On explainable neural networks in practice

Tomáš Brázdil

tensor([[[[-4.8129e-04,	-5.6481e-04,	2.4511e-03],
[1.2085e-03,	2.7492e-03,	1.7652e-03],
[-3.9402e-03,	-6.9425e-03,	-7.2726e-03]],
[[3.3416e-03,	-9.7720e-03,	-1.7814e-02],
[4.2282e-03,	-7.6528e-03,	-1.6922e-02],
[5.5957e-03,	-5.9063e-03,	-1.6483e-02]],
[[-1.1220e-02,	-1.1452e-02,	-1.2850e-02],
[-9.9574e-03,	-8.5489e-03,	-6.6620e-03],
[-4.7562e-03,	-3.6714e-03,	-1.2898e-05]],
,		
[[-1.5140e-02,	-5.0111e-03,	4.2080e-03],
[-1.6666e-02,	-8.6684e-03,	-5.1674e-05],
[-1.8180e-02,	-1.2616e-02,	-5.7304e-03]],
[[-8.0962e-03,	-6.7141e-03,	-2.9794e-03],
[-1.1881e-02,	-6.3858e-03,	2.7343e-03],

What is this good for?

-5.6481e-04,	2.4511e-03],
2.7492e-03,	1.7652e-03],
-6.9425e-03,	-7.2726e-03]],
-9.7720e-03,	-1.7814e-02],
-7.6528e-03,	-1.6922e-02],
-5.9063e-03,	-1.6483e-02]],
-1.1452e-02,	-1.2850e-02],
-8.5489e-03,	-6.6620e-03],
-3.6714e-03,	-1.2898e-05]],
-5.0111e-03,	4.2080e-03],
-8.6684e-03,	-5.1674e-05],
-1.2616e-02,	-5.7304e-03]],
-6.7141e-03,	-2.9794e-03],
-6.3858e-03,	2.7343e-03],
	-5.6481e-04, 2.7492e-03, -6.9425e-03, -7.6528e-03, -5.9063e-03, -1.1452e-02, -8.5489e-03, -3.6714e-03, -8.6684e-03, -1.2616e-02, -6.7141e-03, -6.3858e-03,

What is this good for? Digital pathology ...

Challenges in Pathology

Laborious and time-consuming routine effort

Increasing workload due to cancer screening programs (cervix, breast, colorectal, recently prostate, lung)

Few experienced pathologists

Human error prone: tired pathologist

Personal/spatial issues at smaller pathology departments, some pathologist working for part time for more laboratories

Cancer detection

Microscopic scan of tissue

- Magnification 20x
- 0.172 μm / pixel
- 105,185 px × 221,772 px
- Hematoxylin-eosin stained

Cancer detection

Microscopic scan of tissue

- Magnification 20x
- 0.172 µm / pixel
- 105,185 px × 221,772 px
- Hematoxylin-eosin stained

Tumor annotation

Cancer detection

Microscopic scan of tissue

- Magnification 20x
- 0.172 µm / pixel
- 105,185 px × 221,772 px
- Hematoxylin-eosin stained

Tumor annotation

Tumor prediction using ML

(VGG-16 with an alternative head)

AI models training

- Training data
 - Provided by MMCI
 - o 785 scans, 166 patients
- Model trained on patches 512 x 512 px
 - Patches cover the tissue and overlap (stride 128)
 - 7,878,675 patches for training
- Binary classification problem (cancer positive/negative)
 - A patch labeled positive iff its center square intersects the tumor annotation

The neural network - modified VGG-16

Al model for testing

• Testing

- 87 scans
- 98 % AUC in patch-level tumor detection

100 % prediction accuracy in slide-level tumor detection with a threshold close to 1 (slide level tumor probability = maximum of patch level probabilities)

Prediction with threshold 0.5

Al model for testing

• Testing

- 87 scans
- 98 % AUC in patch-level tumor detection

100 % prediction accuracy in slide-level tumor detection with a threshold close to 1 (slide level tumor probability = maximum of patch level probabilities)

Prediction with threshold 0.5

... does it work in practice??

... how to persuade pathologists that it works??

Should be yellow completely!

Should not be yellow at all!

Interpretation of the behavior

• What exactly is the network searching for?

Interpretation of the behavior

- What exactly is the network searching for?
- Does it understand cancer?

Interpretation of the behavior

- What exactly is the network searching for?
- Does it understand cancer?
- Does it (at least) look for sensible patterns?
 - How to find out what patterns it looks for?
 - How to explain that the patterns make sense?
 - How to make sure that we have understood all patterns?

Interpretation

Tumor prediction by AI

Areas with positive impact on the prediction

Areas with negative impact on the prediction

Using simple occlusion sensitivity analysis

Occlusion sensitivity analysis

Catalog of typical patterns

Pro cancer:

Single chain of nuclei

Small round hole

High nuclear density

Large nuclei with halo

Con cancer:

Double chains of nuclei

Chain of nuclei with eosinophilic neighborhood

Low cellular density

Interpretable patterns

- Randomly selected >600 points (xPOI) with "high" occlusion sensitivity
 - Square region 15 x 15 px around the point
 - Either green or red color prevails in the square
- Tissue surrounding xPOIs classified by the catalog of typical tissue patterns

90 % of identified patterns have a known pattern!

Morphological	WSIs w/ carcinoma					WSIs w/o	2. 1988-1997 - 1997 - 1997	
pattern under		Gleason				carc.	Tot. %	
attribution	3+3	3+4	4+3	4+4	4+5	Total	N 40	
	(N=14)	(N=3)	(N=11)	(N=5)	(N=4)	(N=37)	N=49	
Single chain of nuclei (TP1)	<u>52</u>	<u>7</u>	<u>65</u>	<u>6</u>	<u>2</u>	132	-	132 (20.4%)
Small round hole (TP2)	<u>12</u>	<u>2</u>	<u>24</u>	<u>11</u>	<u>8</u>	57	-	57 (8.8%)
High nuclear density (TP3)	2	<u>1</u>	<u>17</u>	<u>17</u>	<u>11</u>	48	-	48 (7.4%)
Larger nucleus with perinuclear halo (TP4)	<u>1</u>	<u>0</u>	<u>6</u>	<u>1</u>	<u>8</u>	16	-	16 (2.5%)
Undefined	<u>1</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	1	22	1 (0.2%)
Single chain of nuclei (FP1)	5	0	0	1	0	6	29	35 (5.4%)
Small round hole (FP2)	4	0	0	0	0	4	35	39 (6.0%)
High nuclear density (FP3)	5	3	0	2	0	10	8	18 (2.8%)
Larger nucleus with perinuclear halo (FP4)	0	1	2	0	0	3	12	15 (2.3%)
Undefined	1	0	0	0	0	1	1	2 (0.3%)
Two-layered chain of nuclei (TN1)	13	2	11	11	6	43	29	72 (11.1%)
Areas of low nu- clear density with eosinophilic back- ground (TN2)	23	6	4	2	2	37	125	162 (25.1%)
Chain of nuclei with abundant slightly eosinophilc neighbor- hood (TN3)	5	0	1	1	2	9	30	39 (6.0%)
Undefined	4	1	0	2	0	7	3	10 (1.5%)

Interpretable patterns

- Randomly selected >600 points (xPOI) with "high" occlusion sensitivity
 - Square region 15 x 15 px around the point
 - Either green or red color prevails in the square
- Tissue surrounding xPOIs classified by the catalog of typical tissue patterns

90 % of identified patterns have a known pattern!

But does it make sense in pathology??

Morphological	WSIs w/ carcinoma						WSIs w/o	
pattern under		Gleason					carc.	Tot. %
attribution	3+3 (N=14)	3+4 (N=3)	4+3 (N=11)	4+4 (N=5)	4+5 (N=4)	Total (N=37)	N=49	
Single chain of nuclei (TP1)	<u>52</u>	<u>7</u>	<u>65</u>	<u>6</u>	<u>2</u>	132	-	132 (20.4%)
Small round hole (TP2)	<u>12</u>	<u>2</u>	<u>24</u>	<u>11</u>	<u>8</u>	57	-	57 (8.8%)
High nuclear density (TP3)	2	<u>1</u>	<u>17</u>	<u>17</u>	<u>11</u>	48	-	48 (7.4%)
Larger nucleus with perinuclear halo (TP4)	<u>1</u>	<u>0</u>	<u>6</u>	<u>1</u>	<u>8</u>	16	-	16 (2.5%)
Undefined	<u>1</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	1	2	1 (0.2%)
Single chain of nuclei (FP1)	5	0	0	1	0	6	29	35 (5.4%)
Small round hole (FP2)	4	0	0	0	0	4	35	39 (6.0%)
High nuclear density (FP3)	5	3	0	2	0	10	8	18 (2.8%)
Larger nucleus with perinuclear halo (FP4)	0	1	2	0	0	3	12	15 (2.3%)
Undefined	1	0	0	0	0	1	1	2 (0.3%)
Two-layered chain of nuclei (TN1)	13	2	11	11	6	43	29	72 (11.1%)
Areas of low nu- clear density with eosinophilic back- ground (TN2)	23	6	4	2	2	37	125	162 (25.1%)
Chain of nuclei with abundant slightly eosinophilc neighbor- hood (TN3)	5	0	1	1	2	9	30	39 (6.0%)
Undenned	4	1	0	2	U	1	5	10 (1.5%)

Feature type	Scale	Feature	Features (≈50 μm ∅)	Found	xPatterns
		distorted gland architecture		No*	
	L	small uniform glands infiltrate in between normal glands	OoS	No*	
Architectural		poorly formed fused, cribriform or glomeruloid glands, high nu- clear density in Gleason pattern 4	SL, HCD	Yes	small round hole, high nuclear density
		solid sheets, cords, medium or large nests with rosettes, comedo type necrosis	SL, HCD	Yes	small round hole, high nuclear density
		small caliber glands	SLE, SL	Yes	single chain of nuclei, small round hole
		crowded or compact gland clus- ters	HCD	Yes	high nuclear density
		blue mucin	AA	No	
	М	eosinophilic amorphous secre- tions	AA	No	
T . 1 · 1		crystalloids		No	
Intraluminal		rigid or sharp gland lumina, may have periglandular clefts	SL, SLE	Yes	small round hole, sin- gle chain of nuclei
		glands lack basal cells (single- layered epithelium in Gleason pattern 3)	SLE	Yes	single chain of nuclei
		infiltrative single cells in Glea- son pattern 5	HNH	Yes	larger nucleus with perinuclear halo
Cytoplasmic		cuboidal to low cylindrical cells with modest cytoplasm	SLE, SL	Yes	single chain of nuclei, small round hole
Nuclear		enlarged hyperchromatic nuclei	HNH	Yes	larger nucleus with perinuclear halo
inuclear	S	prominent enlarged nucleoli of- ten eosinophilic	OoS	N/A	
		multiple nucleoli located in pe- riphery	OoS	N/A	

Mapping identified patterns to "textbook" features used in cancer diagnostics

- OoS out of scale
- SL small lumina
- HCD high cellular density
- SLE single-layered epithelium
- AA acellular areas
- HNH hyperchromatic nuclei with Halo

xOpat toolbox

>	Layer Opa	acity	Tissue	2 E
		-17		
		-		
		×		
		1	-	
,	Automat	ed cancer d	etection ÷	
	Annotatio	n Layer	ţ	
	Threshold: Edge thickness Opacity:		1	
	Explainab Color High: Color Low: Opacity:	ility Layer	ţ	
	Threshold:		1	
	Probabilit	y Layer	ţ	
	Threshold: Opacity:		1	
	Invert:			
DI	Annotation	IS	0 8 6	0

Al diagnosis and explanation

Fast zooming, ergonomic

Flexible, fast adaptation to different tasks

Interactive, allows annotation etc.

Web interface, uploading of WSI, automated analysis

Deployment at MMCI

- Our system:
 - Pathologists upload patient's scans via web form
 - Our GPU servers execute the NN inference and produce the probability overlay map
 - The online viewer overlays the map over the scan

Deployment at MMCI

- Our system:
 - Pathologists upload patient's scans via web form
 - Our GPU servers execute the NN inference and produce the probability overlay map
 - The online viewer overlays the map over the scan
- We need
 - Fast network communication of large images (compression is the way to go)
 - Fast inference on large images (millions of patches, need to utilize sufficient hw)
 - \circ Very fast operation of the viewer
 - pathologists are extremely fast and efficient when zooming with their microscopes
 - ... most of them are very impatient

Deployment at MMCI

- Our system:
 - Pathologists upload patient's scans via web form
 - Our GPU servers execute the NN inference and produce the probability overlay map
 - The online viewer overlays the map over the scan
- We need
 - Fast network communication of large images (compression is the way to go)
 - Fast inference on large images (millions of patches, need to utilize sufficient hw)
 - \circ Very fast operation of the viewer
 - pathologists are extremely fast and efficient when zooming with their microscopes
 - ... most of them are very impatient
- Our system has examined approx. 50 patients; our pathologist uses it as an assistant system

So far the operation at MMCI was almost flawless - the system simply looks for the pro/con cancer patterns mentioned previously

So far the operation at MMCI was almost flawless - the system simply looks for the pro/con cancer patterns mentioned previously

Just on Friday last week ... no cancer detected (huge tumor present) since the green dot completely confused the part detecting the tissue in the scan

• How to help pathologists in their routine work using ML methods?

- How to help pathologists in their routine work using ML methods?
- Easy, construct and train a model that will be
 - Reliable
 - Understandable

- How to help pathologists in their routine work using ML methods?
- Easy, construct and train a model that will be
 - Reliable
 - Understandable
- Both reliability and understandability are subjective
 - Pathologists cannot afford "obvious" mistakes
 - Pathologists understand pathology, not computer science!
 - Computer scientists do not understand pathology
 - Computer scientists do not see "obvious" mistakes

- How to help pathologists in their routine work using ML methods?
- Easy, construct and train a model that will be
 - Reliable
 - Understandable
- Both reliability and understandability are subjective
 - Pathologists cannot afford "obvious" mistakes
 - Pathologists understand pathology, not computer science!
 - Computer scientists do not understand pathology
 - Computer scientists do not see "obvious" mistakes
- The technology must be ready and reliable we are working with highly efficient professionals who cannot afford to play with weird occasionally non-functioning toys!

What does the network really think?

What does the network really think? (selected maps)

AND AND AN

A patch from WS	Colorscale								
Marki ant (101)	Marks (MUR1)	block5 out-3121	New IS and a 19	BlockS askiM41	NorkS poly3151	Books and H61	MarkS on ATT	RectS and 3(9)	North C. Columbia
4		-		9000_400(4)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000_445/01		0001-00101	i s
block5_retu2[0]	black5_relu2(1)	block5_relu2[2]	block5_refu2(3)	block5_relu2[4]	block5_relu2[5]	block5_relu2[6]	tipck5_relu2[7]	block5_mlu2[8]	block5_retu2(9)
		4		1	1				
block5 rebul[0]	block5 miu1[1]	block5 relu1[2]	block5 relu1[1]	block5 retu1[4]	block5 relu1[5]	block5 relu1[6]	block5 relu1[7]	block5 relu1[8]	block5_relu1(9)
		1.15	and a	-	5	6	125	100	
block4_mexpool[0]	block4 maxpoo[1]	block4 maxpool[2]	block4 maspool[3]	bisck4 maxpool[4]	block4_maspoo(3)	block4 maxpool[6]	block4_maspool[7]	block4 maxpeol[8]	block4 maxpoo(9)
	$\mathcal{L}_{\mathcal{A}}$			100	dilla a	337		A	3.50
Block4_netu3(0)	block4_relu3(1)	tilock4_relu3[2]	block4_refu3(3)	Block4_relu3[4]	block4_relu3(5)	block4_relu3[6]	block4_relu3(7)	block4_relu3(8)	block4_relu3(9)
chock4_web/2[0]	Disck4_yeru2[1]	stock4_resu2[2]	(HOCK4_(HOLDZ)3)	enocid_reluzi(4)	decise_resu2(5)	elocisi4_neluz[6]	Bock4 (MBJ2[7]	B0004_H902[8]	(teck4 reluz(*)

State - Ballet

- For each input pixel consider "corresponding" pixels from 512 feature maps
- I.e. for each input pixel we get a "fingerprint" vector dim. 512 measuring "stimulation" of feature maps at the spatial position of the pixel
- Cluster input pixels according to these 512 dimensional fingerprint vectors

Virtual staining

- Al based epithelium segmentation
- New virtual staining method

- Model predicts immunohistochemical staining based on H&E inputs
- Trained on scans with dual staining
 - H&E first
 - Re-stained using an immunohistochemical staining
- Trained on scans of the breast and colon cancer, successfully transfered to scans of the prostate cancer

People

- Memorial Masaryk Cancer Institute
 - Department of pathology

MUDr. Rudolf Nenutil, CSc., MUDr. Michal Tichý, Ph.D.

- Masaryk University
 - Faculty of informatics

Doc. RNDr. Tomáš Brázdil, Ph.D., Mgr. Matej Gallo,

Bc. Jiří Horák, Bc. Adam Bajger, ...

• Institute for Computer Science

Doc. RNDr. Petr Holub, Ph.D.

