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Tomáš Brázdil

1



Resources & Prerequisities
Resources:

▶ Lectures & tutorials (the main resources)

▶ Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering De-
sign Optimization. Cambridge University Press, 2021. ISBN:
9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical
optimization. Springer, 2006. ISBN: 0387303030.

We shall need elementary knowledge and understanding of

▶ Linear algebra in Rn

Operations with vectors and matrices, bases, diagonalization.

▶ Multi-variable calculus (i.e., in Rn)
Partial derivatives, gradients, Hessians, Taylor’s theorem.

We will refresh our memories during lectures and tutorials.
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Evaluation

Oral exam - You will get a manual describing the knowledge
necessary for E and better.

There might be homework assignments that you may discuss at
tutorials, but (for this year) there is no mandatory homework.

Please be aware that

This is a difficult math-based
course.
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What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a
design, system, or decision) as perfect, functional, or effective as
possible.

specifically: the mathematical procedures (such as finding the
maximum of a function) involved in this.

Britannica

Collection of mathematical principles and methods for solving
quantitative problems in many disciplines, including physics,
biology, engineering, economics, and business.

Historically, (mathematical/numerical) optimization is called
mathematical programming.
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Optimization
People optimize in

▶ scheduling
▶ transportation,
▶ education,
▶ · · ·

▶ investments
▶ portfolio management,
▶ utility maximization,
▶ · · ·

▶ industrial design
▶ aerodynamics,
▶ electrical engineering,
▶ · · ·

▶ sciences
▶ molecular modeling,
▶ computational systems biology,
▶ · · ·

▶ machine learning

▶ · · ·
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Optimization Algorithms
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Optimization Algorithms
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Design Optimization Process
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Design Optimization Process

9



A bit naive example:

▶ Consider a company with several plants producing a single
product but with different efficiency.

▶ The goal is to set the production of each plant so that demand
for goods is satisfied, but overproduction is minimized.

▶ First try: Model each plant’s production and maximize the
total production efficiency.
This would lead to a solution where only the most efficient plant will

produce.

▶ However, after a certain level of demand, no single plant can
satisfy the demand ⇒, introducing constraints on the
maximum production of the plants.
This would maximize production of the most efficient plant and then the

second one, etc.

▶ Then you notice that all plant employees must work.

▶ Then you start solving transportation problems depending on
the location of the plants.

▶ ...
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Optimization Problem Formulation

1. Describe the problem
▶ Problem formulation is vital since the

optimizer exploits any weaknesses in the
model formulation.

▶ You might get the “right answer to the
wrong question.”

▶ The problem description is typically
informal at the beginning.

2. Gather information
▶ Identify possible inputs/outputs.
▶ Gather data and identify the analysis

procedure.
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Optimization Problem Formulation

3. Define the design variables
▶ Identify the quantities that describe the

system:

x ∈ Rn

(i.e., certain characteristics of the system,
such as position, investments, etc.)

▶ The variables are supposed to be
independent; the optimizer must be free to
choose the components of x independently.

▶ The choice of variables is typically not
unique (e.g., a square can be described by
its side or area).

▶ The variables may affect the functional
form of the objective and constraints (e.g.,
linear vs non-linear).
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Optimization Problem Formulation

4. Define the objective
▶ The function determines if one design is

better than another.
▶ Must be a scalar computable from the

variables:

f : Rn → R

(e.g., profit, time, potential energy, etc.)
▶ The objective function is either maximized

or minimized depending on the application.
▶ The choice is not always obvious: E.g.,

minimizing just the weight of a vehicle
might result in a vehicle being too
expensive to be manufactured.
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Optimization Problem Formulation

5. Define the constraints
▶ Prescribe allowed values of the variables.
▶ May have a general form

c(x) ≤ 0 or c(x) ≥ 0 or c(x) = 0

(e.g., time cannot be negative, bounded
amount of money to invest)
Where c : Rn → R is a function depending
on the variables.
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Modelling and Optimization
The Optimization Problem consists of

▶ variables

▶ objective

▶ constraints

The above components constitute a model.

Modelling is concerned with model building, optimization with
maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined

with modeling.

The Optimization Problem (OP): Find settings of variables so
that the objective is maximized/minimized while satisfying the
constraints.

An Optimization Algorithm (OA) solves the above problem and
provides a solution, some setting of variables satisfying the
constraints and minimizing/maximizing the objective.
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Optimization Problems

13



Optimization Problem Formally

Denote by

f : Rn → R an objective function,

x a vector of real variables,

g1, . . . , gng inequality constraint functions gi : Rn → R.

h1, . . . , hnh equality constraint functions hj : Rn → R.

The optimization problem is to

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh
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Optimization Problem - Example

f (x1, x2) = (x1 − 2)2 + (x2 − 1)2

g1(x1, x2) = x21 − x2
g2(x1, x2) = x1 + x2 − 2

The optimization problem is

minimize (x1−2)2+(x2−1)2 subject to

{
x21 − x2 ≤ 0,

x1 + x2 − 2 ≤ 0.
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Optimization Problem - Example
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Constraints
Consider the constraints

gi (x) ≤ 0 i = 1, . . . , ng
hj(x) = 0 j = 1, . . . , nh

Define the feasibility region by

F = {x | gi (x) ≤ 0, hj(x) = 0, i = 1, . . . , ng , j = 1, . . . , nh}

x ∈ F is feasible, x ̸∈ F is infeasible.

Note that constraints of the form gi (x) ≥ 0 can be easily
transformed to the inequality contraints −gi (x) ≤ 0

x∗ ∈ F is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F
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Constraints

Inequality constraints gi (x) ≤ 0 can be active or inactive.

active at x

gi (x) = 0

inactive at x

gi (x) < 0

17



More Practical Example

The problem formulation:

▶ A company has two chemical factories F1 and F2, and a dozen
retail outlets R1, . . . ,R12.

▶ Each Fi can produce (maximum of) ai tons of a chemical
each week.

▶ Each retail outlet Rj demands at least bj tons.

▶ The cost of shipping one ton from Fi to Rj is cij .

The problem: Determine how much each factory should ship to
each outlet to satisfy the requirements and minimize cost.

18
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More Practical Example
Variables: xij for i = 1, 2 and j = 1, . . . , 12. Each xij (intuitively)
corresponds to tons shipped from Fi to Rj .

The objective:

min
∑
ij

cijxij

subject to

12∑
j=1

xij ≤ ai , i = 1, 2

2∑
i=1

xij ≥ bj , j = 1, . . . , 12,

xij ≥ 0, i = 1, 2, j = 1, . . . , 12.

The above is linear programming problem since both the objective
and constraint functions are linear.
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Discrete Optimization

In our original optimization problem definition, we consider real
(continuous) variables.

Sometimes, we need to assume discrete values. For example, in the
previous example, the factories may produce tractors. In such a
case, it does not make sense to produce 4.6 tractors.

Usually, an integer constraint is added, such as

xi ∈ Z

It constrains xi only to integer values. This leads to so-called
integer programming.

Discrete optimization problems have discrete and finite variables.
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Wing Design Example
Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are called span b and chord c .

However, two other variables are often used in aircraft design:
Wing area S and wing aspect ratio AR. It holds that

S = bc AR = b2/S

21
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Wing Design Example

What exactly are the objectives and constraints?

Our objective function is the power required to keep level flight:

f (b, c) =
Dv

η

Here,

▶ D is the drag
That is the aerodynamic force that opposes an aircraft’s motion through

the air.

▶ η is the propulsive efficiency
That is the efficiency with which the energy contained in a vehicle’s fuel

is converted into kinetic energy of the vehicle.

▶ v is the lift velocity
That is the velocity needed to lift the aircraft, which depends on its

weight.
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Wing Design Example
For illustration, let us look at the lift velocity v .

In level flight, the aircraft must generate enough lift L to equal its
weight W , that is L = W .

The weight partially depends on the wing area:

W = W0 +WSS

Here S = bc is the wing area, and W0 is the payload weight.

The lift can be approximated using the following formula.

L = q · CL · S
Where q = 1

2ϱv
2 is the fluid dynamic pressure, here ϱ is the air

density, CL is a lift coefficient (depending on the wing shape).

Thus, we may obtain the lift velocity as

v =
√

2W /ϱCLS =
√

2(W0 +WSbc)/ϱCLbc

Similarly, various physics-based arguments provide approximations
of the drag D and the propulsion efficiency η.
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Wing Design Example
The drag D = Di + Df is the sum of the induced and viscous drag.

The induced drag can be approximated by

Di = W 2/q π b2 e

Here, e is the Oswald efficiency factor, a correction factor that represents
the change in drag with the lift of a wing, as compared with an ideal
wing having the same aspect ratio.

The viscous drag can be approximated by

Df = k Cf q 2.05S

Here, k is the form factor (accounts for the pressure drag), and Cf is the
skin friction coefficient that can be approximated by

Cf = 0.074/Re0.2

Where Re is the Reynolds number that somewhat characterizes air flow
patterns around the wing and is defined as follows:

Re = ρvc/µ

Here µ is the air dynamic viscosity.
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Wing Design Example

The propulsion efficiency η can be roughly approximated by the
Gaussian efficiency curve.

η = ηmax exp

(
−(v − v̄)2

2σ2

)
Here, v̄ is the peak propulsive efficiency velocity, and σ is the std
of the efficiency function.

25



Wing Design Example

The objective function contours:

The engineers would refuse the solution: The aspect ratio is much
higher than typically seen in airplanes. It adversely affects the
structural strength. Add constraints!
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Wing Design Example

Added a constraint on bending stress at the root of the wing:

It looks like a reasonable wing ...

27



Optimization Problem Classification
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Optimization Problem Classification

▶ Continuous allows only xi ∈ R, discrete allows only xi ∈ Z,
mixed allows variables of both kinds.

▶ Single-objective: f : Rn → R, Multi-objective: f : Rn → Rm

▶ Unconstrained: No constraints, just the objective function.
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Optimization Problem Classification
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Smoothness

We consider various classes of problems depending on the
smoothness properties of the objective/constraint functions:

▶ C 0: Continuous function Continuity allows us to estimate value in

small neighborhoods.

Discontinuous functions exist.

▶ C 1: Continuous first derivatives
The derivatives give information on the slope. If continuous, it changes

smoothly, allowing us to estimate the slope locally.

Nondifferentiable continuous functions and differentiable
functions with discontinuous derivatives exist.

▶ C 2: Continuous second derivatives The second derivatives inform

about curvature.

Continuously differentiable functions without second
derivatives and twice differentiable functions with
discontinuous second derivatives exist.
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f (x) = |x | is continuous, f is not differentiable at 0

f (x) = x |x | is differentiable on R, f ′ has no second derivative at 0
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f (x) =

{
x2 sin(1/x) if x ̸= 0

0 if x = 0

f ′(x) =

{
2x sin(1/x)− cos(1/x), x ̸= 0

0, x = 0

f is differentiable on R, f ′ is not continuous at 0
33



f (x) =

{
x4 sin(1/x) if x ̸= 0

0 if x = 0

f is differentiable on R,

f ′(x) =

{
4x3 sin(1/x)− x2 cos(1/x), x ̸= 0

0, x = 0

f ′ is differentiable on R,

f ′′(x) =

{
12x2 sin(1/x)− 6x cos(1/x)− sin(1/x), x ̸= 0

0, x = 0

Clearly, f ′′ does not have a limit at 0 as sin(1/x) oscillates between
−1 and 1 and thus is not continuous.
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Linearity

Linear programming: Both the objective and the constraints are
linear.

It is possible to solve precisely, efficiently, and in rational numbers
(see the linear programming later).
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Multimodality
Denote by F the feasibility set.

x∗ is a (weak) local minimiser if there is ε > 0 such that

f (x∗) ≤ f (x) for all x ∈ F satisfying ||x∗ − x || ≤ ε

x∗ is a (weak) global minimiser if

f (x∗) ≤ f (x) for all x ∈ F
Global/local minimiser is strict if the inequality is strict.

Unimodal functions have a single global minimiser in F ,
multimodal have multiple local minimisers in F .
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Convexity
S ⊆ Rn is a convex set if the straight line segment connecting any
two points in S lies entirely inside S . Formally, for any two points
x ∈ S and y ∈ S , we have αx + (1− α)y ∈ S for all α ∈ [0, 1]

f is a convex function if its domain is a convex set and if for any
two points x and y in this domain, the graph of f lies below the
straight line connecting (x , f (x)) to (y , f (y)) in the space Rn+1.
That is, we have

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y), for all α ∈ (0, 1).

A standard form convex optimization assumes
▶ convex objective f and convex inequality constraint

functions gi
▶ affine equality constraint functions hj

Implications:
▶ Every local minimum is a global minimum.
▶ If the above inequality is strict for all x ̸= y , then there is

a unique minimum.
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Stochasticity

Sometimes, the parameters of a model cannot be specified with
certainty.

For example, in the transportation model, customer demand
cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and
modeled using an appropriate probability distribution.

Stochastic optimization problem is to minimize/maximize the
expectation of a statistic parametrized with the variables x :

Find x maximizing Ef (x ;W )

Here, W is a vector of random variables, and the expectation is
taken using the probability distribution of these variables.

In this course, we stick with deterministic optimization.
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Optimization Algorithms

39



Optimization Algorithm

An optimization algorithm solves the optimization problem, i.e.,
searches for x∗, which (in some sense) minimizes the objective f
and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions
x0, x1, . . . and then identifies one resembling a solution.

The problem is to

▶ compute the candidate solutions,
Complexity of the objective function, difficulties in selection of the

candidates, etc.

▶ Select the one closest to a minimum.
It is Hard to decide whether a given point is a minimum (even a local

one). Example: Neural networks training.
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Optimization Algorithm Properties

Typically, we are concerned with the following issues:

▶ Robustness: OA should perform well on various problems in
their class for all reasonable choices of the initial variables.

▶ Efficiency: OA should not require too much computer time or
storage.

▶ Accuracy: OA should be able to identify a solution with
precision without being overly sensitive to
▶ errors in the data/model
▶ the arithmetic rounding errors
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Order and Search

Order

▶ Zeroth = gradient-free: no info about derivatives is used

▶ First = gradient-based: use info about first derivatives
(e.g., gradient descent)

▶ Second = use info about first and second derivatives
(e.g., Newton’s method)

Search

▶ Local search = start at a point and search for a solution by
successively updating the current solution
(e.g., gradient descent)

▶ Global search tries to span the whole space
(e.g., grid search)
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Mathematical vs Heuristic

For some algorithms and under specific assumptions imposed on
the optimization problem, we can do the following:

▶ Prove that the algorithm converges to an optimum/minimum.

▶ Determine the rate of convergence.

▶ Decide whether we are at (or close to) an optimum/minimum.

For example, for linear optimization problems, the simplex
algorithm converges to a minimum (or says that there is no
minimum) in, at most, exponentially many steps, and we may
efficiently decide whether we have reached a minimum.

We may prove only some or none of the properties for some
algorithms.
There are (almost) infinitely many heuristic algorithms without provable

convergence, often motivated by the behaviors of various animals.
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Deterministic vs Stochastic and Static vs Dynamic
Stochastic optimization is based on a random selection of
candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the
form of random mutations).

Also, various variants of the gradient-based methods are often
randomized (e.g., variants of the stochastic gradient descent).

In this course, we stick to static optimization problems where we
solve the optimization problem only once.

In contrast, the dynamic optimization, a sequence of (usually)
dependent optimization problems are solved sequentially.

For example, consider driving a car where the driver must react
optimally to changing situations several times per second.

Dynamic optimization problems are usually defined using a kind of
(Markov) decision process.
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Summary
The course consists of the following main parts:
▶ Unconstrained optimization

▶ Non-linear objectives, (twice) differentiable
▶ Second-order methods (quasi-Newton)

▶ Constrained optimization
▶ Non-linear objectives and constraints, (twice) differentiable
▶ Lagrange multipliers, Newton-Lagrange method
▶ Quadratic programming (a little bit)

▶ Linear programming
▶ Linear objectives and constraints
▶ Simplex algorithm deep dive (including the degenerate case)

▶ Integer linear programming
▶ Linear objectives and mixed integer linear constraints
▶ Branch-and-bound, Gomory cuts algorithms

▶ A little bit on non-differentiable algorithms.

You will need to understand: Calculus in Rn (gradient, Hessian)
and linear algebra in Rn (vectors, matrices, geometry)
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Single-variable Objectives
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Unconstrained Single Variable Optimization Problem

An objective function f : R→ R

A variable x

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

We consider

▶ f continuously differentiable

▶ f twice continuously differentiable

Present the following methods:

▶ Gradient descent

▶ Newton’s method

▶ Secant method
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Gradient Based Methods

An objective function f : R→ R

A variable x ∈ R

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

Assume that

f ′(x) = lim
h→0

f (x + h)− f (x)

h
for x ∈ R

is continuous on R.

Denote by C1 the set of all continuously differentiable functions.
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Gradient Descent in Single Variable

Gradient descent algorithm for finding a local minimum of a
function f , using a variable step length.

Input: Function f with first derivative f ′, initial point x0, initial
step length α0 > 0, tolerance ϵ > 0

Output: A point x that approximately minimizes f (x)
1: Set k ← 0
2: while |f ′(xk)| > ϵ do
3: Calculate the derivative: y ′ ← f ′(xk)
4: Update xk+1 ← xk − αk · y ′
5: Update step length αk to αk+1 based on a certain strategy
6: Increment k
7: end while
8: return xk
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Convergence of Single Variable Gradient Descent

Theorem 1
Assume that f is

▶ differentiable, i.e., that f ′ exists,

▶ bounded below, i.e., there is B ∈ R such that f (x) ≥ B for all
x ∈ R,

▶ L-smooth, i.e., there is L > 0 such that
|f ′(x)− f ′(x ′)| ≤ L|x − x ′| for all x , x ′ ∈ R.

Consider a sequence x0, x1, . . . computed by the gradient descent
algorithm for f . Assume a constant step length α ≤ 1

L .
Then limk→∞ |f ′(xk)| = 0 and, moreover,

min
0≤t<T

|f ′(xt)| ≤
√

2L(f (x0)− B)

T
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Example
Consider the following objective function f

f (x) =
1

2
x2 − sin x

52



Example

Consider the objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5, and that the required accuracy is ϵ = 10−4, i.e.,
we stop when |xk+1 − xk | < ϵ.

Consider the step length α = 1.

We compute
f ′(x) = x − cos x .

Then,
x1 = 0.5− (0.5− cos 0.5)

= 0.5− (−0.37758)
= 0.87758
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Example
Continuing in the same way:

x1 = 0.87758

x2 = 0.63901

x3 = 0.80269

x4 = 0.69478

x5 = 0.76820

x6 = 0.71917

x7 = 0.75236

x8 = 0.73008

x9 = 0.74512

x10 = 0.73501

x11 = 0.74183

x12 = 0.73724

x13 = 0.74033

x14 = 0.73825

x15 = 0.73965

x16 = 0.73870

x17 = 0.73934

x18 = 0.73891

x19 = 0.73920

x20 = 0.73901

x21 = 0.73914

x22 = 0.73905

Note that |x22 − x21| < 10−4.
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Example
What if we consider the step length 1/k? Then

x1 = 0.50000

x2 = 0.87758

x3 = 0.75830

x4 = 0.74753

x5 = 0.74399

x6 = 0.74235

x7 = 0.74144

x8 = 0.74087

x9 = 0.74050

x10 = 0.74024

x11 = 0.74004

x12 = 0.73990

x13 = 0.73978

x14 = 0.73969

Note that |x14 − x13| < 10−4 but x14 is far from the solution
which is 0.7390....
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Example
What if we consider the step length 1/k? Then

x1 = 0.50000

x2 = 0.87758

x3 = 0.75830

x4 = 0.74753

x5 = 0.74399

x6 = 0.74235

x7 = 0.74144

x8 = 0.74087

x9 = 0.74050

x10 = 0.74024

x11 = 0.74004

x12 = 0.73990

x13 = 0.73978

x14 = 0.73969

· · ·

x115 = 0.739100605

x116 = 0.739100379

x117 = 0.739100159

x118 = 0.739099944

x119 = 0.739099734

x120 = 0.739099529

x121 = 0.739099328

x122 = 0.739099132

x123 = 0.739098940

x124 = 0.739098752

x125 = 0.739098568

x126 = 0.739098388

x127 = 0.739098212

x128 = 0.739098040
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Example

Gradient descent with the step length = 1.0:
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Example

Gradient descent with the step length = 1/k :
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Example
Gradient descent with the step length = 1/k2:

It does not seem to converge to the same number as the previous
step lengths.
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Example

Gradient descent with the step length = 1.0:
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Example

Gradient descent with the step length = 1/k :
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Properties of Gradient Descent

▶ The objective must be differentiable, however:
▶ Can be extended to functions with few non-linearities by

considering differentiable parts or sub-gradients.
▶ There are methods for differentiable approximation of

non-differentiable functions.

▶ GD is sensitive to the initial point: Converges to a local
minimum for a small step length (typically) to the closest one.

▶ GD is quite sensitive to the step length.
Might be very slow or too fast (even overshoot and diverge).

▶ For convex functions, the algorithm converges to a minimum
(if it converges).

▶ Straightforward to implement if the derivatives are available.

GD is much more interesting in multiple variables, forming the
basis for neural network learning (see later).

Better algorithm for unimodal functions using just derivatives?
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Newton’s Method

An objective function f : R→ R

A variable x ∈ R

Find x∗ such that

f (x∗) ≤ min
x∈R

f (x)

Assume that

f ′′(x) = lim
h→0

f ′(x + h)− f ′(x)

h
for x ∈ R

is continuous on R.

Denote by C2 the set of all twice continuously differentiable
functions.
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Denote by C2 the set of all twice continuously differentiable
functions.

63



Taylor Series Approximation
We would need the o-notation: Given functions f , g : R→ R we
write f = o(g) if

lim
x→0

f (x)

g(x)
= 0

Consider a function f : R→ R and x0 ∈ R. Assume that f is twice
differentiable at x0. Then for all x ∈ R we have that

f (x) = f (x0)+ f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2+o(|x−x0|2)

Thus, such f can be reasonably approximated around x0 with a
quadratic function

f (x) ≈ q(x) = f (x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2
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Newton’s Method Idea
The method computes successive approximations x0, x1, . . . , xk , . . .
as the GD.

To compute xk+1, a quadratic approximation

q(x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)

2

is considered around xk .

Then xk+1 is set to the extreme point of q(x) (i.e., q′(xk+1) = 0).
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Newton’s Method Algorithm

Now note that for

q(x) = f (xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)

2

we have

q′(x) = f ′(xk) + f ′′(xk)(x − xk)

and thus

q′(x) = 0 iff x = xk −
f ′(xk)

f ′′(xk)

Newton’s method then sets

xk+1 := xk −
f ′(xk)

f ′′(xk)
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Newton’s Method Algorithm

Input: A function f with derivative f ′ and second derivative f ′′,
initial point x0, tolerance ϵ > 0

Output: A point x that approximately minimizes f (x)
1: Set k ← 0
2: while |xk+1 − xk | > ϵ do
3: Calculate the derivative: y ′ ← f ′(xk)
4: Calculate the second derivative : y ′′ ← f ′′(xk)

5: Update the estimate: xk+1 ← xk − y ′

y ′′

6: Increment k
7: end while
8: return xk

Note that the method implicitly assumes that f ′′(xk) ̸= 0 in every
iteration.
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Example

Consider the following objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5, and that the required accuracy is ϵ = 10−5, i.e.,
we stop when |xk+1 − xk | ≤ ϵ.

We compute

f ′(x) = x − cos x , f ′′(x) = 1 + sin x .

Hence,

x1 = 0.5− 0.5− cos 0.5

1 + sin 0.5

= 0.5− −0.3775
1.479

= 0.7552
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Example
Proceeding similarly, we obtain

x2 = x1 −
f ′ (x1)

f ′′ (x1)
= x1 −

0.02710

1.685
= 0.7391

x3 = x2 −
f ′ (x2)

f ′′ (x2)
= x2 −

9.461× 10−5

1.673
= 0.7390851339

x4 = x3 −
f ′ (x3)

f ′′ (x3)
= x3 −

1.17× 10−9

1.673
= 0.7390851332

· · ·

Note that

|x4 − x3| < ϵ = 10−5

f ′ (x4) = −8.6× 10−6 ≈ 0

f ′′ (x4) = 1.673 > 0

So, we conclude that x∗ ≈ x4 is a strict minimizer.
However, remember that the above does not have to be true!
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Convergence
Newton’s method works well if f ′′(x) > 0 everywhere.

However, if f ′′(x) < 0 for some x , Newton’s method may fail to
converge to a minimizer (converges to a point x where f ′(x) = 0):

If the method converges to a minimizer, it does so quadratically.
What does this mean?
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Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each
step is proportionally reduced by a constant factor:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= r , 0 < r < 1

Superlinear Convergence

Convergence is superlinear if:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= 0

This often requires an algorithm to utilize second-order
information.
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Quadratic Convergence of Newton’s Method

Quadratic Convergence

Quadratic convergence is achieved when the number of accurate
digits roughly doubles with each iteration:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|2

= C , C > 0

Newton’s method is a classic example of an algorithm with
quadratic convergence.

Theorem 2 (Quadratic Convergence of Newton’s Method)

Let f : R→ R satisfy f ∈ C2 and suppose x∗ is a minimizer of f
such that f ′′(x∗) > 0. Assume Lipschitz continuity of f ′′. If the
initial guess x0 is sufficiently close to x∗, then the sequence {xk}
computed by the Newton’s method converges quadratically to x∗.
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Newton’s Method of Tangents
Newton’s method is also a technique for finding roots of functions.
In our case, this means finding a root of f ′.

Denote g = f ′. Then Newton’s approximation goes like this:

xk+1 = xk −
g(xk)

g ′(xk)
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Secant Method

What if f ′′ is unavailable, but we want to use something like
Newton’s method (with its superlinear convergence)?

Assume f ∈ C1 and try to approximate f ′′ around xk−1 with

f ′′(x) ≈ f ′(x)− f ′(xk−1)

x − xk−1

Substituting x with xk , we obtain

1

f ′′(xk)
≈ xk − xk−1

f ′(xk)− f ′(xk−1)

Then, we may try to use Newton’s step with this approximation:

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
· f ′(xk)

Is the rate of convergence superlinear?
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Example

Consider the following objective function f

f (x) =
1

2
x2 − sin x

Assume x0 = 0.5 and x1 = 1.0.
Now, we need to initialize the first two values.

We have f ′(x) = x − cos x

Hence,

x2 = 1.0− 1.0− 0.5

(1.0− cos 1.0)− (0.5− cos 0.5)
(0.5− cos 0.5)

= 0.7254
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Example

Continuing, we obtain:

x0 = 0.5

x1 = 1.0

x2 = 0.72548

x3 = 0.73839

x4 = 0.739087

x5 = 0.739085132

x6 = 0.739085133
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Example
Start the secant method with the approximation given by Newton’s
method:

x0 = 0.5

x1 = 0.7552

x2 = 0.7381

x3 = 0.739081

x5 = 0.7390851339

x6 = 0.7390851332

· · ·
Compare with Newton’s method:

x0 = 0.5

x1 = 0.7552

x2 = 0.7391

x3 = 0.7390851339

x4 = 0.73908513321516067229

x5 = 0.73908513321516067229

· · ·
77



Superlinear Convergence of Secant Method

Theorem 3 (Superlinear Convergence of Secant Method)

Assume f : R→ R twice continuously differentiable and x∗

a minimizer of f . Assume f ′′ Lipschitz continuous and f ′′(x∗) > 0.
The sequence {xk} generated by the Secant method converges to
x∗ superlinearly if x0 and x1 are sufficiently close to x∗.

The rate of convergence p of the Secant method is given by the
positive root of the equation p2 − p − 1 = 0, which is

p = 1+
√
5

2 ≈ 1.618 (the golden ratio). Formally,

lim
k→∞

|xk+1 − x∗|

|xk − x∗|
1+

√
5

2

= C , C > 0
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Secant Method for Root Finding
As for Newton’s method of tangents, the secant method can be
seen as a method for finding a root of f ′.

Denote g = f ′. Then the secant method approximation is

xk+1 = xk −
xk − xk−1

g(xk)− g(xk−1)
· g(xk)
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General Form

Note that all methods have similar update formula:

xk+1 = xk −
f ′(xk)

ak

Different choice of ak produce different algorithm:

▶ ak = 1 gives the gradient descent,

▶ ak = f ′′(xk) gives Newton’s method,

▶ ak =
f ′(xk )−f ′(xk−1)

xk−xk−1
gives the secant method,

▶ ak = f ′′(xm) where m = ⌊k/p⌋p gives Shamanskii method.
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Summary

▶ Newton’s method
▶ Converges quickly to an extremum under rather strict

conditions (see Theorem 2)
▶ The choice of the initial point is critical; the method may

diverge to a stationary point, which is not a minimizer. The
method may also cycle.

▶ If the second derivative is very small, close to the minimizer,
the method can be very slow (the quadratic convergence is
guaranteed only if the second derivative is non-zero at the
minimizer and the constants depend on the second derivative).

▶ Secant method
▶ The second derivative is not needed.
▶ Superlinear (but not quadratic) convergence for an initial point

close to a minimum (under rather strict conditions Theorem 3)
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Constrained Single Variable Optimization Problem

An objective function f : R→ R

A variable x

A constraint

a0 ≤ x ≤ b0

Consider the following cases:

▶ f unimodal on [a0, b0]

▶ f continuously differentiable on [a0, b0]

▶ f twice continuously differentiable on [a0, b0]
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Unimodal Function Minimization
We assume only unimodality on [a0, b0] where the single extremum
is a minimum.

More precisely, we assume that there is x∗ such that
▶ f (x ′) > f (x ′′) for all x ′, x ′′ ∈ [a0, x

∗] satisfying x ′ < x ′′

▶ f (x ′) < f (x ′′) for all x ′, x ′′ ∈ [x∗, b0] satisfying x ′ < x ′′

Assume that even a single evaluation of f is costly.

Minimize the number of evaluations searching for the minimum. 83



Simple Algorithm
Select u, v such that a0 < u < v < b0.

Observe that

▶ If f (u) < f (v), then the minimizer must lie in [a0, v ].

▶ If f (u) ≥ f (v), then the minimizer must lie in [u, b0].

Continue the search in the resulting interval.
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The Algorithm
An abstract search algorithm:

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: Choose uk , vk such that ak < uk < vk < bk
4: if f (uk) < f (vk) then
5: ak+1 ← ak and bk+1 ← vk
6: else
7: ak+1 ← uk and bk+1 ← bk
8: end if
9: end for

The algorithm produces a sequence of intervals:

[a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [aK , bK ]

where [aK , bK ] contains the minimizer of f .

The algorithm evaluates f twice in every iteration.

Is it necessary?
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Intermediate Points

Choose uk , vk symmetrically in the following sense:

uk − ak = bk − vk = ϱ(bk − ak)

for some ϱ ∈ (0, 1).

The algorithm will then look as follows:

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: uk ← ak + ρ(bk − ak)
4: vk ← bk − ρ(bk − ak)
5: if f (uk) < f (vk) then
6: ak+1 ← ak and bk+1 ← vk
7: else
8: ak+1 ← uk and bk+1 ← bk
9: end if

10: end for
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Intermediate Points
Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.

As v1 = b1 − ρ(b1 − a1) = b1 − ρ(b1 − a0), demanding v1 = u0
implies

u0 = b1 − ρ(b1 − a0) ⇒ ϱ(b1 − a0) = b1 − u0

Since b1 − a0 = 1− ϱ and b1 − u0 = 1− 2ϱ we have

ϱ(1− ϱ) = 1− 2ϱ ⇔ ϱ2 − 3ϱ+ 1 = 0

Solving to ρ1 =
3+

√
5

2 , ρ2 =
3−

√
5

2 , we consider ϱ = 3−
√
5

2
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Assume a0 = 0 and b0 = 1.

Suppose that we have just computed a1 and b1 and that, e.g., the
minimizer lies in [a0, v0], i.e., a1 = a0, b1 = v0, and u0 ∈ [a0, b1].

We are computing u1, v1 and need to get f (u1) and f (v1).

Note that we have already computed f (u0). So let us set ϱ so that
v1 coincides with u0.
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Golden Section Search
Choosing uk = ak + ρ(bk − ak) and vk = bk − ρ(bk − ak) allows us
to reuse one of the values of f (uk−1) and f (vk−1).

1: Initialize a0 < b0
2: for k = 0 to K − 1 do
3: uk ← ak + ρ(bk − ak)
4: vk ← bk − ρ(bk − ak)
5: if uk = vk−1 then
6: fuk ← fvk−1 and fuk ← f (vk)
7: else
8: fuk ← f (uk) and set fvk = fuk−1

9: end if
10: if fuk < fvk then
11: ak+1 ← ak and bk+1 ← vk
12: else
13: ak+1 ← uk and bk+1 ← bk
14: end if
15: end for
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Golden Section Search

Note that

ρ =
3−
√
5

2
≈ 0.61803

and thus

bk − ak ≈ 0.61803 · (bk−1 − ak−1)

which for a0 = 0 and b0 = 1 means

bk − ak = (1− ϱ)k ≈ (0.61803)k
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Example
Consider f defined by

f (x) = x4 − 14x3 + 60x2 − 70x

on the interval [0, 2].

By definition, a0 = 0 and b0 = 2.

u0 = a0 + ρ (b0 − a0) = 0.7639

v0 = a0 + (1− ρ) (b0 − a0) = 1.236

Here ρ = (3−
√
5)/2.

In the first step, we have to compute both fu0 and fv0:

fu0 = f (u0) = −24.36
fv0 = f (v0) = −18.96

fu0 < fv0 and thus a1 = a0 = 0 and b1 = v0 = 1.236.
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Example

We have a1 = a0 = 0 and b1 = v0 = 1.236.

Now compute u1 and v1 as follows

u1 = a1 + ρ (b1 − a1) = 0.4721

v1 = a1 + (1− ρ) (b1 − a1) = 0.7639

Note that v1 coincides with u0 as expected.

So we only have to compute

fu1 = f (u1) = −21.1

and put fv1 = fu0.

As fv1 < fu1 we obtain a2 = 0.4721 and b2 = 1.236.

... and so on.
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Summary of Golden Search

A method for solving constrained problems where the objective is
unimodal.

Straightforward method with guaranteed convergence, which in
every step evaluates the objective only once.

The implementation in Scipy:
https://docs.scipy.org/doc/scipy/reference/generated/

scipy.optimize.golden.html
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Constrained Gradient Descent and Newton’s Method

An objective function f : R→ R

A variable x

A constraints

a0 ≤ x ≤ b0

(find your c functions and the constraints)

Consider the following cases:

▶ f unimodal on [a0, b0]

▶ f continuously differentiable on [a0, b0]

▶ f twice continuously differentiable on [a0, b0]

Homework: Modify the gradient descent and Newton’s method to
work on the bounded interval (the above definitions guarantee
continuous differentiability at a0 and b0).
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Unconstrained Optimization Overview
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Notation
In what follows, we will work with vectors in Rn.

The vectors will be (usually) denoted by x ∈ Rn.

We often consider sequences of vectors, x0, x1, . . . , xk , . . ..

The index k will usually indicate that xk is the k-the vector in a
sequence.

When we talk (relatively rarely) about components of vectors, we
use i as an index, i.e., xi will be the i-th component of x ∈ Rn.

We denote by ||x || the Euclidean norm of x .

We denote by ||x ||∞ the L∞ norm giving the maximum of
absolute values of components of x .

We ocasionally use the matrix norm ||A||, consistent with the
Euclidean norm, defined by

||A|| = sup
||x ||=1

||Ax || =
√
λ1

Here λ1 is the largest eigenvalue of A⊤A.
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How to Recognize (Local) Minimum

How do we verify that x∗ ∈ Rn is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity
if one has a smaller value (impractical).

Assuming the smoothness of f , we may benefit from the “stable”
behavior of f around x∗.
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Derivatives and Gradients

The gradient of f : Rn → R, denoted by ∇f (x), is a column vector
of first-order partial derivatives of the function concerning each
variable:

∇f (x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]⊤
,

Where each partial derivative is defined as the following limit:

∂f

∂xi
= lim

ε→0

f (x1, . . . , xi + ε, . . . , xn)− f (x1, . . . , xi , . . . , xn)

ε
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Gradient

The gradient is a vector pointing in the direction of the most
significant function increase from the current point.
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Gradient
Consider the following function of two variables:

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

∇f (x1, x2) =
[
3x21 + 2x22 − 20
4x1x2 − 3x22

]
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Directional Derivatives vs Gradient
The rate of change in a direction p is quantified by a directional
derivative, defined as

∇pf (x) = lim
ε→0

f (x + εp)− f (x)

ε
.

We can find this derivative by projecting the gradient onto the
desired direction p using the dot product ∇pf (x) = (∇f (x))⊤p

(Here, we assume continuous partial derivatives.)
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Geometry of Gradient
Consider the geometric interpretation of the dot product:

∇pf (x) = (∇f (x))⊤p = ||∇f || ||p|| cos θ
Here θ is the angle between ∇f and p.

The directional derivative is maximized by θ = 0, i.e., when ∇f
and p point in the same direction.
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Hessian
Taking derivative twice, possibly w.r.t. different variables, gives the
Hessian of f

∇2f (x) = H(x) =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Note that the Hessian is a function which takes x ∈ Rn and gives a
n × n-matrix of second derivatives of f .

We have

Hij =
∂2f

∂xi∂xj
.

If f has continuous second partial derivatives, then H is symmetric,
i.e., Hij = Hji .
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Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.
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Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,

and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .
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Consider f (x) = x⊤Hx where

H =

(
4/3 0
0 1

)
The eigenvalues are

κ1 = 4/3 κ2 = 1

Their corresponding eigenvectors
are (1, 0)⊤ and (0, 1)⊤.

Note that

f (x) = κ1x
2
1 + κ2x

2
2

Considering a direction vector p we get

g(t) = f (0 + tp) = t2
(
κ1p

2
1 + κ2p

2
2

)
which is a parabola with g ′′ = 2

(
κ1p

2
1 + κ2p

2
2

)
.
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Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)

The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.

106



Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)
The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)

Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.

106



Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)
The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.
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Hessian Visualization Example
Consider

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

And it’s Hessian.

H (x1, x2) =

[
6x1 4x2
4x2 4x1 − 6x2

]
.
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Taylor’s Theorem

Theorem 4 (Taylor)

Suppose that f : Rn → R is twice continuously differentiable and
that p ∈ Rn. Then, we have

f (x + p) = f (x) +∇f (x)Tp +
1

2
pTH(x)p + o(||p||2).

Here H = ∇2f is the Hessian of f .
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First-Order Necessary Conditions

Theorem 5
If x∗ is a local minimizer and f is continuously differentiable in an
open neighborhood of x∗, then ∇f (x∗) = 0.
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Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.
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Definiteness
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Second-Order Necessary Condition

Theorem 6 (Second-Order Necessary Conditions)

If x∗ is a local minimizer of f and ∇2f is continuous in a
neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive
semidefinite.

Theorem 7 (Second-Order Sufficient Conditions)

Suppose that ∇2f is continuous in a neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict
local minimizer of f .
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[ √
7
2 −

3
2√

7
2 −

3
2

]
.
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.
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Example
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 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

The Hessian, at the first point, is

H (xA) =

[
3 −2
−2 2

]
,

whose eigenvalues are κ1 ≈ 0.438 and κ2 ≈ 4.561. Because both
eigenvalues are positive, this point is a local minimum.
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∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the second point,

H (xB) =

[
3(3 +

√
7) −2

−2 2

]
.

The eigenvalues are κ1 ≈ 1.737 and κ2 ≈ 17.200, so this point is
another local minimum.
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the third point,

H (xC ) =

[
9− 3

√
7 −2

−2 2

]
.

The eigenvalues for this Hessian are κ1 ≈ −0.523 and κ2 ≈ 3.586,
so this point is a saddle point.
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Proofs of Some Theorems
Optional
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Taylor’s Theorem

To prove the theorems characterizing minima/maxima, we need
the following form of Taylor’s theorem:

Theorem 8 (Taylor)

Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have that.

f (x + p) = f (x) +∇f (x + tp)Tp,

for some t ∈ (0, 1). Moreover, if f is twice continuously
differentiable, we have that

f (x + p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p,

for some t ∈ (0, 1).
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Proof of Theorem 5 (Optional)

We prove that if x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f (x∗) = 0.

Suppose for contradiction that ∇f (x∗) ̸= 0. Define the vector
p = −∇f (x∗) and note that pT∇f (x∗) = −∥∇f (x∗)∥2 < 0.
Because ∇f is continuous near x∗, there is a scalar T > 0 such
that

pT∇f (x∗ + tp) < 0, for all t ∈ [0,T ]

For any t̄ ∈ (0,T ], we have by Taylor’s theorem that

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗ + tp) , for some t ∈ (0, t̄).

Therefore, f (x∗ + t̄p) < f (x∗) for all t̄ ∈ (0,T ]. We have found a
direction leading away from x∗ along which f decreases, so x∗ is
not a local minimizer, and we have a contradiction.

118



Proof of Theorem 6 (Optional)

We prove that if x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f (x∗) = 0 and
∇2f (x∗) is positive semidefinite.

We know that ∇f (x∗) = 0. For contradiction, assume that
∇2f (x∗) is not positive semidefinite.

Then we can choose a vector p such that pT∇2f (x∗) p < 0.

As ∇2f is continuous near x∗, pT∇2f (x∗ + tp) p < 0 for all
t ∈ [0,T ] where T > 0.

By Taylor we have for all t̄ ∈ (0,T ] and some t ∈ (0, t̄)

f (x∗ + t̄p) = f (x∗)+t̄pT∇f (x∗)+1

2
t̄2pT∇2f (x∗ + tp) p < f (x∗) .

Thus, x∗ is not a local minimizer.
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Proof of Theorem 7 (Optional)

We prove the following: Suppose that ∇2f is continuous in an
open neighborhood of x∗ and that ∇f (x∗) = 0 and ∇2f (x∗) is
positive definite. Then x∗ is a strict local minimizer of f .

Because the Hessian is continuous and positive definite at x∗, we
can choose a radius r > 0 so that ∇2f (x) remains positive definite
for all x in the open ball D = {z | ∥z − x∗∥ < r}. Taking any
nonzero vector p with ∥p∥ < r , we have x∗ + p ∈ D and so

f (x∗ + p) = f (x∗) + pT∇f (x∗) + 1

2
pT∇2f (z)p

= f (x∗) +
1

2
pT∇2f (z)p,

where z = x∗ + tp for some t ∈ (0, 1). Since z ∈ D, we have
pT∇2f (z)p > 0, and therefore f (x∗ + p) > f (x∗), giving the
result.
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