PV027 Optimization

Tomáš Brázdil

Resources & Prerequisities

Resources:

- Lectures & tutorials (the main resources)
- Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization. Cambridge University Press, 2021. ISBN: 9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2006. ISBN: 0387303030.

Resources & Prerequisities

Resources:

- Lectures & tutorials (the main resources)
- Books:

Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization. Cambridge University Press, 2021. ISBN: 9781108833417.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer, 2006. ISBN: 0387303030.

We shall need elementary knowledge and understanding of

- Linear algebra in \mathbb{R}^n Operations with vectors and matrices, bases, diagonalization.
- Multi-variable calculus (i.e., in \mathbb{R}^n)
 Partial derivatives, gradients, Hessians, Taylor's theorem.

We will refresh our memories during lectures and tutorials.

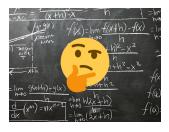
Evaluation

Oral exam - You will get a manual describing the knowledge necessary for **E** and better.

There might be homework assignments that you may discuss at tutorials, but (for this year) there is no mandatory homework.

Please be aware that

This is a difficult math-based course.



What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.

specifically: the mathematical procedures (such as finding the maximum of a function) involved in this

4

What is Optimization

Merriam Webster:

An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.

specifically: the mathematical procedures (such as finding the maximum of a function) involved in this

Britannica

Collection of mathematical principles and methods used for solving quantitative problems in many disciplines, including physics, biology, engineering, economics, and business

Historically, (mathematical/numerical) optimization is called *mathematical programming*.

4

- scheduling
 - transportation,
 - education,
 - . . .

- scheduling
 - transportation,
 - education,
 - **...**
- investments
 - portfolio management,
 - utility maximization,
 - **>** ...

- scheduling
 - transportation,
 - education,
 - **...**
- investments
 - portfolio management,
 - utility maximization,
 - **.** . . .
- industrial design
 - aerodynamics,
 - electrical engineering,
 - **...**

- scheduling
 - transportation,
 - education,
 - **...**
- investments
 - portfolio management,
 - utility maximization,
 - **.** . . .
- ▶ industrial design
 - aerodynamics,
 - electrical engineering,
 - **...**
- sciences
 - molecular modeling,
 - computational systems biology,
 - **.** . . .

- scheduling
 - transportation,
 - education.
 - **...**
- investments
 - portfolio management,
 - utility maximization,
 - **.** . . .
- ▶ industrial design
 - aerodynamics,
 - electrical engineering,
 - **...**
- sciences
 - molecular modeling,
 - computational systems biology,
 - **.** . . .
- machine learning

Optimization Algorithms

scipy.optimize.minimize

```
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
```

method: str or callable, optional

Type of solver. Should be one of

- 'Nelder-Mead' (see here)
- 'Powell' (see here)
- 'CG' (see here)
- · 'BFGS' (see here)
- 'Newton-CG' (see here)
- 'L-BFGS-B' (see here)

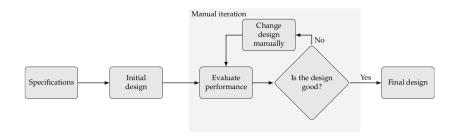
Optimization Algorithms

sklearn.linear_model.LogisticRegression

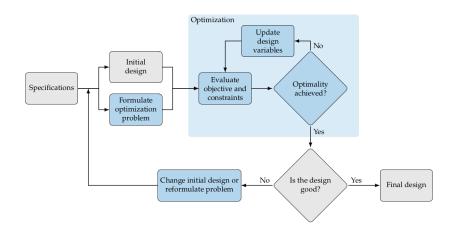
class sklearn.linear_model.LogisticRegression(penalty="12", *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver="lbfgs", max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

solver: ('Ibfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}, default='Ibfgs'
Algorithm to use in the optimization problem. Default is 'Ibfgs'. To choose a solver,

Design Optimization Process



Design Optimization Process



- Consider a company with several plants producing a single product but with different efficiency.
- ► The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.

- Consider a company with several plants producing a single product but with different efficiency.
- ► The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- ► First try: Model each plant's production and maximize the total production efficiency.

This would lead to a solution where only the most efficient plant will produce.

- Consider a company with several plants producing a single product but with different efficiency.
- ► The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- ► First try: Model each plant's production and maximize the total production efficiency.
 - This would lead to a solution where only the most efficient plant will produce.
- ► However, after a certain level of demand, no single plant can satisfy the demand ⇒, introducing constraints on the maximum production of the plants.
 - This would maximize production of the most efficient plant and then the second one, etc.

- Consider a company with several plants producing a single product but with different efficiency.
- ► The goal is to set the production of each plant so that demand for goods is satisfied, but overproduction is minimized.
- ► First try: Model each plant's production and maximize the total production efficiency.

This would lead to a solution where only the most efficient plant will produce.

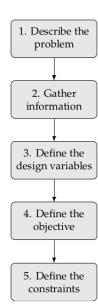
- ► However, after a certain level of demand, no single plant can satisfy the demand ⇒, introducing constraints on the maximum production of the plants.
 - This would maximize production of the most efficient plant and then the second one, etc.
- ▶ Then you notice that all plant employees must work.
- ► Then you start solving transportation problems depending on the location of the plants.

1. Describe the problem

- Problem formulation is vital since the optimizer exploits any weaknesses in the model formulation.
- You might get the "right answer to the wrong question."
- The problem description is typically informal at the beginning.

2. Gather information

- Identify possible inputs/outputs.
- Gather data and identify the analysis procedure.



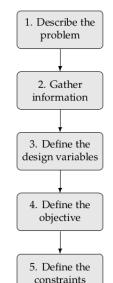
3. Define the design variables

Identify the quantities that describe the system:

$$x \in \mathbb{R}^n$$

(i.e., certain characteristics of the system, such as position, investments, etc.)

- ► The variables are supposed to be independent; the optimizer must be free to choose the components of *x* independently.
- The choice of variables is typically not unique (e.g., a square can be described by its side or area).
- ► The variables may affect the functional form of the objective and constraints (e.g., linear vs non-linear).



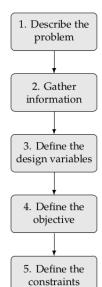
4. Define the **objective**

- ► The function determines if one design is better than another.
- Must be a scalar computable from the variables:

$$f: \mathbb{R}^n \to \mathbb{R}$$

(e.g., profit, time, potential energy, etc.)

- The objective function is either maximized or minimized depending on the application.
- ► The choice is not always obvious: E.g., minimizing just the weight of a vehicle might result in a vehicle being too expensive to be manufactured.



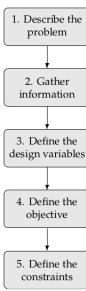
5. Define the constraints

- Prescribe allowed values of the variables.
- May have a general form

$$c(x) \le 0$$
 or $c(x) \ge 0$ or $c(x) = 0$

(e.g., time cannot be negative, bounded amount of money to invest)

Where $c: \mathbb{R}^n \to \mathbb{R}$ is a function depending on the variables.



The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a **model**.

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a **model**.

Modelling is concerned with model building, **optimization** with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a **model**.

Modelling is concerned with model building, **optimization** with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.

The **Optimization Problem (OP):** Find settings of variables so that the objective is maximized/minimized while satisfying the constraints.

The Optimization Problem consists of

- variables
- objective
- constraints

The above components constitute a model.

Modelling is concerned with model building, **optimization** with maximization/minimization of the objective for a given model.

We concentrate on the optimization part but keep in mind that it is intertwined with modeling.

The **Optimization Problem (OP):** Find settings of variables so that the objective is maximized/minimized while satisfying the constraints.

An **Optimization Algorithm (OA)** solves the above problem and provides a **solution**, some setting of variables satisfying the constraints and minimizing/maximizing the objective.

Optimization Problems

Optimization Problem Formally

Denote by

```
f: \mathbb{R}^n \to \mathbb{R} an objective function,
```

x a vector of real variables,

 g_1, \ldots, g_{n_g} inequality constraint functions $g_i : \mathbb{R}^n \to \mathbb{R}$.

 h_1, \ldots, h_{n_h} equality constraint functions $h_j : \mathbb{R}^n \to \mathbb{R}$.

Optimization Problem Formally

Denote by

```
f: \mathbb{R}^n \to \mathbb{R} an objective function, x a vector of real variables, g_1, \ldots, g_{n_g} inequality constraint functions g_i: \mathbb{R}^n \to \mathbb{R}. h_1, \ldots, h_{n_h} equality constraint functions h_j: \mathbb{R}^n \to \mathbb{R}.
```

The optimization problem is to

```
minimize f(x)
by varying x
subject to g_i(x) \leq 0 i = 1, \ldots, n_g
h_j(x) = 0 j = 1, \ldots, n_h
```

Optimization Problem - Example

$$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$$

$$g_1(x_1, x_2) = x_1^2 - x_2$$

$$g_2(x_1, x_2) = x_1 + x_2 - 2$$

The optimization problem is

minimize
$$(x_1-2)^2+(x_2-1)^2$$
 subject to $\begin{cases} x_2-x_1^2 \geq 0, \\ 2-x_1-x_2 \geq 0. \end{cases}$

I.e.,

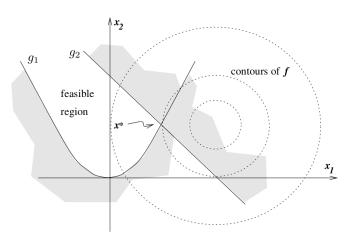
minimize
$$(x_1-2)^2+(x_2-1)^2$$
 subject to $\begin{cases} x_1^2-x_2 \leq 0, \\ x_1+x_2-2 \leq 0. \end{cases}$

Optimization Problem - Example

$$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 1)^2$$

$$g_1(x_1, x_2) = x_1^2 - x_2$$

$$g_2(x_1, x_2) = x_1 + x_2 - 2$$



A *contour* of f is defined, for some $c \in \mathbb{R}$, by $\{x \in \mathbb{R}^n \mid f(x) = c\}$

Consider the constraints

$$g_i(x) \le 0$$
 $i = 1, ..., n_g$
 $h_j(x) = 0$ $j = 1, ..., n_h$

Consider the constraints

$$g_i(x) \le 0$$
 $i = 1, ..., n_g$
 $h_j(x) = 0$ $j = 1, ..., n_h$

Define the feasibility region by

$$\mathcal{F} = \{x \mid g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, n_g, j = 1, \dots, n_h\}$$

 $x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.

Consider the constraints

$$g_i(x) \le 0$$
 $i = 1, ..., n_g$
 $h_j(x) = 0$ $j = 1, ..., n_h$

Define the feasibility region by

$$\mathcal{F} = \{x \mid g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, n_g, j = 1, \dots, n_h\}$$

 $x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.

Note that constraints of the form $g_i(x) \ge 0$ can be easily transformed to the inequality contraints $-g_i(x) \le 0$

Consider the constraints

$$g_i(x) \le 0$$
 $i = 1, ..., n_g$
 $h_j(x) = 0$ $j = 1, ..., n_h$

Define the feasibility region by

$$\mathcal{F} = \{x \mid g_i(x) \leq 0, h_j(x) = 0, i = 1, \dots, n_g, j = 1, \dots, n_h\}$$

 $x \in \mathcal{F}$ is feasible, $x \notin \mathcal{F}$ is infeasible.

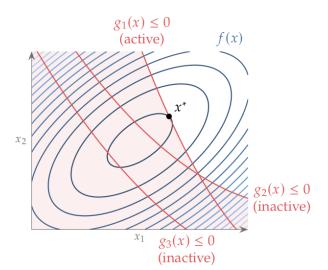
Note that constraints of the form $g_i(x) \ge 0$ can be easily transformed to the inequality contraints $-g_i(x) \le 0$

 $x^* \in \mathcal{F}$ is now a *constrained minimizer* if

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$

Constraints

Inequality constraints $g_i(x) \le 0$ can be active or inactive.



active

$$g_i(x^*)=0$$

inactive

$$g_i(x^*) < 0$$

The problem formulation:

- A company has two chemical factories F_1 and F_2 , and a dozen retail outlets R_1, \ldots, R_{12} .
- ▶ Each F_i can produce (maximum of) a_i tons of a chemical each week.
- \triangleright Each retail outlet R_i demands at least b_i tons.
- The cost of shipping one ton from F_i to R_j is c_{ij}.

The problem formulation:

- A company has two chemical factories F_1 and F_2 , and a dozen retail outlets R_1, \ldots, R_{12} .
- ▶ Each F_i can produce (maximum of) a_i tons of a chemical each week.
- Each retail outlet R_j demands at least b_j tons.
- The cost of shipping one ton from F_i to R_j is c_{ij}.

The problem: Determine how much each factory should ship to each outlet to satisfy the requirements and minimize cost.

Variables: x_{ij} for i = 1, 2 and j = 1, ..., 12. Each x_{ij} (intuitively) corresponds to tons shipped from F_i to R_j .

The objective:

$$\min \sum_{ij} c_{ij} x_{ij}$$

Variables: x_{ij} for i = 1, 2 and j = 1, ..., 12. Each x_{ij} (intuitively) corresponds to tons shipped from F_i to R_j .

The objective:

$$\min \sum_{ij} c_{ij} x_{ij}$$

subject to

$$\sum_{j=1}^{12} x_{ij} \le a_i, \quad i = 1, 2$$

$$\sum_{j=1}^{2} x_{ij} \ge b_j, \quad j = 1, \dots, 12,$$

$$x_{ij} \ge 0, \quad i = 1, 2, \quad j = 1, \dots, 12.$$

Variables: x_{ij} for i = 1, 2 and j = 1, ..., 12. Each x_{ij} (intuitively) corresponds to tons shipped from F_i to R_j .

The objective:

$$\min \sum_{ij} c_{ij} x_{ij}$$

subject to

$$\sum_{j=1}^{12} x_{ij} \le a_i, \quad i = 1, 2$$

$$\sum_{j=1}^{2} x_{ij} \ge b_j, \quad j = 1, \dots, 12,$$

$$x_{ij} \ge 0, \quad i = 1, 2, \quad j = 1, \dots, 12.$$

The above is *linear programming* problem since both the objective and constraint functions are linear.

Discrete Optimization

In our original optimization problem definition, we consider real (continuous) variables.

Sometimes, we need to assume discrete values. For example, in the previous example, the factories may produce tractors. In such a case, it does not make sense to produce 4.6 tractors.

Discrete Optimization

In our original optimization problem definition, we consider real (continuous) variables.

Sometimes, we need to assume discrete values. For example, in the previous example, the factories may produce tractors. In such a case, it does not make sense to produce 4.6 tractors.

Usually, an integer constraint is added, such as

$$x_i \in \mathbb{Z}$$

It constrains x_i only to integer values. This leads to so-called *integer programming*.

Discrete optimization problems have discrete and finite variables.

Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are call $span\ b$ and $chord\ c$.

Our goal is to design the wing shape of an aircraft.

Assume a rectangular wing.

The parameters are call span b and chord c.

However, two other variables are often used in aircraft design: Wing area S and wing aspect ratio AR. It holds that

What exactly are the objectives and constraints?

What exactly are the objectives and constraints?

Our objective function is the power required to keep level flight:

$$f(b,c)=\frac{Dv}{\eta}$$

Here,

- ▶ D is the draft That is the aerodynamic force that opposes an aircraft's motion through the air.
- η is the propulsion efficiency
 That is the efficiency with which the energy contained in a vehicle's fuel is converted into kinetic energy of the vehicle.
- v is the lift velocity That is the velocity needed to lift the aircraft, which depends on its weight.

For illustration, let us look at the lift velocity v.

For illustration, let us look at the lift velocity v.

In level flight, the aircraft must generate enough lift L to equal its weight W, that is L=W.

For illustration, let us look at the lift velocity v.

In level flight, the aircraft must generate enough lift L to equal its weight W, that is L=W.

The weight partially depends on the wing area:

$$W = W_0 + W_S S$$

Here S = bc is the wing area, and W_0 is the payload weight.

For illustration, let us look at the lift velocity v.

In level flight, the aircraft must generate enough lift L to equal its weight W, that is L=W.

The weight partially depends on the wing area:

$$W = W_0 + W_S S$$

Here S = bc is the wing area, and W_0 is the payload weight.

The lift can be approximated using the following formula.

$$L = q \cdot C_L \cdot S$$

Where $q = \frac{1}{2} \varrho v^2$ is the fluid dynamic pressure, here ϱ is the air density, C_L is a lift coefficient (depending on the wing shape).

For illustration, let us look at the lift velocity v.

In level flight, the aircraft must generate enough lift L to equal its weight W, that is L=W.

The weight partially depends on the wing area:

$$W = W_0 + W_S S$$

Here S = bc is the wing area, and W_0 is the payload weight.

The lift can be approximated using the following formula.

$$L = q \cdot C_l \cdot S$$

Where $q = \frac{1}{2}\varrho v^2$ is the fluid dynamic pressure, here ϱ is the air density, C_L is a lift coefficient (depending on the wing shape).

Thus, we may obtain the lift velocity as

$$v = \sqrt{2W/\varrho C_L S} = \sqrt{2(W_0 + W_S bc)/\varrho C_L bc}$$

Similarly, various physics-based arguments provide approximations of the draft D and the propulsion efficiency η .

The draft $D = D_i + D_f$ is the sum of the induced and viscous draft.

The draft $D = D_i + D_f$ is the sum of the induced and viscous draft.

The induced draft can be approximated by

$$D_i = W^2/q \pi b^2 e$$

Here, *e* is the Oswald efficiency factor, a correction factor that represents the change in drag with the lift of a wing, as compared with an ideal wing having the same aspect ratio.

The draft $D = D_i + D_f$ is the sum of the induced and viscous draft.

The induced draft can be approximated by

$$D_i = W^2/q \pi b^2 e$$

Here, *e* is the Oswald efficiency factor, a correction factor that represents the change in drag with the lift of a wing, as compared with an ideal wing having the same aspect ratio.

The viscous draft can be approximated by

$$D_f = k C_f q 2.05 S$$

Here, k is the form factor (accounts for the pressure drag), and C_f is the skin friction coefficient that can be approximated by

$$C_f = 0.074/Re^{0.2}$$

Where *Re* is the Reynolds number that somewhat characterizes air flow patterns around the wing and is defined as follows:

$$Re = \rho vc/\mu$$

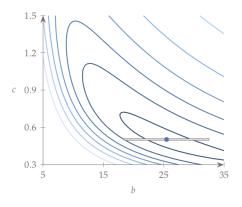
Here μ is the air dynamic viscosity.

The propulsion efficiency η can be roughly approximated by the Gaussian efficiency curve.

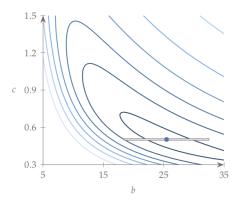
$$\eta = \eta_{\mathsf{max}} \exp\left(\frac{-(v - \bar{v})^2}{2\sigma^2}\right)$$

Here, $\bar{\mathbf{v}}$ is the peak propulsive efficiency velocity, and σ is the std of the efficiency function.

The objective function contours:

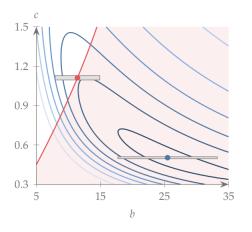


The objective function contours:

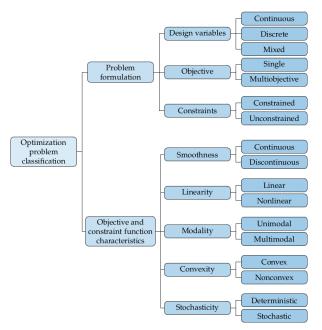


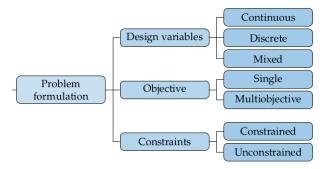
The engineers would refuse the solution: The aspect ratio is much higher than typically seen in airplanes. It adversely affects the structural strength. Add constraints!

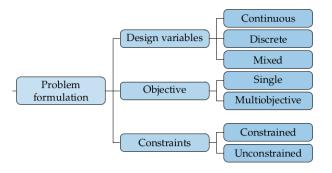
Added a constraint on bending stress at the root of the wing:



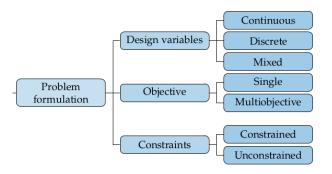
It looks like a reasonable wing ...



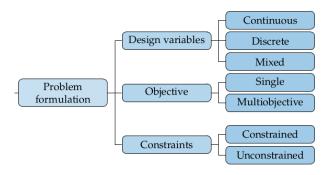




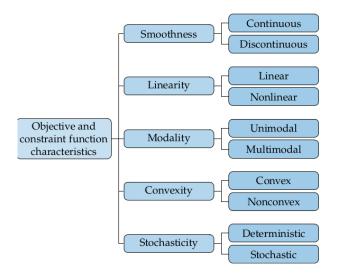
► Continuous allows only $x_i \in \mathbb{R}$, discrete allows only $x_i \in \mathbb{Z}$, mixed allows variables of both kinds.



- ▶ *Continuous* allows only $x_i \in \mathbb{R}$, *discrete* allows only $x_i \in \mathbb{Z}$, mixed allows variables of both kinds.
- ▶ Single-objective: $f: \mathbb{R}^n \to \mathbb{R}$, Multi-objective: $f: \mathbb{R}^n \to \mathbb{R}^m$



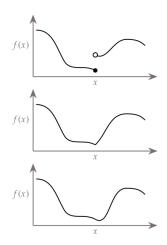
- ▶ *Continuous* allows only $x_i \in \mathbb{R}$, *discrete* allows only $x_i \in \mathbb{Z}$, mixed allows variables of both kinds.
- ▶ Single-objective: $f: \mathbb{R}^n \to \mathbb{R}$, Multi-objective: $f: \mathbb{R}^n \to \mathbb{R}^m$
- Unconstrained: No constraints, just the objective function.



Smoothness

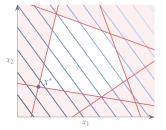
We consider various classes of problems depending on the smoothness properties of the objective/constraint functions:

- C⁰: Continuous function Continuity allows us to estimate value in small neighborhoods.
- ► C¹: Continuous first derivatives Derivatives give information about the slope. If continuous, it changes smoothly, allowing us to estimate the slope locally.
- ► C²: Continuous second derivatives Second derivatives inform about curvature.



Linearity

Linear programming: Both the objective and the constraints are linear.



It is possible to solve precisely, efficiently, and in rational numbers (see the linear programming later).

Denote by \mathcal{F} the feasibility set.

 x^* is a (weak) local minimiser if there is $\varepsilon>0$ such that $f(x^*) \leq f(x)$ for all $x \in \mathcal{F}$ satisfying $||x^*-x|| \leq \varepsilon$

Denote by \mathcal{F} the feasibility set.

 x^* is a (weak) local minimiser if there is $\varepsilon > 0$ such that

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$ satisfying $||x^* - x|| \le \varepsilon$

 x^* is a (weak) global minimiser if

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$

Denote by \mathcal{F} the feasibility set.

 x^* is a (weak) local minimiser if there is $\varepsilon > 0$ such that

$$f(x^*) \leq f(x)$$
 for all $x \in \mathcal{F}$ satisfying $||x^* - x|| \leq \varepsilon$

 x^* is a (weak) global minimiser if

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$

Global/local minimiser is *strict* if the inequality is strict.

Denote by \mathcal{F} the feasibility set.

 x^* is a (weak) local minimiser if there is $\varepsilon > 0$ such that

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$ satisfying $||x^* - x|| \le \varepsilon$

 x^* is a (weak) global minimiser if

$$f(x^*) \le f(x)$$
 for all $x \in \mathcal{F}$

Global/local minimiser is *strict* if the inequality is strict.

Unimodal functions have a single global minimiser in \mathcal{F} , multimodal have multiple local minimisers in \mathcal{F} .

Convexity

 $S\subseteq\mathbb{R}^n$ is a *convex set* if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x\in S$ and $y\in S$, we have $\alpha x+(1-\alpha)y\in S$ for all $\alpha\in[0,1]$

Convexity

 $S \subseteq \mathbb{R}^n$ is a *convex set* if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x \in S$ and $y \in S$, we have $\alpha x + (1 - \alpha)y \in S$ for all $\alpha \in [0, 1]$

f is a *convex function* if its domain is a convex set and if for any two points x and y in this domain, the graph of f lies below the straight line connecting (x, f(x)) to (y, f(y)) in the space \mathbb{R}^{n+1} . That is, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
, for all $\alpha \in [0, 1]$.

Convexity

 $S \subseteq \mathbb{R}^n$ is a *convex set* if the straight line segment connecting any two points in S lies entirely inside S. Formally, for any two points $x \in S$ and $y \in S$, we have $\alpha x + (1 - \alpha)y \in S$ for all $\alpha \in [0, 1]$

f is a *convex function* if its domain is a convex set and if for any two points x and y in this domain, the graph of f lies below the straight line connecting (x, f(x)) to (y, f(y)) in the space \mathbb{R}^{n+1} . That is, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$
, for all $\alpha \in [0, 1]$.

A standard form convex optimization assumes

- convex objective f and convex inequality constraint functions g;
- affine equality constraint functions h_j

Implications:

- Every local minimum is a global minimum.
- If the above inequality is strict for all $x \neq y$, then there is a unique minimum.

Stochasticity

Sometimes, the parameters of a model cannot be specified with certainty.

For example, in the transportation model, customer demand cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and modeled using an appropriate probability distribution.

Stochasticity

Sometimes, the parameters of a model cannot be specified with certainty.

For example, in the transportation model, customer demand cannot be predicted precisely in practice.

However, such parameters may often be statistically estimated and modeled using an appropriate probability distribution.

Stochastic optimization problem is to minimize/maximize the expectation of a statistic parametrized with the variables *x*:

Find x maximizing $\mathbb{E}f(x; W)$

Here, W is a vector of random variables, and the expectation is taken using the probability distribution of these variables.

In this course, we stick with deterministic optimization.

Optimization Algorithms

Optimization Algorithm

An optimization algorithm solves the optimization problem, i.e., searches for x^* , which (in some sense) minimizes the objective f and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions x_0, x_1, \ldots and then identifies one resembling a solution.

Optimization Algorithm

An *optimization algorithm* solves the optimization problem, i.e., searches for x^* , which (in some sense) minimizes the objective f and satisfies the constraints.

Typically, the algorithm computes a set of candidate solutions x_0, x_1, \ldots and then identifies one resembling a solution.

The problem is to

- compute the candidate solutions, (complexity of the objective function, difficulties in selection of the candidates, etc.)
- ► Select the one closest to a minimum.

 (hard to decide whether a given point is a minimum (even a local one))

Typically, we are concerned with the following issues:

Typically, we are concerned with the following issues:

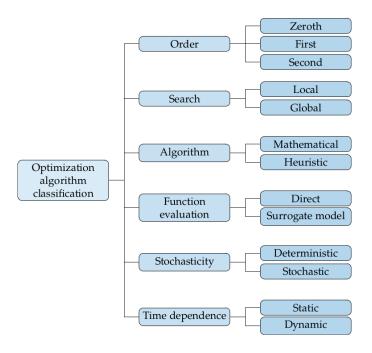
▶ Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.

Typically, we are concerned with the following issues:

- ► Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.
- Efficiency: OA should not require too much computer time or storage.

Typically, we are concerned with the following issues:

- ► Robustness: OA should perform well on various problems in their class for all reasonable choices of the initial variables.
- Efficiency: OA should not require too much computer time or storage.
- ► Accuracy: OA should be able to identify a solution with precision without being overly sensitive to
 - errors in the data/model
 - the arithmetic rounding errors



Order and Search

Order

- Zeroth = gradient-free: no info about derivatives is used
- ► First = gradient-based: use info about first derivatives (e.g., gradient descent)
- Second = use info about first and second derivatives (e.g., Newton's method)

Order and Search

Order

- Zeroth = gradient-free: no info about derivatives is used
- First = gradient-based: use info about first derivatives (e.g., gradient descent)
- Second = use info about first and second derivatives (e.g., Newton's method)

Search

- Local search = start at a point and search for a solution by successively updating the current solution (e.g., gradient descent)
- Global search tries to span the whole space (e.g., grid search)

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

▶ Prove that the algorithm converges to an optimum/minimum.

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- ▶ Prove that the algorithm converges to an optimum/minimum.
- Determine the rate of convergence.

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- ▶ Prove that the algorithm converges to an optimum/minimum.
- ▶ Determine the rate of convergence.
- Decide whether we are at (or close to) an optimum/minimum.

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- ▶ Prove that the algorithm converges to an optimum/minimum.
- ▶ Determine the rate of convergence.
- ▶ Decide whether we are at (or close to) an optimum/minimum.

For example, for linear optimization problems, the simplex algorithm converges to a minimum in, at most, exponentially many steps, and we may efficiently decide whether we have reached a minimum.

For some algorithms and under specific assumptions imposed on the optimization problem, we can do the following:

- ▶ Prove that the algorithm converges to an optimum/minimum.
- ▶ Determine the rate of convergence.
- ▶ Decide whether we are at (or close to) an optimum/minimum.

For example, for linear optimization problems, the simplex algorithm converges to a minimum in, at most, exponentially many steps, and we may efficiently decide whether we have reached a minimum.

We may prove only some or none of the properties for some algorithms.

There are (almost) infinitely many heuristic algorithms without provable convergence, often motivated by the behaviors of various animals.

Deterministic vs Stochastic and Static vs Dynamic

Stochastic optimization is based on a random selection of candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the form of random mutations).

Also, various variants of the gradient-based methods are often randomized (e.g., variants of the stochastic gradient descent).

Deterministic vs Stochastic and Static vs Dynamic

Stochastic optimization is based on a random selection of candidate solutions.

Evolutionary algorithms contain some randomness (e.g., in the form of random mutations).

Also, various variants of the gradient-based methods are often randomized (e.g., variants of the stochastic gradient descent).

In this course, we stick to *static* optimization problems where we solve the optimization problem only once.

In contrast, the *dynamic* optimization, a sequence of (usually) dependent optimization problems are solved sequentially.

For example, consider driving a car where the driver must react optimally to changing situations several times per second.

Dynamic optimization problems are usually defined using a kind of (Markov) decision process.

Single-variable Objectives

Unconstrained Single Variable Optimization Problem

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable x

Find x^* such that

$$f(x^*) \leq \min_{x \in \mathbb{R}} f(x)$$

Unconstrained Single Variable Optimization Problem

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable x

Find x^* such that

$$f(x^*) \le \min_{x \in \mathbb{R}} f(x)$$

We consider

- f continuously differentiable
- ▶ f twice continuously differentiable

Present the following methods:

- Gradient descent
- Newton's method
- Secant method

Gradient Based Methods

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable $x \in \mathbb{R}$

Find x^* such that

$$f(x^*) \le \min_{x \in \mathbb{R}} f(x)$$

Gradient Based Methods

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable $x \in \mathbb{R}$

Find x^* such that

$$f(x^*) \le \min_{x \in \mathbb{R}} f(x)$$

Assume that

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 for $x \in \mathbb{R}$

is continuous on \mathbb{R} .

Denote by \mathcal{C}^1 the set of all continuously differentiable functions.

Gradient Descent in Single Variable

Gradient descent algorithm for finding a local minimum of a function f, using a variable step length.

```
Input: Function f, initial point x_0, initial step length \alpha_0 > 0,
tolerance \epsilon
Output: A point x that approximately minimizes f(x)
Initialize x \leftarrow x_0
Initialize step length \alpha \leftarrow \alpha_0
while |f'(x)| > \epsilon do
   Compute the gradient g \leftarrow f'(x)
   Update x \leftarrow x - \alpha \cdot g
   Update step length \alpha based on a certain strategy
end while
return x
```

Denote by x_k and α_k the values of x and α in the k-th iteration, respectively.

Convergence of Single Variable Gradient Descent

Theorem 1

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function with a bounded below derivative and satisfying the Lipschitz condition for its gradient. That is, there exists a constant L > 0 such that for all $x, y \in \mathbb{R}$,

$$|f'(x) - f'(y)| \le L|x - y|.$$

If the step lengths α_k are chosen appropriately, the sequence $\{x_k\}$ converges to a point x^* where $f'(x^*) = 0$.

Which is a local minimum if $f''(x^*)$ exists and $f''(x^*) > 0$.

Convergence of Single Variable Gradient Descent

Theorem 1

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function with a bounded below derivative and satisfying the Lipschitz condition for its gradient. That is, there exists a constant L > 0 such that for all $x, y \in \mathbb{R}$,

$$|f'(x) - f'(y)| \le L|x - y|.$$

If the step lengths α_k are chosen appropriately, the sequence $\{x_k\}$ converges to a point x^* where $f'(x^*) = 0$.

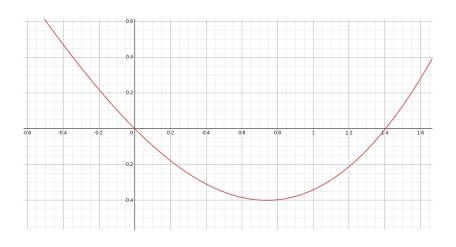
Which is a local minimum if $f''(x^*)$ exists and $f''(x^*) > 0$.

The convergence is assured, e.g., if the sequence $\alpha_1, \alpha_2, \dots$ satisfies the Robbins-Monro Conditions:

$$\sum_{k=1}^{\infty} \alpha_k = \infty \qquad \sum_{k=1}^{\infty} \alpha_k^2 < \infty.$$

Consider the following objective function f

$$f(x) = \frac{1}{2}x^2 - \sin x$$



Consider the objective function *f*

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0=0.5$, and that the required accuracy is $\epsilon=10^{-4}$, i.e., we stop when $|x_{k+1}-x_k|<\epsilon$.

Consider the step length $\alpha = 1$.

Consider the objective function f

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0=0.5$, and that the required accuracy is $\epsilon=10^{-4}$, i.e., we stop when $|x_{k+1}-x_k|<\epsilon$.

Consider the step length $\alpha = 1$.

We compute

$$f'(x) = x - \cos x.$$

Then,

$$x_1 = 0.5 - (0.5 - \cos 0.5)$$

= 0.5 - (-0.37758)
= 0.87758

Continuing in the same way:

$x_1 = 0.87758$	$x_{12} = 0.73724$
$x_2 = 0.63901$	$x_{13} = 0.74033$
$x_3 = 0.80269$	$x_{14} = 0.73825$
$x_4 = 0.69478$	$x_{15} = 0.73965$
$x_5 = 0.76820$	$x_{16} = 0.73870$
$x_6 = 0.71917$	$x_{17} = 0.73934$
$x_7 = 0.75236$	$x_{18} = 0.73891$
$x_8 = 0.73008$	$x_{19} = 0.73920$
$x_9 = 0.74512$	$x_{20} = 0.73901$
$x_{10} = 0.73501$	$x_{21} = 0.73914$
$x_{11} = 0.74183$	$x_{22} = 0.73905$

Note that $|x_{22} - x_{21}| < 10^{-4}$.

What if we consider the step length 1/k? Then

```
x_1 = 0.50000
 x_2 = 0.87758
x_3 = 0.75830
x_4 = 0.74753
x_5 = 0.74399
x_6 = 0.74235
x_7 = 0.74144
x_8 = 0.74087
x_9 = 0.74050
x_{10} = 0.74024
x_{11} = 0.74004
x_{12} = 0.73990
x_{13} = 0.73978
x_{14} = 0.73969
```

Note that $|x_{14} - x_{13}| < 10^{-4}$ but x_{14} is far from the solution which is 0.7390...

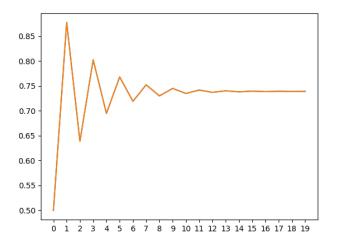
Frame Title

What if we consider the step length 1/k? Then

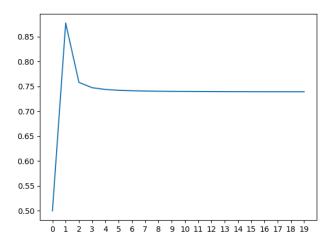
$x_1 = 0.50000$	$x_{115} = 0.739100605$
$x_2 = 0.87758$	$x_{116} = 0.739100379$
$x_3 = 0.75830$	$x_{117} = 0.739100159$
$x_4 = 0.74753$	$x_{118} = 0.739099944$
$x_5 = 0.74399$	$x_{119} = 0.739099734$
$x_6 = 0.74235$	$x_{120} = 0.739099529$
$x_7 = 0.74144$	$x_{121} = 0.739099328$
$x_8 = 0.74087$	$x_{122} = 0.739099132$
$x_9 = 0.74050$	$x_{123} = 0.739098940$
$x_{10} = 0.74024$	$x_{124} = 0.739098752$
$x_{11} = 0.74004$	$x_{125} = 0.739098568$
$x_{12} = 0.73990$	$x_{126} = 0.739098388$
$x_{13} = 0.73978$	$x_{127} = 0.739098212$
$x_{14} = 0.73969$	$x_{128} = 0.739098040$

• • •

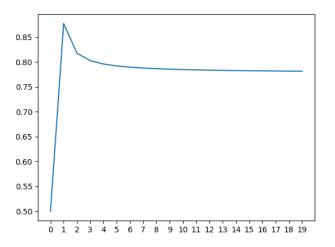
Gradient descent with the step length = 1.0:



Gradient descent with the step length = 1/k:

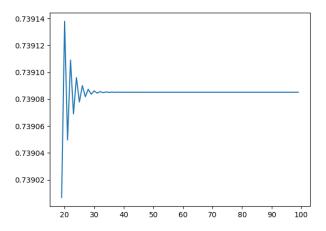


Gradient descent with the step length = $1/k^2$:

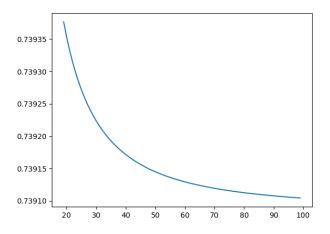


It does not seem to converge to the same number as the previous step lengths.

Gradient descent with the step length = 1.0:



Gradient descent with the step length = 1/k:



- ► The objective must be differentiable, however:
 - ► Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
 - There are methods for differentiable approximation of non-differentiable functions.

- ► The objective must be differentiable, however:
 - Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
 - ► There are methods for differentiable approximation of non-differentiable functions.
- ► GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.

- ► The objective must be differentiable, however:
 - ► Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
 - ► There are methods for differentiable approximation of non-differentiable functions.
- ► GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- ► GD is quite sensitive to the step length.
 Might be very slow or too fast (even overshoot and diverge).

- ► The objective must be differentiable, however:
 - Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
 - There are methods for differentiable approximation of non-differentiable functions.
- ▶ GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- ► GD is quite sensitive to the step length.
 Might be very slow or too fast (even overshoot and diverge).
- For convex functions, the algorithm converges to the global minimum (if it converges).

- ► The objective must be differentiable, however:
 - ► Can be extended to functions with few non-linearities by considering differentiable parts or sub-gradients.
 - There are methods for differentiable approximation of non-differentiable functions.
- ► GD is sensitive to the initial point: Converges to a local minimum for a small step length (typically) to the closest one.
- ▶ GD is quite sensitive to the step length.
 Might be very slow or too fast (even overshoot and diverge).
- For convex functions, the algorithm converges to the global minimum (if it converges).
- Straightforward to implement if the derivatives are available.

GD is much more interesting in multiple variables, forming the basis for neural network learning (see later).

Better algorithm for unimodal functions using just derivatives?

Newton's Method

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable $x \in \mathbb{R}$

Find x^* such that

$$f(x^*) \le \min_{x \in \mathbb{R}} f(x)$$

Newton's Method

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable $x \in \mathbb{R}$

Find x^* such that

$$f(x^*) \le \min_{x \in \mathbb{R}} f(x)$$

Assume that

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$
 for $x \in \mathbb{R}$

is continuous on \mathbb{R} .

Denote by \mathcal{C}^2 the set of all twice continuously differentiable functions.

Taylor Series Approximation

We would need the o-notation: Given functions $f,g:\mathbb{R}\to\mathbb{R}$ we write f=o(g) if

$$\lim_{x\to 0}|f(x)|/|g(x)|=0$$

Taylor Series Approximation

We would need the o-notation: Given functions $f,g:\mathbb{R}\to\mathbb{R}$ we write f=o(g) if

$$\lim_{x\to 0}|f(x)|/|g(x)|=0$$

Assume that $f \in \mathcal{C}^2$, i.e., that f'' exists and is continuous, and let us fix $x_0 \in \mathbb{R}$. Then for all $x \in \mathbb{R}$ we have that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o(|x - x_0|^2)$$

Taylor Series Approximation

We would need the o-notation: Given functions $f,g:\mathbb{R}\to\mathbb{R}$ we write f=o(g) if

$$\lim_{x\to 0}|f(x)|/|g(x)|=0$$

Assume that $f \in \mathcal{C}^2$, i.e., that f'' exists and is continuous, and let us fix $x_0 \in \mathbb{R}$. Then for all $x \in \mathbb{R}$ we have that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o(|x - x_0|^2)$$

Thus, such f can be reasonably approximated around x_0 with a quadratic function

$$f(x) \approx q(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

Newton's Method Idea

The method computes successive approximations $x_0, x_1, \dots, x_k, \dots$ as the GD.

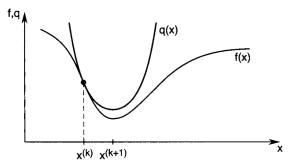
Newton's Method Idea

The method computes successive approximations $x_0, x_1, \ldots, x_k, \ldots$ as the GD.

To compute x_{k+1} , a quadratic approximation

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

is considered around x_k .



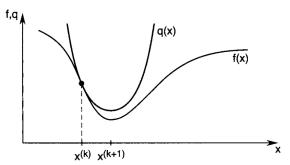
Newton's Method Idea

The method computes successive approximations $x_0, x_1, \dots, x_k, \dots$ as the GD.

To compute x_{k+1} , a quadratic approximation

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

is considered around x_k .



Then x_{k+1} is set to the extreme point of q(x) (i.e., $q'(x_{k+1}) = 0$).

Now note that for

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

Now note that for

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

we have

$$q'(x) = f'(x_k) + f''(x_k)(x - x_k)$$

Now note that for

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

we have

$$q'(x) = f'(x_k) + f''(x_k)(x - x_k)$$

and thus

$$q'(x) = 0 \text{ iff } x = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Now note that for

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

we have

$$q'(x) = f'(x_k) + f''(x_k)(x - x_k)$$

and thus

$$q'(x) = 0 \text{ iff } x = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Newton's method then sets

$$x_{k+1} := x_k - \frac{f'(x_k)}{f''(x_k)}$$

```
Given: A function f with derivative f' and second derivative f'', and an initial guess x_0
Goal: Find a solution to f'(x) = 0
repeat
Calculate the derivative: y' \leftarrow f'(x_k)
Calculate the second derivative : y'' \leftarrow f''(x_k)
Update the estimate: x_{k+1} \leftarrow x_k - \frac{y'}{y''}
Increment k
until a sufficiently accurate value is found
```

Consider the following objective function f

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $|x_{k+1}-x_k|<\epsilon$.

64

Consider the following objective function *f*

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $|x_{k+1}-x_k|<\epsilon$.

We compute

$$f'(x) = x - \cos x$$
, $f''(x) = 1 + \sin x$.

Consider the following objective function *f*

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0=0.5$, and that the required accuracy is $\epsilon=10^{-5}$, i.e., we stop when $|x_{k+1}-x_k|<\epsilon$.

We compute

$$f'(x) = x - \cos x$$
, $f''(x) = 1 + \sin x$.

Hence,

$$x_1 = 0.5 - \frac{0.5 - \cos 0.5}{1 + \sin 0.5}$$
$$= 0.5 - \frac{-0.3775}{1.479}$$
$$= 0.7552$$

Proceeding similarly, we obtain

$$x_{2} = x_{1} - \frac{f'(x_{1})}{f''(x_{1})} = x_{1} - \frac{0.02710}{1.685} = 0.7391$$

$$x_{3} = x_{2} - \frac{f'(x_{2})}{f''(x_{2})} = x_{2} - \frac{9.461 \times 10^{-5}}{1.673} = 0.7390851339$$

$$x_{4} = x_{3} - \frac{f'(x_{3})}{f''(x_{3})} = x_{3} - \frac{1.17 \times 10^{-9}}{1.673} = 0.7390851332$$
...

65

Proceeding similarly, we obtain

$$x_{2} = x_{1} - \frac{f'(x_{1})}{f''(x_{1})} = x_{1} - \frac{0.02710}{1.685} = 0.7391$$

$$x_{3} = x_{2} - \frac{f'(x_{2})}{f''(x_{2})} = x_{2} - \frac{9.461 \times 10^{-5}}{1.673} = 0.7390851339$$

$$x_{4} = x_{3} - \frac{f'(x_{3})}{f''(x_{3})} = x_{3} - \frac{1.17 \times 10^{-9}}{1.673} = 0.7390851332$$
...

Note that

$$|x_4 - x_3| < \epsilon = 10^{-5}$$

 $f'(x_4) = -8.6 \times 10^{-6} \approx 0$
 $f''(x_4) = 1.673 > 0$

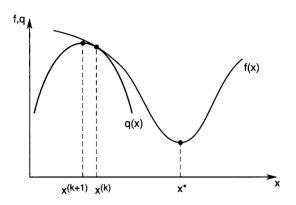
So, we conclude that $x^* \approx x_4$ is a strict minimizer.

However, remember that the above does not have to be true!

Convergence

Newton's method works well if f''(x) > 0 everywhere.

However, if f''(x) < 0 for some x, Newton's method may fail to converge to a minimizer (converges to a point x where f'(x) = 0):



If the method converges to a minimizer, it does so *quadratically*. What does this mean?

Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each step is proportionally reduced by a constant factor:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|} = r, \quad 0 < r < 1$$

Types of Convergence Rates

Linear Convergence

An algorithm is said to have linear convergence if the error at each step is proportionally reduced by a constant factor:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|} = r, \quad 0 < r < 1$$

Superlinear Convergence

Convergence is superlinear if:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|} = 0$$

This often requires an algorithm to utilize second-order information.

Quadratic Convergence of Newton's Method

Quadratic Convergence

Quadratic convergence is achieved when the number of accurate digits roughly doubles with each iteration:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = C, \quad C > 0$$

Quadratic Convergence of Newton's Method

Quadratic Convergence

Quadratic convergence is achieved when the number of accurate digits roughly doubles with each iteration:

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = C, \quad C > 0$$

Newton's method is a classic example of an algorithm with quadratic convergence.

Theorem 2 (Quadratic Convergence of Newton's Method)

Let $f: \mathbb{R} \to \mathbb{R}$ satisfy $f \in \mathcal{C}^2$ and suppose x^* is a minimizer of f such that $f''(x^*) > 0$. Assume Lipschitz continuity of f''. If the initial guess x_0 is sufficiently close to x^* , then the sequence $\{x_k\}$ computed by the Newton's method converges quadratically to x^* .

Newton's Method of Tangents

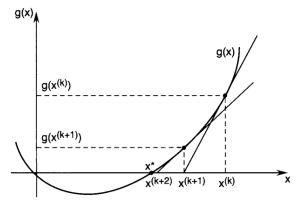
Newton's method is also a technique for finding roots of functions. In our case, this means finding a root of f'.

Newton's Method of Tangents

Newton's method is also a technique for finding roots of functions. In our case, this means finding a root of f'.

Denote g = f'. Then Newton's approximation goes like this:

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$$



Secant Method

What if f'' is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?

Secant Method

What if f'' is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?

Assume $f \in \mathcal{C}^1$ and try to approximate f'' around x_k with

$$f''(x) \approx \frac{f'(x) - f'(x_{k-1})}{x - x_{k-1}} \quad \Rightarrow \quad \frac{1}{f''(x_k)} \approx \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}$$

Secant Method

What if f'' is unavailable, but we want to use something like Newton's method (with its superlinear convergence)?

Assume $f \in \mathcal{C}^1$ and try to approximate f'' around x_k with

$$f''(x) \approx \frac{f'(x) - f'(x_{k-1})}{x - x_{k-1}} \quad \Rightarrow \quad \frac{1}{f''(x_k)} \approx \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})}$$

Then, we may try to use Newton's step with this approximation:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f'(x_k) - f'(x_{k-1})} \cdot f'(x_k)$$

Is the rate of convergence superlinear?

Consider the following objective function f

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0 = 0.5$ and $x_1 = 1.0$.

Now, we need to initialize the first two values.

Consider the following objective function *f*

$$f(x) = \frac{1}{2}x^2 - \sin x$$

Assume $x_0 = 0.5$ and $x_1 = 1.0$.

Now, we need to initialize the first two values.

We have $f'(x) = x - \cos x$

Hence,

$$x_2 = 1.0 - \frac{1.0 - 0.5}{(1.0 - \cos 1.0) - (0.5 - \cos 0.5)}(0.5 - \cos 0.5)$$
$$= 0.7254$$

71

Continuing, we obtain:

$$x_0 = 0.5$$

 $x_1 = 1.0$
 $x_2 = 0.72548$
 $x_3 = 0.73839$
 $x_4 = 0.739087$
 $x_5 = 0.739085132$
 $x_6 = 0.739085133$

Start the secant method with the approximation given by Newton's method:

$$x_0 = 0.5$$

 $x_1 = 0.7552$
 $x_2 = 0.7381$
 $x_3 = 0.739081$
 $x_5 = 0.7390851339$
 $x_6 = 0.7390851332$

Compare with Newton's method:

$$x_0 = 0.5$$

 $x_1 = 0.7552$
 $x_2 = 0.7391$
 $x_3 = 0.7390851339$
 $x_4 = 0.73908513321516067229$
 $x_5 = 0.73908513321516067229$

73

Superlinear Convergence of Secant Method

Theorem 3 (Superlinear Convergence of Secant Method)

Assume $f: \mathbb{R} \to \mathbb{R}$ twice continuously differentiable and x^* a minimizer of f. Assume f'' Lipschitz continuous and $f''(x_0) > 0$. The sequence $\{x_k\}$ generated by the Secant method converges to x^* superlinearly if x_0 and x_1 are sufficiently close to x^* .

The rate of convergence p of the Secant method is given by the positive root of the equation $p^2-p-1=0$, which is $p=\frac{1+\sqrt{5}}{2}\approx 1.618$ (the golden ratio). Formally,

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^{\frac{1 + \sqrt{5}}{2}}} = C, \quad C > 0$$

Secant Method for Root Finding

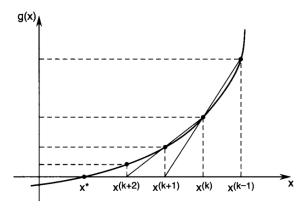
As for Newton's method of tangents, the secant method can be seen as a method for finding a root of f'.

Secant Method for Root Finding

As for Newton's method of tangents, the secant method can be seen as a method for finding a root of f'.

Denote g = f'. Then the secant method approximation is

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{g(x_k) - g(x_{k-1})} \cdot g(x_k)$$



General Form

Note that all methods have similar update formula:

$$x_{k+1} = x_k - \frac{f'(x_k)}{a_k}$$

Different choice of a_k produce different algorithm:

- $ightharpoonup a_k = 1$ gives the gradient descent,
- $ightharpoonup a_k = f''(x_k)$ gives Newton's method,
- $ightharpoonup a_k = (f'(x_k) f'(x_{k-1}))/(x_k x_{k-1})$ gives the secant method,
- $ightharpoonup a_k = f''(x_m)$ where $m = \lfloor k/p \rfloor p$ gives Shamanskii method.

Summary

- Newton's method
 - Converges to an extremum under C^2 assumption (quadratic convergence)
 - ► The choice of the initial point is critical; the method may diverge to a stationary point, which is not a minimizer. The method may also cycle.
 - ▶ If the second derivative is very small, close to the minimizer, the method can be very slow (the quadratic convergence is guaranteed only if the second derivative is non-zero at the minimizer and the constants depend on the second derivative).

Summary

Newton's method

- ▶ Converges to an extremum under C^2 assumption (quadratic convergence)
- ► The choice of the initial point is critical; the method may diverge to a stationary point, which is not a minimizer. The method may also cycle.
- ▶ If the second derivative is very small, close to the minimizer, the method can be very slow (the quadratic convergence is guaranteed only if the second derivative is non-zero at the minimizer and the constants depend on the second derivative).

Secant method

- The second derivative is not needed.
- Superlinear (but not quadratic) convergence for an initial point close to a minimum.

Constrained Single Variable Optimization Problem

An objective function $f : \mathbb{R} \to \mathbb{R}$

A variable x

A constraint

$$a_0 \le x \le b_0$$

Consider the following cases:

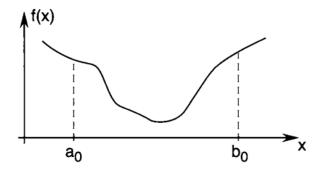
- ightharpoonup f unimodal on $[a_0, b_0]$
- ightharpoonup f continuously differentiable on $[a_0, b_0]$
- f twice continuously differentiable on $[a_0, b_0]$

Unimodal Function Minimization

We assume only unimodality on $[a_0, b_0]$ where the single extremum is a minimum.

More precisely, we assume that there is x^* such that

- ightharpoonup f(x') > f(x'') for all $x', x'' \in [a_0, x^*]$ satisfying x' < x''
- f(x') < f(x'') for all $x', x'' \in [x^*, b_0]$ satisfying x' < x''

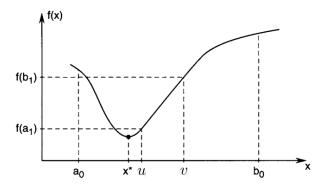


Assume that even a single evaluation of f is costly.

Minimize the number of evaluations searching for the minimum.

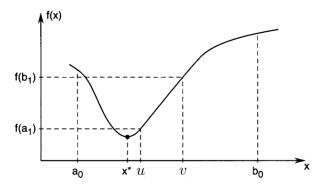
Simple Algorithm

Select u, v such that $a_0 < u < v < b_0$.



Simple Algorithm

Select u, v such that $a_0 < u < v < b_0$.



Observe that

- ▶ If f(u) < f(v), then the minimizer must lie in $[a_0, v]$.
- ▶ If $f(u) \ge f(v)$, then the minimizer must lie in $[u, b_0]$.

Continue the search in the resulting interval.

The Algorithm

An abstract search algorithm:

end if

9: end for

8:

```
1: Initialize a_0 < b_0

2: for k = 0 to K - 1 do

3: Choose u_k, v_k such that a_k < u_k < v_k < b_k

4: if f(u_k) < f(v_k) then

5: a_{k+1} \leftarrow a_k and b_{k+1} \leftarrow v_k

6: else

7: a_{k+1} \leftarrow u_k and b_{k+1} \leftarrow b_k
```

81

The Algorithm

An abstract search algorithm:

- 1: Initialize $a_0 < b_0$ 2: **for** k = 0 **to** K - 1 **do** 3: Choose u_k, v_k such that $a_k < u_k < v_k < b_k$ 4: **if** $f(u_k) < f(v_k)$ **then** 5: $a_{k+1} \leftarrow a_k$ and $b_{k+1} \leftarrow v_k$ 6: **else** 7: $a_{k+1} \leftarrow u_k$ and $b_{k+1} \leftarrow b_k$ 8: **end if**
- The algorithm produces a sequence of intervals:

$$[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\cdots\supset [a_K,b_K]$$

where $[a_K, b_K]$ contains the minimizer of f.

The algorithm evaluates f twice in every iteration.

Is it necessary?

9: end for

Choose u_k , v_k symmetrically in the following sense:

$$u_k - a_k = b_k - v_k = \varrho(b_k - a_k)$$

for some $\varrho \in (0,1)$.

Choose u_k , v_k symmetrically in the following sense:

$$u_k - a_k = b_k - v_k = \varrho(b_k - a_k)$$

for some $\varrho \in (0,1)$. The algorithm will then look as follows:

1: Initialize $a_0 < b_0$ 2: **for** k = 0 **to** K - 1 **do** 3: $u_k \leftarrow a_k + \rho(b_k - a_k)$ 4: $v_k \leftarrow b_k - \rho(b_k - a_k)$ 5: **if** $f(u_k) < f(v_k)$ **then** 6: $a_{k+1} \leftarrow a_k$ and $b_{k+1} \leftarrow v_k$ 7: **else** 8: $a_{k+1} \leftarrow u_k$ and $b_{k+1} \leftarrow b_k$ 9: **end if** 10: **end for**

Assume $a_0 = 0$ and $b_0 = 1$.

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

We are computing u_1 , v_1 and need to get $f(u_1)$ and $f(v_1)$.

Note that we have already computed $f(u_0)$. So let us set ϱ so that v_1 coincides with u_0 .

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

We are computing u_1 , v_1 and need to get $f(u_1)$ and $f(v_1)$.

Note that we have already computed $f(u_0)$. So let us set ϱ so that v_1 coincides with u_0 .

As
$$v_1 = b_1 - \rho(b_1 - a_1) = b_1 - \rho(b_1 - a_0)$$
,

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

We are computing u_1 , v_1 and need to get $f(u_1)$ and $f(v_1)$.

Note that we have already computed $f(u_0)$. So let us set ϱ so that v_1 coincides with u_0 .

As $v_1 = b_1 - \rho(b_1 - a_1) = b_1 - \rho(b_1 - a_0)$, demanding $v_1 = u_0$ implies

$$u_0 = b_1 - \rho(b_1 - a_0)$$
 \Rightarrow $\varrho(b_1 - a_0) = b_1 - u_0$

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

We are computing u_1 , v_1 and need to get $f(u_1)$ and $f(v_1)$.

Note that we have already computed $f(u_0)$. So let us set ϱ so that v_1 coincides with u_0 .

As $v_1 = b_1 - \rho(b_1 - a_1) = b_1 - \rho(b_1 - a_0)$, demanding $v_1 = u_0$ implies

$$u_0 = b_1 - \rho(b_1 - a_0)$$
 \Rightarrow $\varrho(b_1 - a_0) = b_1 - u_0$

Since $b_1-a_0=1-\varrho$ and $b_1-u_0=1-2\varrho$ we have

$$\varrho(1-\varrho)=1-2\varrho \quad \Leftrightarrow \quad \varrho^2-3\varrho+1=0$$

Assume $a_0 = 0$ and $b_0 = 1$.

Suppose that we have just computed a_1 and b_1 and that, e.g., the minimizer lies in $[a_0, v_0]$, i.e., $a_1 = a_0$, $b_1 = v_0$, and $u_0 \in [a_0, b_1]$.

We are computing u_1 , v_1 and need to get $f(u_1)$ and $f(v_1)$.

Note that we have already computed $f(u_0)$. So let us set ϱ so that v_1 coincides with u_0 .

As $v_1 = b_1 - \rho(b_1 - a_1) = b_1 - \rho(b_1 - a_0)$, demanding $v_1 = u_0$ implies

$$u_0 = b_1 - \rho(b_1 - a_0)$$
 \Rightarrow $\varrho(b_1 - a_0) = b_1 - u_0$

Since $b_1-a_0=1-arrho$ and $b_1-u_0=1-2arrho$ we have

$$\varrho(1-\varrho)=1-2\varrho \quad \Leftrightarrow \quad \varrho^2-3\varrho+1=0$$

Solving to $\rho_1=\frac{3+\sqrt{5}}{2},\quad \rho_2=\frac{3-\sqrt{5}}{2}$, we consider $\varrho=\frac{3-\sqrt{5}}{2}$

Golden Section Search

Choosing $u_k = a_k + \rho(b_k - a_k)$ and $v_k = b_k - \rho(b_k - a_k)$ allows us to reuse one of the values of $f(u_{k-1})$ and $f(v_{k-1})$.

```
1: Initialize a_0 < b_0
 2: for k = 0 to K - 1 do
      u_k \leftarrow a_k + \rho(b_k - a_k)
 3:
 4: v_k \leftarrow b_k - \rho(b_k - a_k)
 5: if u_k = v_{k-1} then
           fu_k \leftarrow fv_{k-1} and fu_k \leftarrow f(v_k)
 7:
        else
           fu_k \leftarrow f(u_k) and set fv_k = fu_{k-1}
 8:
        end if
 9:
10: if fu_k < fv_k then
           a_{k+1} \leftarrow a_k and b_{k+1} \leftarrow v_k
11:
12:
        else
           a_{k+1} \leftarrow u_k and b_{k+1} \leftarrow b_k
13:
        end if
14:
15: end for
```

Golden Section Search

Note that

$$\rho = \frac{3 - \sqrt{5}}{2} \approx 0.61803$$

and thus

$$b_k - a_k \approx 0.61803 \cdot (b_{k-1} - a_{k-1})$$

which for $a_0 = 0$ and $b_0 = 1$ means

$$b_k - a_k = (1 - \varrho)^k \approx (0.61803)^k$$

Consider f defined by

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

on the interval [0,2].

Consider f defined by

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

on the interval [0,2].

By definition, $a_0 = 0$ and $b_0 = 2$.

$$u_0 = a_0 + \rho (b_0 - a_0) = 0.7639$$

 $v_0 = a_0 + (1 - \rho) (b_0 - a_0) = 1.236$

Here
$$\rho = (3 - \sqrt{5})/2$$
.

Consider *f* defined by

$$f(x) = x^4 - 14x^3 + 60x^2 - 70x$$

on the interval [0, 2].

By definition, $a_0 = 0$ and $b_0 = 2$.

$$u_0 = a_0 + \rho (b_0 - a_0) = 0.7639$$

 $v_0 = a_0 + (1 - \rho) (b_0 - a_0) = 1.236$

Here
$$\rho = (3 - \sqrt{5})/2$$
.

In the first step, we have to compute both fu_0 and fv_0 :

$$fu_0 = f(u_0) = -24.36$$

 $fv_0 = f(v_0) = -18.96$

$$fu_0 < fv_0$$
 and thus $a_1 = a_0 = 0$ and $b_1 = v_0 = 1.236$.

We have $a_1 = a_0 = 0$ and $b_1 = v_0 = 1.236$.

We have $a_1 = a_0 = 0$ and $b_1 = v_0 = 1.236$.

Now compute u_1 and v_1 as follows

$$u_1 = a_1 + \rho (b_1 - a_1) = 0.4721$$

 $v_1 = a_1 + (1 - \rho) (b_1 - a_1) = 0.7639$

Note that v_1 coincides with u_0 as expected.

We have $a_1 = a_0 = 0$ and $b_1 = v_0 = 1.236$.

Now compute u_1 and v_1 as follows

$$u_1 = a_1 + \rho (b_1 - a_1) = 0.4721$$

 $v_1 = a_1 + (1 - \rho) (b_1 - a_1) = 0.7639$

Note that v_1 coincides with u_0 as expected.

So we only have to compute

$$fu_1 = f(u_1) = -21.1$$

and put $fv_1 = fu_0$.

As $fv_1 < fu_1$ we obtain $a_2 = 0.4721$ and $b_2 = 1.236$.

... and so on.

Summary of Golden Search

A method for solving constrained problems where the objective is unimodal.

Straightforward method with guaranteed convergence, which in every step evaluates the objective only once.

The implementation in Scipy:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.golden.html

Constrained Gradient Descent and Newton's Method

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable x

A constraints

$$a_0 \le x \le b_0$$

(find your c functions and the constraints)

Constrained Gradient Descent and Newton's Method

An objective function $f: \mathbb{R} \to \mathbb{R}$

A variable x

A constraints

$$a_0 \le x \le b_0$$

(find your c functions and the constraints)

Consider the following cases:

- ightharpoonup f unimodal on $[a_0, b_0]$
- ightharpoonup f continuously differentiable on $[a_0, b_0]$
- f twice continuously differentiable on $[a_0, b_0]$

Homework: Modify the gradient descent and Newton's method to work on the bounded interval (the above definitions guarantee continuous differentiability at a_0 and b_0).

Unconstrained Optimization Overview

How to Recognize (Local) Minimum

How do we verify that $x^* \in \mathbb{R}^n$ is a minimizer of f?

Technically, we should examine *all* points in the immediate vicinity if one has a smaller value (impractical).

Assuming the smoothness of f, we may benefit from the "stable" behavior of f around x^* .

Derivatives and Gradients

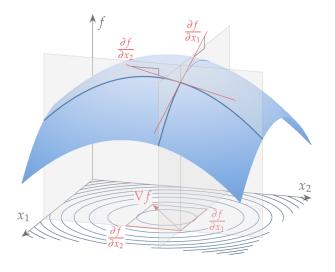
The gradient of $f: \mathbb{R}^n \to \mathbb{R}$, denoted by $\nabla f(x)$, is a column vector of first-order partial derivatives of the function concerning each variable:

$$\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]^{\top},$$

Where each partial derivative is defined as the following limit:

$$\frac{\partial f}{\partial \mathbf{x_i}} = \lim_{\varepsilon \to 0} \frac{f\left(\mathbf{x_1}, \dots, \mathbf{x_i} + \varepsilon, \dots, \mathbf{x_n}\right) - f\left(\mathbf{x_1}, \dots, \mathbf{x_i}, \dots, \mathbf{x_n}\right)}{\varepsilon}$$

Gradient



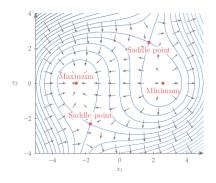
The gradient is a vector pointing in the direction of the most significant function increase from the current point.

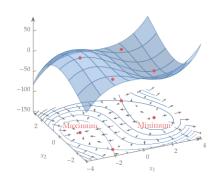
Gradient

Consider the following function of two variables:

$$f(x_1, x_2) = x_1^3 + 2x_1x_2^2 - x_2^3 - 20x_1.$$

$$\nabla f(x_1, x_2) = \begin{bmatrix} 3x_1^2 + 2x_2^2 - 20 \\ 4x_1x_2 - 3x_2^2 \end{bmatrix}$$



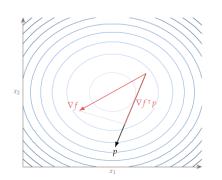


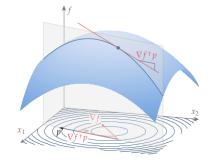
Directional Derivatives vs Gradient

The rate of change in a direction p is quantified by a directional derivative, defined as

$$\nabla_{p} f(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon p) - f(x)}{\varepsilon}$$

We can find this derivative by projecting the gradient onto the desired direction p using the dot product $\nabla_p f(x) = (\nabla f(x))^\top p$





(Here, we assume continuous partial derivatives.)

Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$\nabla_p f(x) = (\nabla f(x))^{\top} p = ||\nabla f|| \, ||p|| \cos \theta$$

Here θ is the angle between ∇f and p.

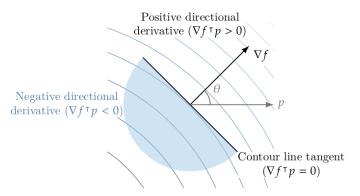
Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$\nabla_p f(x) = (\nabla f(x))^{\top} p = ||\nabla f|| \, ||p|| \cos \theta$$

Here θ is the angle between ∇f and p.

The directional derivative is maximized by $\theta = 0$, i.e. when ∇f and p point in the same direction.



Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$\nabla^{2} f(x) = H(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^n$ and gives a $n \times n$ -matrix of second derivatives of f.

Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$\nabla^{2} f(x) = H(x) = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^n$ and gives a $n \times n$ -matrix of second derivatives of f.

We have

$$H_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

If f has continuous second partial derivatives, then H is symmetric, i.e., $H_{ii} = H_{ii}$.

Let
$$g(t) = f(x + tp)$$
 and let $h_i(t) = \frac{\partial f}{\partial x_i}(x + tp)$.

Let
$$g(t) = f(x + tp)$$
 and let $h_i(t) = \frac{\partial f}{\partial x_i}(x + tp)$.

$$g'(t) = f(x + tp)' = [\nabla f(x + tp)]^{\top} p = \sum_{i=1}^{n} h_i(t) p_i$$

Let
$$g(t) = f(x + tp)$$
 and let $h_i(t) = \frac{\partial f}{\partial x_i}(x + tp)$.

$$g'(t) = f(x + tp)' = [\nabla f(x + tp)]^{\top} p = \sum_{i=1}^{n} h_i(t) p_i$$

$$h'_{i}(t) = \left[\nabla \frac{\partial f}{\partial x_{i}}(x+tp)\right]^{\top} p = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x_{i}\partial x_{j}}(x+tp)\right) p_{j}$$
$$= H(x+tp)p$$

Let
$$g(t) = f(x + tp)$$
 and let $h_i(t) = \frac{\partial f}{\partial x_i}(x + tp)$.

$$g'(t) = f(x + tp)' = [\nabla f(x + tp)]^{\top} p = \sum_{i=1}^{n} h_i(t) p_i$$

$$h_i'(t) = \left[\nabla \frac{\partial f}{\partial x_i}(x+tp)\right]^{\top} p = \sum_{j=1}^n \left(\frac{\partial f}{\partial x_i \partial x_j}(x+tp)\right) p_j$$
$$= H(x+tp)p$$

$$g''(t) = \sum_{i=1}^{n} h'_i(t)p_i = \sum_{i=1}^{n} (H(x+tp)p)p_i = p^{\top}H(x+tp)p$$

Let g(t) = f(x + tp) and let $h_i(t) = \frac{\partial f}{\partial x_i}(x + tp)$.

What exactly are g'(0) and g''(0)?

$$g'(t) = f(x + tp)' = [\nabla f(x + tp)]^{\top} p = \sum_{i=1}^{n} h_i(t) p_i$$

$$h'_{i}(t) = \left[\nabla \frac{\partial f}{\partial x_{i}}(x+tp)\right]^{\top} p = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x_{i}\partial x_{j}}(x+tp)\right) p_{j}$$
$$= H(x+tp)p$$

$$g''(t) = \sum_{i=1}^{n} h'_i(t)p_i = \sum_{i=1}^{n} (H(x+tp)p)p_i = p^{\top}H(x+tp)p$$

Thus,

$$g''(0) = p^{\top} H(x) p$$

Principal Curvature Directions

Fix x and consider H = H(x). Consider eigenvectors \hat{v}_k of H:

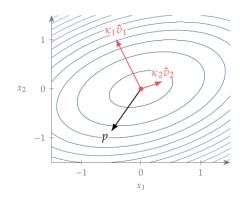
$$H\hat{\mathbf{v}}_k = \kappa_k \hat{\mathbf{v}}_k$$

For symmetric H, the eigenvectors form an orthogonal basis, and there is a rotation matrix R such that

$$H = R^{-1}DR = R^{\top}DR$$

Here D is diagonal with $\kappa_1, \ldots, \kappa_n$ on the diagonal.

If $\kappa_1 \geq \cdots \geq \kappa_n$, the direction of \hat{v}_1 is the maximum curvature direction of f at x.



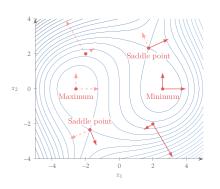
Hessian Visualization Example

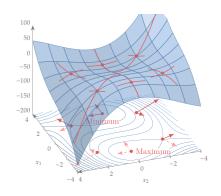
Consider

$$f(x_1, x_2) = x_1^3 + 2x_1x_2^2 - x_2^3 - 20x_1.$$

And it's Hessian.

$$H(x_1, x_2) = \begin{bmatrix} 6x_1 & 4x_2 \\ 4x_2 & 4x_1 - 6x_2 \end{bmatrix}.$$





Taylor's Theorem

Theorem 4 (Taylor)

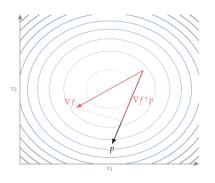
Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^n$. Then, we have

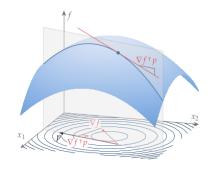
$$f(x + p) = f(x) + \nabla f(x)^{T} p + \frac{1}{2} p^{T} \nabla^{2} f(x) p + o(||p||^{2})$$

First-Order Necessary Conditions

Theorem 5

If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$.





Note that $\nabla f(x^*) = 0$ does not tell us whether x^* is a minimizer, maximizer, or a saddle point.

Note that $\nabla f(x^*) = 0$ does not tell us whether x^* is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^* might tell us what x^* is, right?

Note that $\nabla f(x^*) = 0$ does not tell us whether x^* is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^* might tell us what x^* is, right?

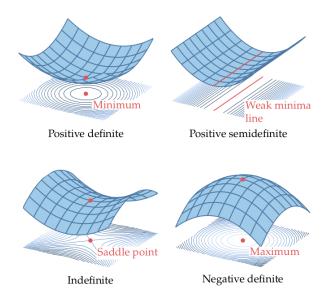
Note that $\nabla f(x^*) = 0$ does not tell us whether x^* is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^* might tell us what x^* is, right?

All comes down to the *definiteness* of $H := H(x^*)$.

- ► *H* is positive definite if $p^{\top}Hp > 0$ for all *p* iff all eigenvalues of *H* are positive
- ► *H* is positive semi-definite if $p^{\top}Hp \ge 0$ for all *p* iff all eigenvalues of *H* are nonnegative
- ▶ *H* is negative semi-definite if $p^T H p \le 0$ for all *p* iff all eigenvalues of *H* are nonpositive
- ► H is negative definite if $p^{\top}Hp < 0$ for all p iff all eigenvalues of H are negative
- → H is indefinite if it is not definite in the above sense
 iff H has at least one positive and one negative eigenvalue.

Definiteness



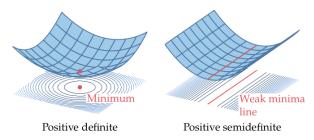
Second-Order Necessary Condition

Theorem 6 (Second-Order Necessary Conditions)

If x^* is a local minimizer of f and $\nabla^2 f$ is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

Theorem 7 (Second-Order Sufficient Conditions)

Suppose that $\nabla^2 f$ is continuous in an open neighborhood of x^* and that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite. Then x^* is a strict local minimizer of f.



Consider the following function of two variables:

$$f(x_1, x_2) = 0.5x_1^4 + 2x_1^3 + 1.5x_1^2 + x_2^2 - 2x_1x_2.$$

Consider the gradient equal to zero:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1^3 + 6x_1^2 + 3x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

From the second equation, we have that $x_2 = x_1$. Substituting this into the first equation yields

$$x_1\left(2x_1^2+6x_1+1\right)=0.$$

The solution of this equation yields three points:

$$x_A = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad x_B = \begin{bmatrix} -\frac{3}{2} - \frac{\sqrt{7}}{2} \\ -\frac{3}{2} - \frac{\sqrt{7}}{2} \end{bmatrix}, \quad x_C = \begin{bmatrix} \frac{\sqrt{7}}{2} - \frac{3}{2} \\ \frac{\sqrt{7}}{2} - \frac{3}{2} \end{bmatrix}.$$

Consider the following function of two variables:

$$f(x_1, x_2) = 0.5x_1^4 + 2x_1^3 + 1.5x_1^2 + x_2^2 - 2x_1x_2.$$

To classify x_A, x_B, x_C , we need to compute the Hessian matrix:

$$H(x_1,x_2) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 6x_1^2 + 12x_1 + 3 & -2 \\ -2 & 2 \end{bmatrix}.$$

Consider the following function of two variables:

$$f(x_1, x_2) = 0.5x_1^4 + 2x_1^3 + 1.5x_1^2 + x_2^2 - 2x_1x_2.$$

To classify x_A, x_B, x_C , we need to compute the Hessian matrix:

$$H(x_1,x_2) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 6x_1^2 + 12x_1 + 3 & -2 \\ -2 & 2 \end{bmatrix}.$$

The Hessian, at the first point, is

$$H(x_A) = \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix},$$

whose eigenvalues are $\kappa_1 \approx 0.438$ and $\kappa_2 \approx 4.561$. Because both eigenvalues are positive, this point is a local minimum.

Consider the following function of two variables:

$$f(x_1, x_2) = 0.5x_1^4 + 2x_1^3 + 1.5x_1^2 + x_2^2 - 2x_1x_2.$$

To classify x_A, x_B, x_C , we need to compute the Hessian matrix:

$$H(x_1,x_2) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 6x_1^2 + 12x_1 + 3 & -2 \\ -2 & 2 \end{bmatrix}.$$

For the second point,

$$H(x_B) = \begin{bmatrix} 3(3+\sqrt{7}) & -2 \\ -2 & 2 \end{bmatrix}.$$

The eigenvalues are $\kappa_1 \approx 1.737$ and $\kappa_2 \approx 17.200$, so this point is another local minimum.

Consider the following function of two variables:

$$f(x_1, x_2) = 0.5x_1^4 + 2x_1^3 + 1.5x_1^2 + x_2^2 - 2x_1x_2.$$

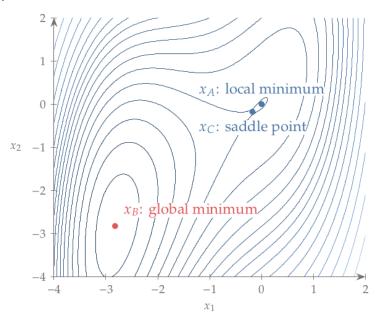
To classify x_A, x_B, x_C , we need to compute the Hessian matrix:

$$H(x_1,x_2) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix} = \begin{bmatrix} 6x_1^2 + 12x_1 + 3 & -2 \\ -2 & 2 \end{bmatrix}.$$

For the third point,

$$H(x_C) = \begin{bmatrix} 9 - 3\sqrt{7} & -2 \\ -2 & 2 \end{bmatrix}.$$

The eigenvalues for this Hessian are $\kappa_1 \approx -0.523$ and $\kappa_2 \approx 3.586$, so this point is a saddle point.



Proofs of Some Theorems Optional

Taylor's Theorem

To prove the theorems characterizing minima/maxima we need the following form of Taylor's theorem:

Theorem 8 (Taylor)

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^n$. Then we have that.

$$f(x+p) = f(x) + \nabla f(x+tp)^T p,$$

for some $t \in (0,1)$. Moreover, if f is twice continuously differentiable, we have that

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+tp) p,$$

for some $t \in (0,1)$.

Proof of Theorem 5 (Optional)

We prove that if x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$.

Suppose for contradiction that $\nabla f\left(x^{*}\right) \neq 0$. Define the vector $p = -\nabla f\left(x^{*}\right)$ and note that $p^{T}\nabla f\left(x^{*}\right) = -\left\|\nabla f\left(x^{*}\right)\right\|^{2} < 0$. Because ∇f is continuous near x^{*} , there is a scalar T > 0 such that

$$p^T \nabla f(x^* + tp) < 0$$
, for all $t \in [0, T]$

For any $\overline{t} \in (0, T]$, we have by Taylor's theorem that

$$f(x^* + \bar{t}p) = f(x^*) + \bar{t}p^T \nabla f(x^* + tp),$$
 for some $t \in (0, \bar{t}).$

Therefore, $f(x^* + \bar{t}p) < f(x^*)$ for all $\bar{t} \in (0, T]$. We have found a direction leading away from x^* along which f decreases, so x^* is not a local minimizer, and we have a contradiction.

Proof of Theorem 6 (Optional)

We prove that if x^* is a local minimizer of f and $\nabla^2 f$ is continuous in an open neighborhood of x^* , then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

We know that $\nabla f(x^*) = 0$. For contradiction, assume that $\nabla^2 f(x^*)$ is not positive semidefinite.

Then we can choose a vector p such that $p^T \nabla^2 f(x^*) p < 0$.

As $\nabla^2 f$ is continuous near x^* , $p^T \nabla^2 f(x^* + tp) p < 0$ for all $t \in [0, T]$ where T > 0.

By Taylor we have for all $\bar{t} \in (0, T]$ and some $t \in (0, \bar{t})$

$$f(x^* + \bar{t}p) = f(x^*) + \bar{t}p^T \nabla f(x^*) + \frac{1}{2}\bar{t}^2 p^T \nabla^2 f(x^* + tp) p < f(x^*).$$

Thus, x^* is not a local minimizer.

Proof of Theorem 7 (Optional)

We prove the following: Suppose that $\nabla^2 f$ is continuous in an open neighborhood of x^* and that $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite. Then x^* is a strict local minimizer of f.

Because the Hessian is continuous and positive definite at x^* , we can choose a radius r>0 so that $\nabla^2 f(x)$ remains positive definite for all x in the open ball $\mathcal{D}=\{z\mid \|z-x^*\|< r\}$. Taking any nonzero vector p with $\|p\|< r$, we have $x^*+p\in \mathcal{D}$ and so

$$f(x^* + p) = f(x^*) + p^T \nabla f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$$

= $f(x^*) + \frac{1}{2} p^T \nabla^2 f(z) p$,

where $z = x^* + tp$ for some $t \in (0,1)$. Since $z \in \mathcal{D}$, we have $p^T \nabla^2 f(z) p > 0$, and therefore $f(x^* + p) > f(x^*)$, giving the result.