left(w_{0}+w_{1} \cdot 2-1\right) \cdot 2+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot 3+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot 4 \\
& \nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}\right)= \\
& \left(w_{0}+w_{1} \cdot 2-1\right) \cdot(1,2)+\left(w_{0}+w_{1} \cdot 3-2\right) \cdot(1,3)+\left(w_{0}+w_{1} \cdot 4-5\right) \cdot(1,4)
\end{aligned}
$$

Function Approximation - Learning

Gradient Descent:

- Weights $\vec{w}^{(0)}$ are initialized randomly close to $\overrightarrow{0}$.

Function Approximation - Learning

Gradient Descent:

- Weights $\vec{w}^{(0)}$ are initialized randomly close to $\overrightarrow{0}$.
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\vec{w}^{(t+1)}=\vec{w}^{(t)}-\varepsilon \cdot \nabla E\left(\vec{w}^{(t)}\right)
$$

Function Approximation - Learning

Gradient Descent:

- Weights $\vec{w}^{(0)}$ are initialized randomly close to $\overrightarrow{0}$.
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot \nabla E\left(\vec{w}^{(t)}\right) \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}-f_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-f_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $0<\varepsilon \leq 1$ is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Function Approximation - Learning

Gradient Descent:

- Weights $\vec{w}^{(0)}$ are initialized randomly close to $\overrightarrow{0}$.
- In $(t+1)$-th step, $\vec{w}^{(t+1)}$ is computed as follows:

$$
\begin{aligned}
\vec{w}^{(t+1)} & =\vec{w}^{(t)}-\varepsilon \cdot \nabla E\left(\vec{w}^{(t)}\right) \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(\vec{w}^{(t)} \cdot \tilde{x}_{k}-f_{k}\right) \cdot \tilde{x}_{k} \\
& =\vec{w}^{(t)}-\varepsilon \cdot \sum_{k=1}^{p}\left(h\left[\vec{w}^{(t)}\right]\left(\vec{x}_{k}\right)-f_{k}\right) \cdot \tilde{x}_{k}
\end{aligned}
$$

Here $0<\varepsilon \leq 1$ is a learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!
Tvrzení
For sufficiently small $\varepsilon>0$ the sequence $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \ldots$ converges (component-wisely) to the global minimum of E.

Training set:

$$
D=\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}=\{(0,0),(2,1),(2,2)\}
$$

Note that input vectors are one dimensional, so we write them as numbers. That is

$$
\begin{array}{ll}
x_{1}=0 & \tilde{x}_{1}=(1,0) \\
x_{2}=2 & \tilde{x}_{2}=(1,2) \\
x_{3}=2 & \tilde{x}_{3}=(1,2) \\
& \\
f_{1}=0 & \\
f_{2}=1 & \\
f_{3}=2 &
\end{array}
$$

Assume that the initial vector $\vec{w}^{(0)}$ is $\vec{w}^{(0)}=\left(w_{0}^{(0)}, w_{1}^{(0)}\right)=(0,2)$. Consider $\varepsilon=\frac{1}{10}$.

Training set: $D=\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right),\left(x_{3}, f_{3}\right)\right\}=\{(0,0),(2,1),(2,2)\}$
Augmented input vectors: $\widetilde{x}_{1}=(1,0), \tilde{x}_{2}=(1,2), \widetilde{x}_{1}=(1,2)$

$$
\begin{aligned}
\nabla E(\vec{w})=\left(\frac{\partial E}{\partial w_{0}}(\vec{w}), \frac{\partial E}{\partial w_{1}}(\vec{w})\right)= & \left(w_{0}+w_{1} \cdot x_{1}-f_{1}\right) \cdot \tilde{x}_{1} \\
& +\left(w_{0}+w_{1} \cdot x_{2}-f_{2}\right) \cdot \tilde{x}_{2} \\
& +\left(w_{0}+w_{1} \cdot x_{3}-f_{3}\right) \cdot \tilde{x}_{3}
\end{aligned}
$$

For $\vec{w}^{(0)}=(0,2)$ we have

$$
\begin{aligned}
\nabla E\left(\vec{w}^{(0)}\right)= & (0+2 \cdot 0-0) \cdot(1,0) \\
& +(0+2 \cdot 2-1) \cdot(1,2) \\
& +(0+2 \cdot 2-2) \cdot(1,2)=(3,6)+(2,4)=(5,10)
\end{aligned}
$$

Finally, $\vec{w}^{(1)}$ is computed by

$$
\vec{w}^{(1)}=\vec{w}^{(0)}-\varepsilon \cdot \nabla E\left(\vec{w}^{(0)}\right)=(0,2)-\frac{1}{10} \cdot(5,10)=(-1 / 2,1)
$$

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Linear Regression - Animation

Linear regression by gradient descent
Error function

Finding the Minimum in Dimension One

Assume $n=1$. Then the error function E is

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{k=1}^{p}\left(w_{0}+w_{1} x_{k}-f_{k}\right)^{2}
$$

Finding the Minimum in Dimension One

Assume $n=1$. Then the error function E is

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{k=1}^{p}\left(w_{0}+w_{1} x_{k}-f_{k}\right)^{2}
$$

Minimize E w.r.t. w_{0} a w_{1} :

$$
\frac{\partial E}{\partial w_{0}}=0 \quad \Leftrightarrow \quad w_{0}=\bar{f}-w_{1} \bar{x} \quad \Leftrightarrow \quad \bar{f}=w_{0}+w_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{p} \sum_{k=1}^{p} x_{k} \quad$ a $\quad \bar{f}=\frac{1}{p} \sum_{k=1}^{p} f_{k}$

Finding the Minimum in Dimension One

Assume $n=1$. Then the error function E is

$$
E\left(w_{0}, w_{1}\right)=\frac{1}{2} \sum_{k=1}^{p}\left(w_{0}+w_{1} x_{k}-f_{k}\right)^{2}
$$

Minimize E w.r.t. w_{0} a w_{1} :

$$
\frac{\partial E}{\partial w_{0}}=0 \quad \Leftrightarrow \quad w_{0}=\bar{f}-w_{1} \bar{x} \quad \Leftrightarrow \quad \bar{f}=w_{0}+w_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{p} \sum_{k=1}^{p} x_{k} \quad$ a $\quad \bar{f}=\frac{1}{p} \sum_{k=1}^{p} f_{k}$

$$
\frac{\partial E}{\partial w_{1}}=0 \quad \Leftrightarrow \quad w_{1}=\frac{\frac{1}{p} \sum_{k=1}^{p}\left(f_{k}-\bar{f}\right)\left(x_{k}-\bar{x}\right)}{\frac{1}{p} \sum_{k=1}^{p}\left(x_{k}-\bar{x}\right)^{2}}
$$

i.e. $w_{1}=\operatorname{cov}(f, x) / \operatorname{var}(x)$

Effect of Outliers

Maximum Likelihood vs Least Squares (Dim 1)

Fix a training set $D=\left\{\left(x_{1}, f_{1}\right),\left(x_{2}, f_{2}\right), \ldots,\left(x_{p}, f_{p}\right)\right\}$
Assume that each f_{k} has been generated randomly by

$$
f_{k}=\left(w_{0}+w_{1} \cdot x_{k}\right)+\epsilon_{k}
$$

where w_{0}, w_{1} are unknown weights, and ϵ_{k} are independent, normally distributed noise values with mean 0 and some variance σ^{2}

How "probable" is it to generate the correct f_{1}, \ldots, f_{p} ?

Maximum Likelihood vs Least Squares (Dim 1)

How "probable" is it to generate the correct f_{1}, \ldots, f_{p} ?
The following conditions are equivalent:

- w_{0}, w_{1} minimize the squared error E
- w_{0}, w_{1} maximize the likelihood (i.e., the "probability") of generating the correct values f_{1}, \ldots, f_{p} using $f_{k}=\left(w_{0}+w_{1} \cdot x_{k}\right)+\epsilon_{k}$

Comments on Linear Models

- Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance).

Comments on Linear Models

- Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance).
- Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data).

Comments on Linear Models

- Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance).
- Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data).
- Linear models are less likely to overfit (low variance) the training data but sometimes tend to underfit (high bias).

Comments on Linear Models

- Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance).
- Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data).
- Linear models are less likely to overfit (low variance) the training data but sometimes tend to underfit (high bias).
- Linear models are prone to outliers.

