
Linear Programming

1



Linear Optimization Problem

minimize f (x)
by varying x ∈ Rn

subject to gi (x) ≤ 0 i = 1, . . . , ng
hj(x) = 0 j = 1, . . . , nh

We assume that

▶ f is linear, i.e.,

f (x) = c⊤x here c ∈ Rn

▶ each gi is linear,

▶ each hj is linear.

For convenience, in what follows, we also allow constraints of the
form gi (x) ≥ 0.

2



Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.

3



Example

The lines define the boundaries of the feasible region

−2x1 + x2 = 2

−x1 + x2 = 3

x1 = 3

x1 = 0

x2 = 0
3



Standard Form
The standard form linear program

minimize c⊤x
subject to Ax = b

x ≥ 0

Here
▶ x = (x1, . . . , xn)

⊤ ∈ Rn

▶ c = (x1, . . . , cn)
⊤ ∈ Rn

▶ A is an m × n matrix of elements aij where m < n and
rank(A) = m
That is, all rows of A are linearly independent.

▶ b = (b1, . . . , bn)
⊤ ≥ 0

b ≥ 0 means bi ≥ 0 for all i .

Every linear optimization problem can be transformed into a
standard linear program such that there is a one-to-one
correspondence between solutions of the constraints preserving
values of the objective.

4



Standard Form
The standard form linear program

minimize c⊤x
subject to Ax = b

x ≥ 0

Here
▶ x = (x1, . . . , xn)

⊤ ∈ Rn

▶ c = (x1, . . . , cn)
⊤ ∈ Rn

▶ A is an m × n matrix of elements aij where m < n and
rank(A) = m
That is, all rows of A are linearly independent.

▶ b = (b1, . . . , bn)
⊤ ≥ 0

b ≥ 0 means bi ≥ 0 for all i .

Every linear optimization problem can be transformed into a
standard linear program such that there is a one-to-one
correspondence between solutions of the constraints preserving
values of the objective.

4



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0

5



Transformation Example

maximize z = −5x1 − 3x2
subject to 3x1 − 5x2 − 5 ≤ 0

−4x1 − 9x2 + 4 ≤ 0

6



Transformation Example

maximize z = −5x1 − 3x2
subject to 3x1 − 5x2 − 5 ≤ 0

−4x1 − 9x2 + 4 ≤ 0

Introduce the bounded variables:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 − 5 ≤ 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + 4 ≤ 0
x ′1, x

′′
1 , x

′
2, x

′′
2 ≥ 0

6



Transformation Example

maximize z = −5x1 − 3x2
subject to 3x1 − 5x2 − 5 ≤ 0

−4x1 − 9x2 + 4 ≤ 0

Introduce the bounded variables:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 − 5 ≤ 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + 4 ≤ 0
x ′1, x

′′
1 , x

′
2, x

′′
2 ≥ 0

Introduce the slack variables:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 − 5 = 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 + 4 = 0
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

6



Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 − 5 = 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 + 4 = 0
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

6



Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 − 5 = 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 + 4 = 0
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

Move constants to the right:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 = 5

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 = −4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

6



Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 − 5 = 0

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 + 4 = 0
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

Move constants to the right:

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 = 5

−4x ′1 + 4x ′′1 − 9x ′2 + 9x ′′2 + s2 = −4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

Check if all equations are linearly independent.

Multiply the last one with −1:
maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 = 5

4x ′1 − 4x ′′1 + 9x ′2 − 9x ′′2 − s2 = 4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

6



Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x2 + 5x ′′2 + s1 = 5

4x ′1 − 4x ′′1 + 9x ′2 − 9x ′′2 − s2 = 4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

In matrix form:

A =

(
3 −3 −5 5 1 0
4 −4 9 −9 0 −1

)
x = (x1, x2, x3, x4, s1, s2)

⊤

b = (5, 4)⊤

Ax = b where x ≥ 0

c = (−5, 5,−3, 3)⊤

7



Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.

8



Example

In the standard form:

minimize z = −x1 − 2x2
subject to −2x1 + x2 + s1 = 2

−x1 + x2 + s2 = 3
x1 + x5 = 3

x1, x2, s1, s2, x5 ≥ 0

8



Assumptions

Consider a linear programming problem in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

In what follows, we will use the following shorthand: Given two
column vectors x , x ′, we write [x , x ′] to denote the vector resulting
from stacking x on top of x ′.

9



Assumptions

Consider a linear programming problem in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

In what follows, we will use the following shorthand: Given two
column vectors x , x ′, we write [x , x ′] to denote the vector resulting
from stacking x on top of x ′.

9



Solutions

There are (typically) infinitely many solutions to the constraints.

Are there some distinguished ones? How do you find minimizers?

Here, the blue lines are contours of −x1 − x2.

10



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let

▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Now, by appropriately shifting columns of A, we may write:

A = (B N) x = [xB , xN ]

x = [xB , xN ] ∈ Rn is a basic solution w.r.t. the basis B if Ax = b
and xN = 0. Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.

11



−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0

12



−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1



x = (x1, x2, x3, x4, x5)
⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0

12



−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0

12



−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0

12



−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0
12



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b?

13



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b? xB = (x3, x4, x5)

⊤ = (2, 3, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 0, 2, 3, 3)⊤ = xa Feasible!

13



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b?

13



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b? xB = (x2, x3, x5)

⊤ = (3,−1, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 3,−1, 0, 3)⊤ = xf Not feasible!

13



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =

−2 1 1
−1 1 0
1 0 0


What is xB satisfying BxB = b?

13



A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =

−2 1 1
−1 1 0
1 0 0


What is xB satisfying BxB = b? xB = (x1, x2, x3)

⊤ = (3, 6, 2)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (3, 6, 2, 0, 0)⊤ = xd Feasible!

13



Existence of Basic Feasible Solutions

Theorem 1 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution
exists.

2. If an optimal feasible solution exists, then an optimal basic
feasible solution exists.

Note that the theorem reduces solving a linear programming
problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

However, the enumeration of all basic feasible solutions would be
impractical; the number of basic feasible solutions is potentially(

n

m

)
=

n!

m!(n −m)!

For n = 100 and m = 10, we get 535, 983, 370, 403, 809, 682, 970.

14



Existence of Basic Feasible Solutions

Theorem 1 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution
exists.

2. If an optimal feasible solution exists, then an optimal basic
feasible solution exists.

Note that the theorem reduces solving a linear programming
problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

However, the enumeration of all basic feasible solutions would be
impractical; the number of basic feasible solutions is potentially(

n

m

)
=

n!

m!(n −m)!

For n = 100 and m = 10, we get 535, 983, 370, 403, 809, 682, 970.

14



Existence of Basic Feasible Solutions

Theorem 1 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution
exists.

2. If an optimal feasible solution exists, then an optimal basic
feasible solution exists.

Note that the theorem reduces solving a linear programming
problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

However, the enumeration of all basic feasible solutions would be
impractical; the number of basic feasible solutions is potentially(

n

m

)
=

n!

m!(n −m)!

For n = 100 and m = 10, we get 535, 983, 370, 403, 809, 682, 970.
14



Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 2
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.

15



Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 2
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.

15



Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 2
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.

15



Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 2
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.

15



Optimal Solutions

Here, the blue lines are contours of −x1 − x2. The minimizer is xd .
16



Degenerate Basic Solutions
A basic solution x = [xB , xN ] ∈ Rn is degenerate if at least one
component of xB is 0.

Two different bases can correspond to the same point. To see this,
consider the constraints defined by

Ax =

 2 1 0 0
3 0 1 0
4 0 0 1




x1
x2
x3
x4

 =

 6
13
12

 = b.

There are two bases

{x1, x2, x3} giving

B =

 2 1 0
3 0 1
4 0 0


{x1, x3, x4} giving

B ′ =

 2 0 0
3 1 0
4 0 1


Each gives the same degenerate basic solution x = (3, 0, 4, 0)⊤.

17



Degenerate Basic Solutions
A basic solution x = [xB , xN ] ∈ Rn is degenerate if at least one
component of xB is 0.

Two different bases can correspond to the same point. To see this,
consider the constraints defined by

Ax =

 2 1 0 0
3 0 1 0
4 0 0 1




x1
x2
x3
x4

 =

 6
13
12

 = b.

There are two bases

{x1, x2, x3} giving

B =

 2 1 0
3 0 1
4 0 0


{x1, x3, x4} giving

B ′ =

 2 0 0
3 1 0
4 0 1


Each gives the same degenerate basic solution x = (3, 0, 4, 0)⊤.

17



Degenerate Basic Solutions
A basic solution x = [xB , xN ] ∈ Rn is degenerate if at least one
component of xB is 0.

Two different bases can correspond to the same point. To see this,
consider the constraints defined by

Ax =

 2 1 0 0
3 0 1 0
4 0 0 1




x1
x2
x3
x4

 =

 6
13
12

 = b.

There are two bases

{x1, x2, x3} giving

B =

 2 1 0
3 0 1
4 0 0


{x1, x3, x4} giving

B ′ =

 2 0 0
3 1 0
4 0 1


Each gives the same degenerate basic solution x = (3, 0, 4, 0)⊤.

17



Simplex Algorithm

18



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.

19



Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .

20



Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .

20



Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui .

Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .

20



Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .

20



Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .
20



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.

We say that we pivot about (j , i).

21



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).

21



Algorithm 1 Simplex - Non-degenerate

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B(y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute xj→i

11: end for
12: if c⊤(xj→i − x) ≥ 0 for all i ∈ {m + 1, . . . , n} then
13: Stop, we have an optimal solution.
14: end if
15: Select i ∈ {m + 1, . . . , n} such that c⊤(xj→i − x) < 0
16: B ← Bj→i

17: until convergence

22



A = (u1 u2 u3 u4)

=

(
1 2 1 0
2 1 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (4, 4)⊤

c = (−1,−1, 0, 0)⊤

minimize c⊤x subject to Ax = b where x ≥ 0

Consider a basis

B = (a3 a4) =

(
1 0
0 1

)
The basic solution is x = (x1, x2, x3, x4)

⊤ = (0, 0, 4, 4)⊤

23



A = (u1 u2 u3 u4)

=

(
1 2 1 0
2 1 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (4, 4)⊤

c = (−1,−1, 0, 0)⊤

minimize c⊤x subject to Ax = b where x ≥ 0

Consider a basis

B = (a3 a4) =

(
1 0
0 1

)
The basic solution is x = (x1, x2, x3, x4)

⊤ = (0, 0, 4, 4)⊤

23



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.

24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.
24



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

25



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

25



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

25



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

25



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.
25



Non-Degenerate Case Convergence

Theorem 3
Suppose that the simplex method is applied to a linear program
and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either
terminates at an optimal basic feasible solution or determines that
the problem is unbounded.

However, what happens if we meet a degenerate solution?

So, let us drop the non-degeneracy assumption.

26



Non-Degenerate Case Convergence

Theorem 3
Suppose that the simplex method is applied to a linear program
and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either
terminates at an optimal basic feasible solution or determines that
the problem is unbounded.

However, what happens if we meet a degenerate solution?

So, let us drop the non-degeneracy assumption.

26



Non-Degenerate Case Convergence

Theorem 3
Suppose that the simplex method is applied to a linear program
and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either
terminates at an optimal basic feasible solution or determines that
the problem is unbounded.

However, what happens if we meet a degenerate solution?

So, let us drop the non-degeneracy assumption.

26



Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .

27



Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .

27



Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui .

Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .

27



Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .

27



Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .
27



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).

28



b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).
28



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!

29



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!

30



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!

30



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!

30



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!

30



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!

30



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

Pivot about (3, 1), that is x3 exchanges with x1 and α = x3/y3 = 0.

x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!
30



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

31



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

31



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

31



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.
31



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).

32



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).

32



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).

32



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).

32



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).

32



Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · (−1) + 0 · 2) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).
32



Algorithm 2 Simplex

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B (y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute ri = ci − c⊤B y where y = (y1, . . . , ym)
⊤

11: end for
12: if ri ≥ 0 for all i ∈ {m + 1, . . . , n} then
13: Stop, we have an optimal solution.
14: end if
15: Select i ∈ {m + 1, . . . , n} such that ri < 0
16: B ← Bj→i

17: until convergence

33



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work?

Unfortunately, NO!

34



Degenerate Example (Cont.)

c = (−1, 1, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!
34



Degenerate Case - Looping

Consider the following linear program:

minimize z = −3
4x1 + 150x2 − 1

50x3 + 6x4
subject to 1

4x1 − 60x2 − 1
25x3 + 9x4 + x5 = 0

1
2x1 − 90x2 − 1

50x3 + 3x4 + x6 = 0
x3 + x7 = 1
x1, x2, x3, x4, x5, x6, x7 ≥ 0

Executing the simplex method on this program starting with the
basis {x5, x6, x7} and always choosing i minimizing the reduced
cost at line 15, eventually ends up back in the basis {x5, x6, x7}.
In other words, even though the reduced cost is always negative, the overall

effect on the objective is 0.

35



Convergence of Simplex Method

A solution is to use Bland’s rule:

▶ Select the smallest index j at line 9.

▶ Select the smallest index i at line 15.

Theorem 4
If the simplex method is implemented using Bland’s rule to select
the entering and leaving variables, then the simplex method is
guaranteed to terminate.

36



Simplex Convergence Summary

In a non-degenerate case:

▶ There is always a unique j to be selected at line 9.

▶ The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in
a non-degenerate case.

In a degenerate case:

▶ We may have several j from which to select at line 9.

▶ Even though the reduced cost is negative, the basic solution
may remain the same.

The simplex algorithm may cycle!

Using Bland’s rule, the simplex method always converges to a
minimizer or detects an unbounded LP.

37



Simplex Convergence Summary

In a non-degenerate case:

▶ There is always a unique j to be selected at line 9.

▶ The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in
a non-degenerate case.

In a degenerate case:

▶ We may have several j from which to select at line 9.

▶ Even though the reduced cost is negative, the basic solution
may remain the same.

The simplex algorithm may cycle!

Using Bland’s rule, the simplex method always converges to a
minimizer or detects an unbounded LP.

37



Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem.

minimize y1 + y2 + · · ·+ ym

subject to (A Im)

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.

38



Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem.

minimize y1 + y2 + · · ·+ ym

subject to (A Im)

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.

38



Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem.

minimize y1 + y2 + · · ·+ ym

subject to (A Im)

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.

38



Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem:

minimize y1 + y2 + · · ·+ ym

subject to [A Im]

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.

39



Two-Phase Simplex Algorithm
Solve the artificial LP problem:

minimize y1 + y2 + · · ·+ ym

subject to [A Im]

(
x
y

)
= b(

x
y

)
≥ 0

Proposition 1

The original LP problem has a basic feasible solution iff the
associated artificial LP problem has an optimal feasible solution
with the objective function 0.

If we solve the artificial problem with y = 0, we obtain x such that
Ax = b, x ≥ 0 is a basic feasible solution for the original problem.

If there is no such a solution to the artificial problem, there is no basic

feasible solution, and hence no feasible solution, to the original problem.

40



Linear Programming
Properties

41



LP Complexity
Iterations of the simplex algorithm can be implemented to
compute the first step using O(m2n) arithmetic operations and
each next step O(mn).

There are as many as
(n
m

)
basic solutions (many of them likely

infeasible). How large are these numbers?

The number of iterations may be proportional to
(n
m

)
that is

EXPTIME.

42



LP Complexity
Iterations of the simplex algorithm can be implemented to
compute the first step using O(m2n) arithmetic operations and
each next step O(mn).

There are as many as
(n
m

)
basic solutions (many of them likely

infeasible). How large are these numbers?

The number of iterations may be proportional to
(n
m

)
that is

EXPTIME.
42



Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)
▶ Consider small random perturbations of the coefficients in the

LP (use Gaussian noise with a small variance)
▶ Then, the expected computation time for the resulting

instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?

43



Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)

▶ Consider small random perturbations of the coefficients in the
LP (use Gaussian noise with a small variance)

▶ Then, the expected computation time for the resulting
instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?

43



Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)
▶ Consider small random perturbations of the coefficients in the

LP (use Gaussian noise with a small variance)

▶ Then, the expected computation time for the resulting
instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?

43



Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)
▶ Consider small random perturbations of the coefficients in the

LP (use Gaussian noise with a small variance)
▶ Then, the expected computation time for the resulting

instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?

43



Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 5 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.

44



Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 5 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.

44



Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 5 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.

44



Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 5 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.

44



Linear Programming in Practice

Heavily used tools for solving practical problems.

Several advanced linear programming solvers (usually parts of
larger optimization packages) implement various heuristics for
solving large-scale problems, such as sensitivity analysis.

See an overview of tools here:
http://en.wikipedia.org/wiki/Linear programming#Solvers and scripting .28programming.29 languages

For example, the well-known Gurobi solver uses the simplex
algorithm to solve LP problems.

45


