
Constrained Optimization

1



Constrained Optimization Problem

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

x∗ is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F

where F is the feasibility region

F = {x | gi (x) ≤ 0, hj(x) = 0, i = 1, . . . , ng , j = 1, . . . , nh}

Thus, to find a constrained minimizer, we have to inspect
unconstrained minima of f inside of F and points along the
boundary of F .

2



COP - Example

minimize
x1,x2

f (x1, x2) = x21 − 1
2x1 − x2 − 2

subject to g1 (x1, x2) = x21 − 4x1 + x2 + 1 ≤ 0
g2 (x1, x2) =

1
2x

2
1 + x22 − x1 − 4 ≤ 0

3



Equality Constraints

Let us restrict our problem only to the equality constraints:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Assume that f and hj have continuous second derivatives.

Now, we try to imitate the theory from the unconstrained case and
characterize minima using gradients.

This time, we must consider the gradient of f and hj .

4



Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimizer of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

5



Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimizer of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

5



Unconstrained Minimizer

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimizer of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

5



The hyperplane defined by ∇f ⊤p = 0 contains directions p of zero
variation in f .

In the unconstrained case, x∗ is minimizer only if ∇f (x∗) = 0
because otherwise there would be a direction p satisfying
∇f (x∗)p < 0, a decrease direction.

6



Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region.

How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

7



Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

7



Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

7



Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

7



Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

7



Feasible Points and Directions

Here, the only feasible direction at x is p = 0.

8



Feasible Points and Directions

Here the feasible directions at x∗ point along the red line, i.e.,

∇h1(x∗)p = 0 ∇h2(x∗)p = 0

9



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

10



Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.

11



Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.

11



Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.
11



Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

But then, from the geometry of the problem, we obtain

Theorem 1
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) = −
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.

12



Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

But then, from the geometry of the problem, we obtain

Theorem 1
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) = −
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.
12



Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

So we can now use methods for searching stationary points. This will lead to

the Lagrange-Newton method.

13



Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

So we can now use methods for searching stationary points. This will lead to

the Lagrange-Newton method.

13



Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

So we can now use methods for searching stationary points. This will lead to

the Lagrange-Newton method.

13



Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

So we can now use methods for searching stationary points. This will lead to

the Lagrange-Newton method.
13



minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)

Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

14



minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

14



minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

14



15



Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

H(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ∗ s.t.

∇f (x∗) =
nh∑
j=1

−λ∗
j∇hj(x∗)

and that

p⊤H(x∗, λ∗)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .

16



Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

H(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ∗ s.t.

∇f (x∗) =
nh∑
j=1

−λ∗
j∇hj(x∗)

and that

p⊤H(x∗, λ∗)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .

16



Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

H(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ∗ s.t.

∇f (x∗) =
nh∑
j=1

−λ∗
j∇hj(x∗)

and that

p⊤H(x∗, λ∗)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .

16



Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

H(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .
Note that Lagrangian Hessian is NOT the Hessian of the Lagrangian!

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ∗ s.t.

∇f (x∗) =
nh∑
j=1

−λ∗
j∇hj(x∗)

and that

p⊤H(x∗, λ∗)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .
16



Inequality Constraints

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

Lagrange multipliers and the Lagrangian function can be extended
to deal with inequality constraints.

The resulting necessary conditions for constrained minima are
called Karush-Tucker-Kuhn (KKT) conditions.

In this course, Lagrange methods are considered only for
equality-constrained problems. So, we omit further discussion of
KKT.

17



Inequality Constraints

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

Lagrange multipliers and the Lagrangian function can be extended
to deal with inequality constraints.

The resulting necessary conditions for constrained minima are
called Karush-Tucker-Kuhn (KKT) conditions.

In this course, Lagrange methods are considered only for
equality-constrained problems. So, we omit further discussion of
KKT.

17



Constrained Optimization
Penalty Methods

18



Penalty methods

The idea: Transform a constrained problem into an unconstrained
one by adding a penalty to the objective function when constraints
are violated or close to being violated.

Assuming an objective function f , the penalized objective is of the
form

f̂ (x) = f (x) + µπ(x)

Here, µ is a fixed constant determining how strong the penalty
should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g.,
L-BFGS) to f̂ and obtain an approximation of a minimizer of f .

There are two kinds of penalty methods:

▶ exterior - penalizing infeasible x

▶ interior - penalizing x close to being infeasible

19



Penalty methods

The idea: Transform a constrained problem into an unconstrained
one by adding a penalty to the objective function when constraints
are violated or close to being violated.

Assuming an objective function f , the penalized objective is of the
form

f̂ (x) = f (x) + µπ(x)

Here, µ is a fixed constant determining how strong the penalty
should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g.,
L-BFGS) to f̂ and obtain an approximation of a minimizer of f .

There are two kinds of penalty methods:

▶ exterior - penalizing infeasible x

▶ interior - penalizing x close to being infeasible

19



Penalty methods

The idea: Transform a constrained problem into an unconstrained
one by adding a penalty to the objective function when constraints
are violated or close to being violated.

Assuming an objective function f , the penalized objective is of the
form

f̂ (x) = f (x) + µπ(x)

Here, µ is a fixed constant determining how strong the penalty
should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g.,
L-BFGS) to f̂ and obtain an approximation of a minimizer of f .

There are two kinds of penalty methods:

▶ exterior - penalizing infeasible x

▶ interior - penalizing x close to being infeasible

19



Penalty methods

The idea: Transform a constrained problem into an unconstrained
one by adding a penalty to the objective function when constraints
are violated or close to being violated.

Assuming an objective function f , the penalized objective is of the
form

f̂ (x) = f (x) + µπ(x)

Here, µ is a fixed constant determining how strong the penalty
should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g.,
L-BFGS) to f̂ and obtain an approximation of a minimizer of f .

There are two kinds of penalty methods:

▶ exterior - penalizing infeasible x

▶ interior - penalizing x close to being infeasible

19



Interior vs Exterior Penalty

20



Exterior Penalty Methods - Quadratic Penalty

Consider equality-constrained problems:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Consider quadratic penalty:

f̂ (x ;µ) = f (x) +
µ

2

nh∑
j=1

hj(x)
2

If f is continuously differentiable, f̂ is as well (w.r.t. x).

21



Exterior Penalty Methods - Quadratic Penalty

Consider equality-constrained problems:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Consider quadratic penalty:

f̂ (x ;µ) = f (x) +
µ

2

nh∑
j=1

hj(x)
2

If f is continuously differentiable, f̂ is as well (w.r.t. x).

21



Quadratic Penalty

The true solution would be recovered for µ =∞.

However, large µ means large condition number of the Hessian of f̂
Intuitively, large curvature of f̂ , not good for optimization.

Need to choose µ carefully, possibly iteratively.

22



Quadratic Penalty

The true solution would be recovered for µ =∞.

However, large µ means large condition number of the Hessian of f̂
Intuitively, large curvature of f̂ , not good for optimization.

Need to choose µ carefully, possibly iteratively.
22



Algorithm 1 Exterior Penalty Method

1: Choose starting point x0
2: Choose an initial penalty parameter µ0

3: Choose a penalty increase factor ρ > 1
4: k ← 0
5: repeat
6: xk+1 ← x minimizing f̂ (x ;µk)
7: µk+1 ← ρµk

8: k ← k + 1
9: until convergence

23



Convergence of Quadratic Penalty Method

Theorem 2
Assume that f and all hj have continuous second derivatives.

Suppose that each xk is the exact global minimizer of f̂ (x ;µk) and
that limk→∞ µk =∞. Then, every limit point x∗ of the sequence
{xk} solves the constrained optimization problem.

In practice, inexact methods are used to minimize f̂ (x ;µk)

Let x∗ be a limit point of xk and let λ∗ be such that (x∗, λ∗)
satisfy the Lagrange conditions for the constrained problem.

Then, for a subsequence of points xk , which converges to x∗, we
have that

lim
k→∞

µkhj(xk) = λ∗
j

24



Convergence of Quadratic Penalty Method

Theorem 2
Assume that f and all hj have continuous second derivatives.

Suppose that each xk is the exact global minimizer of f̂ (x ;µk) and
that limk→∞ µk =∞. Then, every limit point x∗ of the sequence
{xk} solves the constrained optimization problem.

In practice, inexact methods are used to minimize f̂ (x ;µk)

Let x∗ be a limit point of xk and let λ∗ be such that (x∗, λ∗)
satisfy the Lagrange conditions for the constrained problem.

Then, for a subsequence of points xk , which converges to x∗, we
have that

lim
k→∞

µkhj(xk) = λ∗
j

24



Convergence of Quadratic Penalty Method

Theorem 2
Assume that f and all hj have continuous second derivatives.

Suppose that each xk is the exact global minimizer of f̂ (x ;µk) and
that limk→∞ µk =∞. Then, every limit point x∗ of the sequence
{xk} solves the constrained optimization problem.

In practice, inexact methods are used to minimize f̂ (x ;µk)

Let x∗ be a limit point of xk and let λ∗ be such that (x∗, λ∗)
satisfy the Lagrange conditions for the constrained problem.

Then, for a subsequence of points xk , which converges to x∗, we
have that

lim
k→∞

µkhj(xk) = λ∗
j

24



Practical Problems

▶ Small µ may result in so weak penalty that f unbounded
below results in f̂ unbounded as well

▶ As µ =∞ is impossible, the solution is always slightly
infeasible

▶ Growing curvature of f̂ as µ grows makes the Hessian of f̂
almost singular

25



f̂ (x ;µ) = x1 + 2x2 +
µ

2

(
1

4
x21 + x22 − 1

)2

26



f̂ (x ;µ) = x1 + 2x2 +
µ

2

(
1

4
x21 + x22 − 1

)2

26



Quadratic Penalty for Inequality Constraints

f̂ (x ;µ) = f (x) +
µh

2

nh∑
j=1

hj(x)
2 +

µg

2

ng∑
i=1

max (0, gi (x))
2

Minimizer approached from the infeasible side.
27



Example

f̂ (x ;µ) = x1 + 2x2 +
µ

2
max

(
0,

1

4
x21 + x22 − 1

)2

28



Example

f̂ (x ;µ) = x1 + 2x2 +
µ

2
max

(
0,

1

4
x21 + x22 − 1

)2

28



Augmented Lagrangian (Optional)
We may augment the Lagrangian L = f (x) +

∑nh
j=1 λjhj(x) with

penalty and optimize the augmented Lagrangian

f̂ (x ;λ, µ) = f (x) +

nh∑
j=1

λjhj(x) +
µ

2

nh∑
j=1

hj(x)
2

Note the relationship between optimality conditions for L and f̂

∇x f̂ (x ;λ, µ) = ∇f (x) +
nh∑
j=1

(λj + µhj(x))∇hj(x) = 0

∇xL (x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj (x∗) = 0.

Comparing these two conditions suggests an approximation:

λ∗
j ≈ λj + µhj .

29



Augmented Lagrangian (Optional)
We may augment the Lagrangian L = f (x) +

∑nh
j=1 λjhj(x) with

penalty and optimize the augmented Lagrangian

f̂ (x ;λ, µ) = f (x) +

nh∑
j=1

λjhj(x) +
µ

2

nh∑
j=1

hj(x)
2

Note the relationship between optimality conditions for L and f̂

∇x f̂ (x ;λ, µ) = ∇f (x) +
nh∑
j=1

(λj + µhj(x))∇hj(x) = 0

∇xL (x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj (x∗) = 0.

Comparing these two conditions suggests an approximation:

λ∗
j ≈ λj + µhj .

29



Augmented Lagrangian (Optional)
We may augment the Lagrangian L = f (x) +

∑nh
j=1 λjhj(x) with

penalty and optimize the augmented Lagrangian

f̂ (x ;λ, µ) = f (x) +

nh∑
j=1

λjhj(x) +
µ

2

nh∑
j=1

hj(x)
2

Note the relationship between optimality conditions for L and f̂

∇x f̂ (x ;λ, µ) = ∇f (x) +
nh∑
j=1

(λj + µhj(x))∇hj(x) = 0

∇xL (x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj (x∗) = 0.

Comparing these two conditions suggests an approximation:

λ∗
j ≈ λj + µhj .

29



Augmented Lagrangian Penalty Method (Optional)
Inputs:

▶ x0: Starting point

▶ λ0 = 0: Initial Lagrange multiplier

▶ µ0 > 0: Initial penalty parameter

▶ ρ > 1: Penalty increase factor

Outputs:

▶ x∗: Optimal point

▶ f (x∗): Corresponding function value

Algorithm:

k = 0
repeat

xk+1 ← x minimizing f̂ (x ;λk , µk)
λk+1 = λk + µkh(xk)
µk+1 ← ρµk

k ← k + 1
until convergence

30



Comparison of Quadratic and Lagrangian Penalty
(Optional)

Compare

hj ≈
1

µ

(
λ∗
j − λj

)
.

with the corresponding approximation of hj in the quadratic
penalty method is

hj ≈
λ∗
j

µ

Thus, the quadratic penalty relies solely on increasing µ.

However, the augmented Lagrangian also controls the numerator
via estimating λj .

If λj is close to λ∗
j , we may obtain a close solution for modest

values of µ.

Several variants of the Lagrangian penalty exist for inequality
constraints; see Nocedal & Wright.

31



Comparison of Quadratic and Lagrangian Penalty
(Optional)

Compare

hj ≈
1

µ

(
λ∗
j − λj

)
.

with the corresponding approximation of hj in the quadratic
penalty method is

hj ≈
λ∗
j

µ

Thus, the quadratic penalty relies solely on increasing µ.

However, the augmented Lagrangian also controls the numerator
via estimating λj .

If λj is close to λ∗
j , we may obtain a close solution for modest

values of µ.

Several variants of the Lagrangian penalty exist for inequality
constraints; see Nocedal & Wright.

31



Interior Penalty Methods

Always seek to maintain feasibility as opposed to the exterior
methods.

Instead of adding a penalty only when constraints are violated; add
a penalty as the constraint is approached from the feasible region.

Desirable if the objective function is ill-defined outside the feasible
region.

The interior methods are also referred to as barrier methods
because the penalty function acts as a barrier preventing iterates
from leaving the feasible region.

32



Interior Penalty Methods

Always seek to maintain feasibility as opposed to the exterior
methods.

Instead of adding a penalty only when constraints are violated; add
a penalty as the constraint is approached from the feasible region.

Desirable if the objective function is ill-defined outside the feasible
region.

The interior methods are also referred to as barrier methods
because the penalty function acts as a barrier preventing iterates
from leaving the feasible region.

32



Barrier Methods
Consider inequality-constrained problems:

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

Minimize the augmented objective function.

f̂ (x ;µ) = f (x) + µπ(x)

Here π is a penalty function.

Inverse barrier

π(x) =

ng∑
i=1

− 1

gi (x)

Logarithmic barrier

π(x) =

ng∑
i=1

− ln(−gi (x))

Algorithms based on these penalties must be prevented from
evaluating infeasible points.

33



Barrier Methods
Consider inequality-constrained problems:

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

Minimize the augmented objective function.

f̂ (x ;µ) = f (x) + µπ(x)

Here π is a penalty function.

Inverse barrier

π(x) =

ng∑
i=1

− 1

gi (x)

Logarithmic barrier

π(x) =

ng∑
i=1

− ln(−gi (x))

Algorithms based on these penalties must be prevented from
evaluating infeasible points.

33



Barrier Methods
Consider inequality-constrained problems:

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

Minimize the augmented objective function.

f̂ (x ;µ) = f (x) + µπ(x)

Here π is a penalty function.

Inverse barrier

π(x) =

ng∑
i=1

− 1

gi (x)

Logarithmic barrier

π(x) =

ng∑
i=1

− ln(−gi (x))

Algorithms based on these penalties must be prevented from
evaluating infeasible points.

33



Barrier Methods

Inverse barrier

π(x) =

ng∑
i=1

− 1

gi (x)

Logarithmic barrier

π(x) =

ng∑
i=1

− ln(−gi (x))

34



Barrier methods

Solve a sequence of unconstrained problems for f̂ with µ→ 0.

35



Example

f̂ (x ;µ) = x1 + 2x2 − µ ln

(
−1

4
x21 − x22 + 1

)

As for exterior methods, the Hessian becomes increasingly
ill-conditioned as µ→ 0.

36



Example

f̂ (x ;µ) = x1 + 2x2 − µ ln

(
−1

4
x21 − x22 + 1

)

As for exterior methods, the Hessian becomes increasingly
ill-conditioned as µ→ 0.

36



Comments on Interior Penalty Methods

Interior penalty methods must stay in the feasible region:

▶ Every unconstrained optimization must start at an initial point
feasible for the constrained problem.

▶ The line search must check for feasibility and backtrack from
steps to infeasible points.

Convergence issues:

▶ As µ→ 0 solutions of f̂ converge to solutions of the
constrained problem.

▶ On the other hand, with µ→ 0 the Hessian of f̂ becomes
increasingly ill-conditioned.

Various modifications exist to alleviate the problem with
ill-conditioned Hessians.

These methods lead to a class of modern interior point methods.

37



Comments on Interior Penalty Methods

Interior penalty methods must stay in the feasible region:

▶ Every unconstrained optimization must start at an initial point
feasible for the constrained problem.

▶ The line search must check for feasibility and backtrack from
steps to infeasible points.

Convergence issues:

▶ As µ→ 0 solutions of f̂ converge to solutions of the
constrained problem.

▶ On the other hand, with µ→ 0 the Hessian of f̂ becomes
increasingly ill-conditioned.

Various modifications exist to alleviate the problem with
ill-conditioned Hessians.

These methods lead to a class of modern interior point methods.

37



Summary of Penalty Methods

Penalty methods penalize approximations that either leave the
feasible region (exterior methods), or are close to the border of the
feasible region (interior methods).

Penalty methods are simple and easy to implement.

Both exterior and interior methods lead to ill-conditioned Hessians
when approaching the correct solutions to the constrained problem.

38



Constrained Optimization
Sequential Quadratic Programming

39



Quadratic Programming
The quadratic optimization problem with equality constraints is to

minimize 1
2x

⊤Qx + q⊤x
by varying x
subject to Ax + b = 0

Here
▶ Q is a n × n symmetric matrix. For simplicity assume positive

definite.
▶ A is a m × n matrix. Assume full rank.

40



Quadratic Programming
The quadratic optimization problem with equality constraints is to

minimize 1
2x

⊤Qx + q⊤x
by varying x
subject to Ax + b = 0

Here
▶ Q is a n × n symmetric matrix. For simplicity assume positive

definite.
▶ A is a m × n matrix. Assume full rank.

40



Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

For Q positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.

41



Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

For Q positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.

41



Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

For Q positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.

41



Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

For Q positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.

41



Lagrange-Newton
Now consider an arbitrary f : Rn → R and arbitrary constraint
functions hj : Rn → R.

Consider the Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

We search for the stationary point of L, that is (x∗, λ∗) satisfying

∇xL(x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj(x∗) = 0

∇λL(x∗, λ∗) = h(x∗) = 0

These are n + nh equations in unknowns (x∗, λ∗).

From Lagrange theorem: If x∗ is regular and solves the COP, then
there exists λ∗ such that (x∗, λ∗) solves the system of equations.

We use Newton’s method to solve the system of equations.

42



Lagrange-Newton
Now consider an arbitrary f : Rn → R and arbitrary constraint
functions hj : Rn → R.

Consider the Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

We search for the stationary point of L, that is (x∗, λ∗) satisfying

∇xL(x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj(x∗) = 0

∇λL(x∗, λ∗) = h(x∗) = 0

These are n + nh equations in unknowns (x∗, λ∗).

From Lagrange theorem: If x∗ is regular and solves the COP, then
there exists λ∗ such that (x∗, λ∗) solves the system of equations.

We use Newton’s method to solve the system of equations.

42



Lagrange-Newton
Now consider an arbitrary f : Rn → R and arbitrary constraint
functions hj : Rn → R.

Consider the Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

We search for the stationary point of L, that is (x∗, λ∗) satisfying

∇xL(x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj(x∗) = 0

∇λL(x∗, λ∗) = h(x∗) = 0

These are n + nh equations in unknowns (x∗, λ∗).

From Lagrange theorem: If x∗ is regular and solves the COP, then
there exists λ∗ such that (x∗, λ∗) solves the system of equations.

We use Newton’s method to solve the system of equations.

42



Lagrange-Newton
Now consider an arbitrary f : Rn → R and arbitrary constraint
functions hj : Rn → R.

Consider the Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+λ⊤h(x) here h(x) = (h1(x), . . . , hnh(x))
⊤

We search for the stationary point of L, that is (x∗, λ∗) satisfying

∇xL(x∗, λ∗) = ∇f (x∗) +
nh∑
j=1

λ∗
j∇hj(x∗) = 0

∇λL(x∗, λ∗) = h(x∗) = 0

These are n + nh equations in unknowns (x∗, λ∗).

From Lagrange theorem: If x∗ is regular and solves the COP, then
there exists λ∗ such that (x∗, λ∗) solves the system of equations.

We use Newton’s method to solve the system of equations.
42



Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)

43



Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)

43



Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)

43



Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)

43



Lagrange-Newton
Start with some (x0, λ0) and compute (x1, λ1), . . . , (xk , λk), . . .

In every step we compute (xk+1, λk+1) from (xk , λk) using
Newton’s step.

Consider the gradient of the Lagrangian:

∇L(xk , λk) = (∇xL(xk , λk),∇λL(xk , λk))
⊤

= (∇f (xk) +
nh∑
j=1

λkj∇hj(xk), h(xk))
⊤ ∈ Rn+nh

and the Hessian matrix of the (complete) Lagrangian

∇2L(xk , λk) ∈ Rn+nh × Rn+nh

We compute this Hessian in the next slide.

The Newton’s step is then computed by

xk+1 = xk + pk λk+1 = λk + µk

(pk , µk) = −
(
∇2L(xk , λk)

)−1∇L(xk , λk)
43



Hessian of Lagrangian

Note that

∇2L(xk , λk) =

(
∇xxL(xk , λk) ∇xλL(xk , λk)
∇λxL(xk , λk) ∇λλL(xk , λk)

)
=

(
H(xk , λk) ∇h(xk)
∇h(xk)⊤ 0

)
Here H is the Lagrangian-Hessian:

H(xk , λk) = Hf (xk) +

nh∑
j=1

λkjHhj (xk)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .

∇h(xk) = (∇h1(xk) · · · ∇hnh(xk))

is the matrix of columns ∇hj(xk) for j = 1, . . . , nh.

44



Lagrange-Newton for Equality Constraints

Algorithm 2 Lagrange-Newton

1: Choose starting point x0
2: k ← 0
3: repeat
4: Compute ∇f (xk), ∇h(xk), h(xk)
5: Compute ∇L(xk , λk)
6: Compute Hessians Hf (xk),Hhj (xk) for j = 1, . . . , nh
7: Compute Lagrangian-Hessian H(xk , λk)
8: Compute ∇2L(xk , λk)

9: Compute (pk , µk)
⊤ = −

(
∇2L(xk , λk)

)−1∇L(xk , λk)
10: xk+1 ← xk + pk
11: λk+1 ← λk + µk

12: k ← k + 1
13: until convergence

45



Sequential Quadratic Programming for Inequality
Constraints

Introducing inequality constraints brings serious problems.

The main problem is caused by the fact that active constraints
behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through
possible combinations of active/inactive constraints and solve for
each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game

theory.

We will consider this type of algorithm only for linear programming
(the simplex algorithm).

46



Sequential Quadratic Programming for Inequality
Constraints

Introducing inequality constraints brings serious problems.

The main problem is caused by the fact that active constraints
behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through
possible combinations of active/inactive constraints and solve for
each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game

theory.

We will consider this type of algorithm only for linear programming
(the simplex algorithm).

46



Sequential Quadratic Programming for Inequality
Constraints

Introducing inequality constraints brings serious problems.

The main problem is caused by the fact that active constraints
behave differently from inactive ones.

Roughly speaking, algorithms proceed by searching through
possible combinations of active/inactive constraints and solve for
each combination as if only equality constraints were present.
This is very closely related to the support enumeration algorithm from game

theory.

We will consider this type of algorithm only for linear programming
(the simplex algorithm).

46



Summary of Differentiable Optimization

We have considered optimization for differentiable f and hj ’s.

We have considered both constrained and unconstrained
optimization problems.

Primarily line-search methods: Local search, in every step set a
direction and a step length.

The step length should satisfy the strong Wolfe conditions.

47



Summary of Unconstrained Methods

Consider only f without constraints.

For setting direction we used several methods

▶ Gradient descent
Go downhill. Only first-order derivatives needed. Zig-zags.

▶ Newton’s method
Always minimize the local quadratic approximation of f . Second-order

derivatives needed. Better behavior than GD, computationally heavy.

▶ quasi-Newton (SR1, BFGS, L-BFGS)
Approximate the quadratic approximation of f . Only first-order

derivatives needed. Behaves similarly to Newton’s method. Much more

computationally efficient.

48



Summary of Constrained Optimization

Penalty methods, both exterior and interior.
Penalize minimizer approximations out of the feasible region (exterior), or close

to the border (interior).

▶ Exterior
Penalize minimizer approximations out of the feasible region.

Quadratic penalty, both for equality and inequality constraints.

▶ Interior
Penalize minimizer approximations close to the border (interior).

Inverse barrier, logarithmic barrier, only for inequality
constraints.

Finally, we have considered the Lagrange-Newton method for
equality constraints.

49


