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Newton's Method
Consider an objective f : R" — R.

Assume that f is twice differentiable.

Then, by the Taylor's theorem,
1
f(xk+8)~ i+ VF s+ ESTHks

where we denote the Hessian V2f(x,) by H.
Define

1
q(s) = fi + V' s+ ESTHks
and minimize g w.r.t. s by setting Vg(s) = 0. We obtain:
HkS = —ka

Denote by sy the solution, and set xx11 = Xk + Sk-



Newton's Method

Algorithm 1 Newton's Method

Input: xg starting point, € > 0

Output: x* approximation to a stationary point
1: k<0

2: while | V|| > ¢ do

3 pk <+ —H'VF(x)

4 Xk41 & Xk + Pk

5 k< k+1

6: end while




Newton's Method - Example

Newton's method finds the minimum of a quadratic function in a
single step.
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Note that the Newton's method is scale-invariant!



1
f(x,%)=(1-x)?+(1—-x)*+ 3 (2% — X12)
Stopping: ||Vf]|,, < 1076,
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Convergence Issues
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Also, the computation of the Hessian is costly.



Local Quadratic Convergence of Newton's Method

Theorem 1
Assume f is defined and twice differentiable and assume that Vf is
L-smooth on N.

Let x, be a minimizer of f(x) in N and assume that V*f (x.) is
positive definite.

If || xo — x«|| is sufficiently small, then {xx} converges quadratically
to Xi.
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Local Quadratic Convergence of Newton's Method

Theorem 1

Assume f is defined and twice differentiable and assume that Vf is
L-smooth on N .

Let x, be a minimizer of f(x) in N and assume that V*f (x.) is
positive definite.

If || xo — x«|| is sufficiently small, then {xx} converges quadratically
to Xx.

Note that the theorem implicitly assumes that V2f(xy) is
nonsingular for every k.

As the theorem is concerned only with x, approaching x*, the
continuity of V2f(xx) and positive definiteness of V2f(x*) imply
that V2f(x) is positive definite for all sufficiently large k.

However, what happens if we start far away from a minimizer?



Newton's Method with Line Search

Algorithm 2 Newton's Method with Line Search

Input: xp starting point, € > 0
Output: x* approximation to a stationary point
k<« 0
Qinit < 1
while | Vfi||s > ¢ do
P+ —H 'V F(x)
ag < linesearch(pk, Qinit)
Xk41 & Xk + 0Pk
k+—k+1
end while
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Two Spring Problem - Newton's Method
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Gradient descent, line search, stop. cond. ||Vf||., < 107°.
Compare this with 32 iterations of gradient descent.



Rosenbrock Function - Newton's Method

Rosenbrock: f (xi,x2) = (1 — x1)* + 100 (2 — x12)2
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Gradient descent, line search, stop. cond. ||Vf||_, < 107°.
Compare this with 10,662 iterations of gradient descent. 0



Global Convergence of Line Search

Denote by 6 the angle between py and —Vfy, i.e., satisfying

_kaTPk
INeAIA

Recall that f is L-smooth for some L > 0 if

cos by =

[VF(x) = VF(R)|| < L|x—%|, forall x,%eR"

Theorem 2 (Zoutendijk)

Consider xx11 = Xk + ok pk, where py is a descent direction and
o satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then

D cos? O, | VA * < oo
k>0
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Global Convergence of Newton's Method
Assume that all oy satisfy strong Wolfe conditions.
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Global Convergence of Newton's Method
Assume that all oy satisfy strong Wolfe conditions.

Assume that the Hessians H are positive definite with a uniformly
bounded condition number:

[Hill [|H M < M for all k
Then 6y between p, = —H,:Ika and —Vf, satisfies
cosfx > 1/M

Thus, under the assumptions of Zoutendijk's theorem, we obtain

1
7 S IVAIP <Y cos O | VA < oo
k>0 k>0

which implies that limy_, ||V || = 0.

What if Hy is not positive definite or is (nearly) singular?
13



Eigenvalue Modification
Consider Hy = V2f(xy) and consider its diagonal form:

H, = QDQ"

Where D contains the eigenvalues of Hy on the diagonal, i.e.,
D = diag(A1,...,\n) and Q is an orthogonal matrix.
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» ||Hk|| grows with max{A1,...,A\p} going to infinity.
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(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large 6 > 0 we have \; > ¢ but not too large.
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Eigenvalue Modification
Consider Hy = V2f(xy) and consider its diagonal form:

H, = QDQ"

Where D contains the eigenvalues of Hy on the diagonal, i.e.,
D = diag(A1,...,\n) and Q is an orthogonal matrix.
Observe that

» H, is not positive definite iff \; < 0 for some |

» ||Hk|| grows with max{A1,...,A\p} going to infinity.

> HH;lH grows with min{\1,..., \,} going to 0

(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large 6 > 0 we have \; > ¢ but not too large.
Two questions are in order:

» What is a reasonably large 67

» How to modify Hj so the minimum is large enough?

14



Sufficiently Large Eigenvalues
Consider an example:

Vi(xe)=(1,-3,2) and

V2f(xx) = diag(10,3, —1)
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Sufficiently Large Eigenvalues

Consider an example:

Vf(xk) = (1,-3,2) and V2f(x) = diag(10,3, 1)
Now, the diagonalization is trivial:

V2f(x¢) = Q diag(10,3,-1) Q" Q =/ is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say 6 = 10787 Obtain

Bi = Q diag(10,3,107%) Q' = diag(10,3,107%)

If used in Newton's method, we obtain the following direction:
P = —By V() = (~1/10,1,—(2- 10%))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along py, it is far from the minimum of
the quadratic approximation of f.

Note that the original Newton's direction is

—diag(1/10,1/3, -1)(1,-3,2) " = (—1/10,1,2) which is completely different.

15



Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
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Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix By should be

> positive definite,

» of bounded norm (for all k),

P> not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing By = H; + AH, for an
appropriate modification matrix AH,.
What is AHy in our example?

Various methods for computing AHy have been devised in
literature. Typically, it is based on some computationally cheaper

decomposition than spectral decomposition (e.g., Cholesky). 6



Modified Newton's Method

Algorithm 3 Newton's Method with Line Search

Input: xq starting point, ¢ > 0

Output: x* approximation to a stationary point
1: k<0
2: while |Vf|lcoc > € do

9:

o N a R w

Hk — V2 f(Xk)
if Hy is not sufficiently positive definite then
Hy <+ Hy + AH, so that Hy is sufficiently pos. definite
end if
Solve Hypx = —Vf(xk) for px
Set Xx4+1 = Xk + axpk, here oy sat. the Wolfe cond.
k< k+1

10: end while

17



Convergence of Modified Newton's Method

18



Comments on Newton's Method

» Newton's method is scale invariant.
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Comments on Newton's Method

» Newton's method is scale invariant.
» Quadratic convergence in a close vicinity of a strict minimizer.

» Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

» Computationally expensive:
> O(n?) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n?)
results.

> O(n®) arithmetic operations to solve the linear system for the
direction py.

May be mitigated by more efficient methods in case of sparse
Hessians.
In a sense, Newton's method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)

will be mitigated by using quasi-Newton methods.
19
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Quasi-Newton Methods

Recall that Newton's method step py in xx+1 = Xk + px comes
from minimization of

1
a(p) = fic+ VA p+ 5p' Hep
w.r.t. p by setting Vg(p) = 0 and solving
Hkp = =V

So Newton's method needs the second derivative (Hessian), which
is computationally hard to obtain.
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Quasi-Newton Methods

Recall that Newton's method step py in xx+1 = Xk + px comes
from minimization of

1
a(p) = fic+ VA p+ 5p' Hep
w.r.t. p by setting Vg(p) = 0 and solving
Hkp = =V

So Newton's method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate

the Hessian Hi in Newton's method with a matrix I:Ik.
21



Quasi-Newton Methods
Suppose we have just obtained the new point x,1 after a line
search starting from x, in the direction py.
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Quasi-Newton Methods

Suppose we have just obtained the new point x,1 after a line
search starting from x, in the direction py.

Consider the Hessian Hy1 = V?f(xx,1) and its approximation
denoted by Hjy1.

We aim to use I:IkH in the next step, that is, in the equation
Hikt1p = —Viky1 yielding pya.

What conditions should I:Ik+1 satisfy so that it functions as the
“true” Hessian Hy417?

First, it should be symmetric positive definite.

To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

Ais1(us1 — xx) = Vg1 — Vi

This is the secant condition.
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Secant Condition

Consider the secant condition:

A1 041 = xk) = Viips — Ve
The notation is usually simplified by

Sk = Xk+1 — Xk Yk = Vi1 — Vi
So that the secant condition becomes

Hit156 = yi
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Secant Condition

Consider the secant condition:

A1 041 = xk) = Viips — Ve
The notation is usually simplified by

Sk = Xk+1 — Xk Yk = Vi1 — Vi
So that the secant condition becomes

Hit156 = yi

Does it have a symmetric positive definite solution?
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Curvature Condition
Consider the secant condition:

Hit156 = yi
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Curvature Condition
Consider the secant condition:
Hit156 = yi

The following is true:
» The secant condition has a symmetric positive definite
solution iff the following condition is satisfied:

skT)’k>0
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Curvature Condition
Consider the secant condition:
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The following is true:
» The secant condition has a symmetric positive definite
solution iff the following condition is satisfied:
s,jyk >0
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the strong Wolfe conditions.
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Curvature Condition
Consider the secant condition:
Hit156 = yi
The following is true:

» The secant condition has a symmetric positive definite
solution iff the following condition is satisfied:

S/jyk>0

» The condition skTyk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 3

Assume that we use line search satisfying strong Wolfe conditions.

Then in every step, the secant condition
Hit1sk = yk

has a symmetric positive definite solution I:/k+1-

24



Now, we can obtain an approximate Hessian I:Ik+1 by solving the
secant condition Hy15k = Y«.
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Now, we can obtain an approximate Hessian I:Ik+1 by solving the
secant condition Hy15k = Y«.

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain FlkH from I:Ik by
I':Ik+1 = Flk + something

To have a nice iterative algorithm.

We also want I:Ik+1 to be symmetric positive definite.

We strive to choose I:Ik+1 “close” to I:Ik.

25



Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s, and
Yk, so it is natural to compose the solution using these vectors.
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Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s, and
Yk, so it is natural to compose the solution using these vectors.

Consider u = (yk — /:Iksk)

UUT

Aicer = A+ o
u' Sk
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Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s, and
Yk, so it is natural to compose the solution using these vectors.

Consider u = (yk — /:Iksk)

UUT

Fri1=H
k+1 k + T st

Now, the secant condition is satisfied:

UUTS

~ ~ k ~ ~ ~
Hiv15k = Hisi+ s Hyskt+u = Hk5k+<Yk - Hksk) = Yk

. T . . .
By the way, the matrix L‘l’#sk is of rank one and is a unique symmetric rank one

matrix which makes Hi,1 satisfy the secant condition.
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Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s, and
Yk, so it is natural to compose the solution using these vectors.

Consider u = (yk — /:Iksk)

UUT

Fri1=H
k+1 k + T st

Now, the secant condition is satisfied:

UUTS

~ ~ k ~ ~ ~
Hiv15k = Hisi+ s Hyskt+u = Hk5k+()/k - Hksk) = Yk

. T . . .
By the way, the matrix L‘I’#Sk is of rank one and is a unique symmetric rank one

matrix which makes Hi,1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize I:Io,
typically to the identity /, and use H instead of the Hessian
Hi, = V£, in Newton's method.
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Symmetric Rank One Update

Algorithm 4 SR1

k<0

Qinjt <= 1

HO — 1

while | Vfi||sc > 7 do
Solve for py in I:Ikpk = -Vt
a < linesearch(pk, Qinit)
Xk+1 = Xk + api
S Xk41 — Xk
y < Vi1 — Vi
U<+ y— Hgs
Hiy1 « Hi + ZL{
k< k+1

end while

Note that the denominator u' sk can be 0, in which case the update is

impossible. The usual strategy is to skip the update and set Aier = Ar.

27



Example

We will look at a three-dimensional quadratic problem
f(x) = 3x" Qx — ¢ x with

2 00
Q=10 30 and c=1{-9]|,
0 0 4

whose solution is x, = (—4, —3,—2) . Use the exact line search.

The initial guesses are Hy = | and xp = (0,0,0)".
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We will look at a three-dimensional quadratic problem
f(x) = 3x" Qx — ¢ x with

2 00
Q=10 30 and c=1|-9]|,
0 0 4

whose solution is x, = (—4, —3,—2) . Use the exact line search.

The initial guesses are Hy = | and xp = (0,0,0)".
At the initial point, ||[Vf(x0)|/cc = || —¢|/cc = 9, so this point is not
optimal.The first search direction is
-8
po=| -9
-8

The exact line search gives ag = 0.3333.
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Example

The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

—2.66 2.66 —2.66 ~5.33
xx=|-300| VA= 0 |.so={-300],50=[ —9.00 ],
~2.66 —2.66 —2.66 —10.66
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Example

The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

—2.66 2.66 —2.66 ~5.33
xx=|-300| VA= 0 |.so={-300],50=[ —9.00 ],
~2.66 —2.66 —2.66 —10.66

and

) (o — 150)s0 — I50) " 1.1531 0.3445 0.4593
Ay = |+ 0 B0JV0 ™) _ (3445 17751 1.0335
(vo —Iso) "
Yo —%0) " %0 0.4593 1.0335 2.3780

At this new point ||V f(x1)||cc = 2.66 so we keep going, obtaining
the search direction

~2.9137
p1 = | —0.5557 | ,
1.9257

and the step length a; = 0.3942.
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Example

This gives the new estimates:

—3.81 0.36 ~1.14
x=|-321], Ve=[-065]|, ss=[-021|, y=
~1.90 0.36 0.75

and

y 1.6568 0.6102 —0.3432
H, = 0.6102 1.9153 0.6102
—0.3432 0.6102 3.6568

At the point x2, [|[Vf(x2)|lcc = 0.65 so we keep going, with

—0.4851
p=| 05749 |,
—0.2426

and o = 0.3810.

—2.29
—0.65
3.03
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Example

This gives

—4 0 —0.18
X3 = -3 s Vf:?, =10 , S = 0.21 , Yo =
-2 0 —0.09

and A3 = Q. Now ||VF(x3)|oe = 0, so we stop.

—0.36
0.65
—0.36

)
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Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H, to be a symmetric positive definite solution to the secant

condition.
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Unfortunately, though Ay is a symmetric positive definite, the
updated matrix Hy11 does not have to be a positive definite.
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Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H, to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though Ay is a symmetric positive definite, the
updated matrix Hy11 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,

especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.
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Symmetric Rank Two Update

Consider

. . T

. . (Hksk Hk5k> iyl
T + ==

Sy MiSk Yi Sk

Once again, verifying I:IkHsk = yy is not difficult.

Lemma 1
Assume that Hy is symmetric positive def/n/te
Then Hk+1 is symmetric positive definite iff yk sk > 0.

We know that line search satisfying the strong Wolfe conditions
preserves y,' si > 0.

Thus, starting with a symmetric positive definite Hp (e.g., a scalar
multiple of /), every Hy is symmetric positive definite and satisfies
the secant condition.
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BFGS

Algorithm 5 BFGS vl

k<0

Qinit < 1

Ho — 1

while ||Vf||x > 7 do
Solve for py in I:Ikpk = -Vt
a < linesearch(pk, Qinit)
Xk41 $ Xk + 0Pk
S < Xk+1 — Xk
y < ka+1 — ka .
Hii1 + Hi — 7(#/?(’;’/?;) + %TS
k< k+1

end while

Note that we still have to solve a linear system for py.
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Example

Consider the quadratic problem f(x) = $x ' Qx — ¢ x with

2 00
Q=10 3 0 and c= [-9],
0 0 4

whose solution is x, = (—4, —3,—2)". Use the exact line search.
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Choose Hy =/ and xp = (0,0,0)7.
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2 00
Q=10 3 0 and c= [-9],
0 0 4

whose solution is x, = (—4, —3,—2)". Use the exact line search.

Choose Hy =/ and xp = (0,0,0)7.

At iteration 0, [|[Vf (x0)]l,, = 9, so this point is not optimal.

oo
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Example

Consider the quadratic problem f(x) = $x ' Qx — ¢ x with

2 00
Q=10 3 0 and c= [-9],
0 0 4

whose solution is x, = (—4, —3,—2)". Use the exact line search.

Choose Hy =/ and xp = (0,0,0)7.

At iteration 0, [|[Vf (x0)]l,, = 9, so this point is not optimal.

oo

The search direction is

and ap = 0.3333.
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Example

The new estimate of the solution and the new Hessian
approximation are

—2.6667 y 1.1021 0.3445 0.5104
x1 = | —3.0000 and H;=| 0.3445 1.7751 1.0335
—2.6667 0.5104 1.0335 2.3270
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Example

The new estimate of the solution and the new Hessian
approximation are

—2.6667 y 1.1021 0.3445 0.5104
x1 = | —3.0000 and H;=| 0.3445 1.7751 1.0335
—2.6667 0.5104 1.0335 2.3270

At iteration 1, ||[Vf (x1)||,, = 2.6667, so we continue. The next

search direction is
—3.2111

p1= | —0.6124
2.1223

and a7 = 0.3577.
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Example
This gives the estimates.

—3.8152 5 1.6393 0.6412 —0.3607
xo = | —3.2191 and Hy = 0.6412 1.8600 0.6412
—1.9076 —0.3607 0.6412  3.6393
At iteration 2, | Vf (x2)||, = 0.6572, so we continue, computing
—0.5289
p2 = 0.6268
—0.2644
and ap = 0.3495. This gives
—4 ) 200
x3=| -3 and Hz3=| 0 3 0
-2 0 0 4
Now ||V (x3)]|o, = 0, so we stop.

Notice that we got the same x1, x2, x3 as for SR1. This follows from using the
exact line search and the quadratic problem. It does not hold in general.
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b b

A
\d
A

-y

k 1 f\'z %

l'mg;

1 2
f(Xl,Xg) :§k1 ( (fl —|—X1)2 +X22 — €1>

1 2
—|—2k2( (62—X1)2+X22—£2> — mgxo

Here 21 = 12,62 28,/(1 = 1,/(2 = 10,mg:7
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Two Spring Problem - BFGS

X2

X1

Gradient descent, line search, stop. cond. ||Vf||_, < 107°.
Compare this with 32 iterations of gradient descent and 12
iterations of Newton’s method.
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Rosenbrock Function - BFGS
Rosenbrock: f (xi,x2) = (1 — x1)* + 100 (x2 — x?)?
2 yy

/

ty/tions

36 i
/

/'/.‘

X2 \\

ey

/

Y

Gradient descent, line search, stop. cond. ||Vf]||_ < 107°.
Compare with 10,662 iterations of gradient descent and 24 iterations of

Newton's method.
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Sherman—Morrison—-Woodbury Formula

Problem: SR1 and BFGS solve Hyp = —Vf; repeatedly. What if
we could iteratively update H,:l?
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The equation would be solved by py = —H, V.
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Sherman—Morrison—-Woodbury Formula

Problem: SR1 and BFGS solve Hyp = —Vf; repeatedly. What if
we could iteratively update H;l?

The equation would be solved by py = —H, V.

Ideally, we would like to compute I:Ik_1 iteratively along the
optimization, i.e.,
I:ij:l = I-NI,:1 + something

To get such a “something” we use the following
Sherman—Morrison-Woodbury (SMW) formula:

(A + UVT)_1 —Al_aAly (/ n VTA*1U)_1 vT Al

Here Ais a (n x n)-matrix, U, V are (n x m)-matrices with m < n.
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Rank 1 — Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

. . T
. ()/k - Hk5k> <Yk - Hksk)

=t (Yk - I:Iksk)T Sk
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Rank 1 — Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

. . T
. ()/k - Hk5k> <Yk - Hksk)

A1 = Fi + - -
(Yk - Hksk) Sk
yields
. - \T
-1 (Sk — H, }/k) (Sk — H, }/k)
Hii=Ho +

N
(Sk—Hk }/k) Yk

Yes, only y and s swapped places.
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Rank 1 — Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

. . T
. ()/k - Hk5k> <Yk - HkSk)

=t (Yk - l':/ksk)T Sk

yields

. (Sk - /:Ik_l}/k) (Sk - /:/k_l}/k)T

-1 e
Hi=Ho + N\
(Sk—Hk }/k) Yk

Yes, only y and s swapped places.

This allows us to avoid solving Hixpx = —V i for px in every
iteration.

4



Rank One Update V2

Algorithm 6 Rank 1 update v1

1. k<0

20 Qjpie < 1

3: F/o — 1

4: while ||ka”oo > 7 do

pr ¢ —H IV

a < linesearch(pg, Qinit)
Xk41 € Xk + Py

S & Xk — Xk—1

y + Vi — V1

0. Al H?
11: k+— k+1
12: end while

43



BFGS

Applying SMW to the BFGS Hessian update
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BFGS

Applying SMW to the BFGS Hessian update

yields

T T
~ S ~ S
A= (1= 2 ) A (1= 2 )+
S Yk Sk Yk

We avoid solving the linear system for py.

Skslj—

-
Sk Yk
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BFGS V2

Algorithm 7 BFGS v2

1: k<0

20 Qjpit — 1

3: I:IO —

4: while ||Vf|[o > 7 do

PK <— — H ka

o ||nesearch(pk, Qinit)
Xk+1 < Xk + apg

k< k+1

S Xk — Xk—1

10: y Vi — ka 1

© ® N o o

11: k+1<—(l )l:l (/

12: end while
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Limited Memory BFGS Idea

Let us denote by sp, ..., sk and yo, ..., ¥k the values of the
variables s and y, resp., during the iterations 1, ..., k of BFGS.
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sequences Sp, ..., Sk and yo, ..., Vk.
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Note that this would be more space efficient for k < n.
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approximation of H, when we set Hy_,,_1 = 1.
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Limited Memory BFGS Idea

Let us denote by sp, ..., sk and yo, ..., ¥k the values of the
variables s and y, resp., during the iterations 1, ..., k of BFGS.

Observe that Hy is determined completely by Hp and the two
sequences Sp, ..., Sk and yo, ..., Vk.

So, the matrix Hj does not have to be stored if the algorithm
remembers the values sp, ..., sk and yo, ..., Y«.

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H, when we set Hy_,,_1 = 1.

This is the basic idea behind limited-memory BFGS which stores
only the running window sx_,,,...,sx and Yxk_m,..., ¥k and
computes H, using these values as if initialized by Hx_,,_1 = 1.
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Limited Memory BFGS Idea

Let us denote by sp, ..., sk and yo, ..., ¥k the values of the
variables s and y, resp., during the iterations 1, ..., k of BFGS.

Observe that Hy is determined completely by Hp and the two
sequences Sp, ..., Sk and yo, ..., Vk.

So, the matrix Hj does not have to be stored if the algorithm
remembers the values sp, ..., sk and yo, ..., Y«.

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H, when we set Hy_,,_1 = 1.

This is the basic idea behind limited-memory BFGS which stores
only the running window sx_,,,...,sx and Yxk_m,..., ¥k and
computes H, using these values as if initialized by Hx_,,_1 = 1.

The space complexity becomes nm, which is beneficial when n is

large.
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Another View on BFGS (Optional)

We search tor l:l,:fl1 where I:Ik+1 satisfies I:Ik+1sk = yk. Search for
a solution V for Vy, = s.

The idea is to use V/ close to A, * (in some sense):

min
H

subjectto V=V, Vy =s

5 -1
T, H

Here the norm is weighted Frobenius norm:
e HW1/2AW1/2H

where | - || is defined by || C|[3 = 3271 3371 cf. The weight W

can be chosen as any matrix satisfying the relation Wy, = sy.

BFGS is obtained with W = G;l where G is the average Hessian
defined by Gy, = [fol V2f (xk + Takpx) dT:|

Solving this gives precisely the BFGS formula for HkJrl
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Global Convergence of Line Search

Denote by 6 the angle between py and —Vfy, i.e., satisfying

_kaTPk
INeAIA

Recall that f is L-smooth for some L > 0 if

cos by =

[VF(x) = VF(R)|| < L|x—%|, forall x,%eR"

Theorem 4 (Zoutendijk)

Consider xx11 = Xk + ok pk, where py is a descent direction and
o satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then

D cos? O, | VA * < oo
k>0
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Global Convergence of Quasi-Newton's Method

Assume that all oy satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians Hy are positive
definite with a uniformly bounded condition number:

HH"H HF/,;lH <M forall k
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Global Convergence of Quasi-Newton's Method

Assume that all oy satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians Hy are positive
definite with a uniformly bounded condition number:

HH"H HF/,;lH <M forall k

Then 6y between p, = —I:I,(_Ika and —Vf, and satisfies

cosfy > 1/M
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Global Convergence of Quasi-Newton's Method

Assume that all oy satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians Hy are positive
definite with a uniformly bounded condition number:

HH"H HF/,;lH <M forall k

Then 6y between p, = —I:Ik_Ika and —Vf, and satisfies
cosfy > 1/M

Thus, under the assumptions of Zoutendijk's theorem, we obtain

1
7 SUIVAIZ <D cos? 0 | VAP < oo
k>0 k>0

which implies that limy_, ||V f|| = 0.
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Behavior of BFGS

» It may happen that Hx becomes a poor approximation of the
Hessian Hy. If, e.g., y,j is tiny, then Hy11 will be huge.

However, it has been proven experimentally that if Hj wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.

The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).
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Behavior of BFGS

» It may happen that Hx becomes a poor approximation of the
Hessian Hy. If, e.g., y,j is tiny, then Hy11 will be huge.

However, it has been proven experimentally that if Hj wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.

The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).

» There are more sophisticated ways of setting the initial
Hessian approximation Hp.
See Numerical Optimization, Nocedal & Wright, page 201.
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Quasi-Newton Methods - Comments

» Each iteration is performed for O(n?) operations as opposed
to O(n3) for methods involving solutions of linear systems.
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» There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).
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» There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
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Quasi-Newton Methods - Comments

» Each iteration is performed for O(n?) operations as opposed
to O(n3) for methods involving solutions of linear systems.

» There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

» Compared with Newton's method, no second derivatives are
computed.

» Local superlinear convergence can be proved under specific
conditions.

Compare with local quadratic convergence of Newton's method and linear

convergence of gradient descent.
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Limited-Memory BFGS



Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the
whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods,

In addition, these methods also improve the computational
efficiency of medium-sized problems (hundreds or thousands of
design variables) with minimal sacrifice in accuracy.
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L-BFGS

Recall that we compute iteratively the approximation to the inverse
Hessian by

1 sy \ L1 YKS, Sks,
Hk+1 =\/- T Hk I - T + =
S, Yk Sk Yk S, Yk

However, eventually, we are interested in
o1
Pk = Hk \Y44

Note that given the sequences sj,...,sx and yi,..., ¥k and Ho_1
we can recursively compute ijl for every k.

What if we limit the sequences in memory to just m last elements:
Sk—m415Sk—m+25 -+ -y Sk Yk—m+1s Yk—m+2,- -+ Yk

In practice, m between 5 and 20 is usually sufficient. We also
initialize the recurrence with the last iterate:
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L-BFGS

Let us rewrite the BFGS update formula as follows:

I:Ik_jl = VkT,:Ik_l Vi + kakS,—(r

where
Pk = S Yk and Vie =1 — pkskyi
Sk = Xk+1 — Xk and Yk = Vi1 — Vi

By substitution, we obtain
At = (VkT—l e VkT—m) AR (Viem - -+ Vi-1)
+ Pk—m (VkT—l e VkT—m+1> Sk—mSk—m (Vi—mt1 -+ Vi—1)
+ Pk—m+1 (VkT—l e VkT—m+2> S"—’”“SkT—mH (Vi=mt2 -+ Vi
4.

-
+ Pk—1Sk—1Sk—1
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L-BFGS Algorithm

Algorithm 8 L-BFGS two-loop recursion

Input: : se_1,...,5—m and yx_1,.. 3 Yk—m
Output: : pj the search direction —HI:Ika

T
= O

© e NT s Wb

q<—ka
cfori=k—-1,k—2,....,k— mdo
o+ pis] q
g4 q— iy
end for
r<—H2q
fori=k—mk—-—m+1,.... k—1do
5<_PIY;T"
r<«r+si(aj—p)
end for

. stop with result l:/,:lka =r
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L-BFGS Algorithm

Algorithm 9 L-BFGS
1: Choose starting point xg, integer m > 0

2. k<0
3: repeat
4: Choose H} e.g. Sk LYt
,1Yk 1
5 Compute py + —H,Vf, using the previous algorithm
6 Compute xx11 < Xk + axpk, where oy is chosen to satisfy
the strong Wolfe conditions
7: if k> m then
8: Discard the vector pair {sk_m, Yk—m} from storage
9: end if
10: Compute and save sx < Xk+1 — Xk, Yk < Vir1 — Vi

11: k+— k+1
12: until convergence




1 2
f(xi,x)=(1- X1)2 +(1- x2)2 + 3 (2X2 — X12)

Stopping: ||Vf]|,, < 1076,

X2

3 3 Y~ S
i \ -BFGS: 7 iterations
BFGS: 7 iterations

In L-BFGS, the memory length m was 5. The results are similar.
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1 2
f(Xl,Xg) :§k1 ( (fl —|—X1)2 +X22 — €1>

1 2
—|—2k2( (62—X1)2+X22—£2> — mgxo

Here 21 = 12,62 28,/(1 = 1,/(2 = 10,mg:7
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x2

X2

-4

-8

Quasi-Newton
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Rosenbrock: f (x1,x2) = (1 — x1)* + 100 (xo — x12)2

2

10,662 ié/raééé’é’

)
i

Steepest descent

Uit/e;/{.c{ 7

X

0
X1

x1

Quasi-Newton

\_jt/e?/éo/w

X

Newton
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Rosenbrock:

f (x1, %) = (1 — x1)* + 100 (
10%
107 7
10! 7

100 4

1
IV flleo

1073 7

1074

0-1 +

X — X12)2

Quasi-
Newton

Steepest
descent

Conjugate
gradient

1078

1 0{)

10!

102
Major iterations

10%
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Computational Complexity

Algorithm Computational Complexity
Steepest Descent O(n) per iteration

Newton's Method O(n®) to compute Hessian and solve system
BFGS O(n?) to update Hessian approximation

Table: Summary of the computational complexity for each optimization
algorithm.

» Steepest Descent: Simple but often slow, requiring many
iterations.

> Newton's Method: Fast convergence but expensive per
iteration.

» BFGS: Quasi-Newton, no Hessian needed, good speed and
iteration count balance.
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Constrained Optimization
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Constrained Optimization Problem

Recall that the constrained optimization problem is
minimize f(x)
by varying  x
subject to  gi(x) <0 i=1,...,n,
hj(X):O j:].,...,nh
x* is now a constrained minimizer if
f(x*)<f(x) forall xeF
where F is the feasibility region

.F:{x|g;(x)§O,hj(x):0,i:1,...,ng,j:1,...,nh}

Thus, to find a constrained minimizer, we have to inspect
unconstrained minima of f inside of F and points along the
boundary of F.
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COP - Example

minimize  f (x1,x) = X12 — %xl —xp—2
X1,X2

subject to g1 (x1,Xx2) = xl2 —4x1+x+1<0
& (x1,x) = %xl2 +x2—x —4<0

-2 0 2 4



Equality Constraints

Let us restrict our problem only to the equality constraints:

minimize f(x)
by varying x
subject to  hj(x) =0 j=1,...,n4
Assume that f and h; have continuous second derivatives.

Now, we try to imitate the theory from the unconstrained case and
characterize minima using gradients.

This time, we must consider the gradient of f and h;.
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Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

f(x+p) ~ f(x)+ VF(x)'p
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Half-Space of Decrease
Consider the first-order Taylor approximation of f at x
f(x+p)~f(x)+VFx)'p
Note that if x* is an unconstrained minimum of f, then
F(x* +p) = f(x7)

for all p small enough.
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Half-Space of Decrease
Consider the first-order Taylor approximation of f at x
f(x+p)~f(x)+VFx)'p
Note that if x* is an unconstrained minimum of f, then
F(x* +p) = f(x7)

for all p small enough.

Together with the Taylor approximation, we obtain
F(x*) + VF(x*) p > f(x")
and hence

VF(x)'p>0
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NN

\ N
vf T< <0\
NN

Half-space of
function decrease

The hyperplane defined by Vf ' p = 0 contains directions p of zero
variation in f.

In the unconstrained case, x* is minimizer only if Vf(x*) =0
because otherwise there would be a direction p satisfying
Vf(x*)p <0, a decrease direction.
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Decrease Direction in COP

In COP, pis a decrease direction in x € F if Vf(x)"p < 0 and if
p is a feasible direction!
l.e., point into the feasible region.
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Decrease Direction in COP

In COP, pis a decrease direction in x € F if Vf(x)"p < 0 and if
p is a feasible direction!
l.e., point into the feasible region. How do we characterize feasible

directions?
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Decrease Direction in COP

In COP, pis a decrease direction in x € F if Vf(x)"p < 0 and if
p is a feasible direction!
l.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of h; for all j:

hj(X + P) ~ hj(X) + th(X)Tp
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Decrease Direction in COP

In COP, pis a decrease direction in x € F if Vf(x)"p < 0 and if
p is a feasible direction!
l.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of h; for all j:
hj(X + p) ~ hj(X) + th(X)Tp
Assuming x € F, we have hj(x) = 0 for all j and thus

hi(x +p) =~ Vhi(x)"p
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Decrease Direction in COP

In COP, pis a decrease direction in x € F if Vf(x)"p < 0 and if
p is a feasible direction!
l.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of h; for all j:
hi(x + p) = hi(x) + Vhi(x)"p

Assuming x € F, we have hj(x) = 0 for all j and thus
hi(x+p) ~ Vhi(x)Tp

As p is a feasible direction iff hj(x 4+ p) = 0, we obtain that

pis a feasible direction iff Vhi(x)"p =0 for all j
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Feasible Points and Directions

Feasible point

Vh»

L hy =0

Here, the only feasible direction at x is p = 0.
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Feasible Points and Directions

Vhtp=0 hy =0

Vhl

Vh

}» h=0

Here the feasible directions at x* point along the red line, i.e.,

Vhl(X*)p =0 th(x*)p =0

72



Necessary Condition for Constrained Minima
Consider a direction p. Observe that

> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
> If hj(x)"p=0 for all j and
> Vif(x)p > 0, then moving a short step in the direction p
increases f and stays in F.
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
> If hj(x)"p=0 for all j and
> Vif(x)p > 0, then moving a short step in the direction p
increases f and stays in F.

> Vf(x)p <0, then moving a short step in the direction p
decreases f and stays in F.
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that

> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
> If hj(x)"p=0 for all j and
> Vif(x)p > 0, then moving a short step in the direction p
increases f and stays in F.
> Vf(x)p <0, then moving a short step in the direction p
decreases f and stays in F.
» Vi(x)p =0, then moving a short step in the direction p does
not change f and stays F.
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
>Ifh() p =0 for all j and
Vf(x)p > 0, then moving a short step in the direction p
increases f and stays in F.
> Vf(x)p <0, then moving a short step in the direction p
decreases f and stays in F.
» Vi(x)p =0, then moving a short step in the direction p does
not change f and stays F.
To be a minimizer, x* must be feasible and every direction
satisfying hj(x*)Tp = 0 for all j must also satisfy Vf(x*)"p > 0.
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
>Ifh() p =0 for all j and
Vf(x)p > 0, then moving a short step in the direction p
increases f and stays in F.
> Vf(x)p <0, then moving a short step in the direction p
decreases f and stays in F.
» Vi(x)p =0, then moving a short step in the direction p does
not change f and stays F.
To be a minimizer, x* must be feasible and every direction
satisfying hj(x*)Tp = 0 for all j must also satisfy Vf(x*)"p > 0.

Note that if p is a feasible direction, then —p is also, and thus
V£(x*)T(—p) > 0. So finally,
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Necessary Condition for Constrained Minima
Consider a direction p. Observe that
> If hj(x)"p # 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.
> If hj(x)"p=0 for all j and
> Vif(x)p > 0, then moving a short step in the direction p
increases f and stays in F.
> Vf(x)p <0, then moving a short step in the direction p
decreases f and stays in F.
» Vi(x)p =0, then moving a short step in the direction p does
not change f and stays F.
To be a minimizer, x* must be feasible and every direction
satisfying hj(x*)Tp = 0 for all j must also satisfy Vf(x*)"p > 0.

Note that if p is a feasible direction, then —p is also, and thus
V£(x*)T(—p) > 0. So finally,

If x* is a constrained minimizer, then

Vf(x*)"p =0 for all p satisfying (¥j : Vhj(x*)"p =0)
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Lagrange Multipliers

r Vitp=0 Vh;

PN

Left: f increases along p. Right: f does not change along p.

r
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Lagrange Multipliers

r ViTp=0 Vh

4

>

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, Vf lies in the space spanned by the
gradients of constraint functions.

74



Lagrange Multipliers

- \ / __‘F -

Vitp=0 Vh;

‘U

A

>

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, Vf lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers A1, \» satisfying
Vf(X*) = —()\1Vh1 + )\QV/?Q)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.
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Lagrange Multipliers

We know that if x* is a constrained minimizer, then.

Vf(x*)"p =0 for all p satisfying (Vj : Vh;j(x*)"p = 0)
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Lagrange Multipliers

We know that if x* is a constrained minimizer, then.

Vf(x*)"p =0 for all p satisfying (Vj : Vh;j(x*)"p = 0)

But then, from the geometry of the problem, we obtain

Theorem 5

Consider the COP with only equality constraints and f and all h;
twice continuously differentiable.

Assume that x* is a constrained minimizer and that x* is regular,
which means that V hj(x*) are linearly independent.

Then there are A1, ..., \,, € R satisfying

VF(x*) == AVhi(x")
j=1

The coefficients A1, ..., \,, are called Lagrange multipliers.
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Lagrangian Function

Try to transform the constrained problem into an unconstrained
one by moving the constraints h;(x) = 0 into the objective.
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Lagrangian Function

Try to transform the constrained problem into an unconstrained
one by moving the constraints h;(x) = 0 into the objective.

Consider Lagrangian function L : R" x R" — R defined by
L(x,\) = f(x)+h(x)"X  here  h(x) = (hi(x), ..., hn,(x))"
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Lagrangian Function

Try to transform the constrained problem into an unconstrained
one by moving the constraints h;(x) = 0 into the objective.

Consider Lagrangian function L : R" x R" — R defined by
L(x,\) = f(x)+h(x)"X  here  h(x) = (hi(x), ..., hn,(x))"

Note that the stationary point of £ gives us the Lagrange multipliers:
Np
VL = VF(x)+ > AVhi(x)
j=1

VAL = h(x)
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Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints h;(x) = 0 into the objective.

Consider Lagrangian function L : R" x R" — R defined by
L(x,\) = f(x)+h(x)"X  here  h(x) = (hi(x), ..., hn,(x))"

Note that the stationary point of £ gives us the Lagrange multipliers:
Np
VL = VF(x)+ > AVhi(x)
j=1

VAL = h(x)

Now putting VL(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) =0 and Vi(x)=— z"h: AV hj(x)
Jj=1

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in A.
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minimize f(x1,x2)=x1+2x
X1,X2
subject to  h(x1,x) =3x2 +x2 —1=0

The Lagrangian function

1
L(x1,x2,A) = x1 +2x2 + A <4x12 + X5 — 1)
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minimize f(x1,x2)=x1+2x
X1,X2

subject to  h(x1,x) =3x2 +x2 —1=0

The Lagrangian function

L (x1,x2, ) —X1—|—2X2—|—)\< X} 4 x5 — 1)

Differentiating this to get the first-order optimality conditions,

aﬁ_l—l— )\Xl—O %:2—1—2)“2:0
oxq Oxo
oL 1,

a)\ 4X1+X2—1:0
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minimize f(x1,x2)=x1+2x
X1,X2

subject to  h(x1,x) =3x2 +x2 —1=0

The Lagrangian function
_ 1o o
L(x1,x2,A) = x1 +2x2 + A 4% 1

Differentiating this to get the first-order optimality conditions,

oL 1 oL

Ot + 2)\X1 0 9% +2Xx =0
oL 1

A gate-1=o

Solving these three equations for the three unknowns (xi,x2, A),
we obtain two possible solutions:

xa = (x1,x2) = (=V2,-V2/2), Ia=+V2
xg = (x1,%) = (V2,V2/2), Aa=-V2

77
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Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:
Np
He(x,A) = He(x) + Y AjHp (x)
j=1

Here Hf is the Hessian of f, and each th is the Hessian of h;.

The second-order sufficient conditions are as follows: Assume x* is
regular and feasible. Also, assume that there is A s.t.

Np
VF(x*) =) —\Vh(x")
j=1

and that
p" He(x*, \)p > 0 for all p satisfying (Vj : Vh;j(x*)"p = 0)

Then, x* is a constrained minimizer of f.
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minimize f(x1,x2)=x1+2x
X1,X2

subject to  h(x1,x2) = xl —I—x2 —-1=0

The Lagrangian function
L(x1,x2,A) = x1 +2x2 + A ( X+ x5 — 1)

Differentiating this to get the first-order optimality conditions,

85_1-!— )\X1—0 a£—2—|-2/\X2—0
oxq Oxo

oL 1, B

a)\ 4X1 =+ X —-1= O

Solving these three equations for the three unknowns (xi,x2, A),
we obtain two possible solutions:

xa = (x1,%) = (=v2,-V2/2), Aa=V2
xg = (x1,%) = (V2,v2/2), Aa=-V2

Which one is a minimum?
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Second Order Conditions - Example
Compute the Hessian:

1
Ao

— 2
HE_(O 2)\)

The Hessian is positive definite only for the case Ag = /2.

b
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minimize f(x1,x) =x2 +3(x —2)?
suxgjzzct to  h(xy,xx) = pBx2 —x =0,
where (3 is a parameter. The Lagrangian for this problem is
L(x1,x0,\) = x¢ +3(x2 — 2)° + A (BxF — x2) .
Differentiating for the first-order optimality conditions, we get
23 (1+ Af) ] _o
6(x2—2)— A\
VAL = fx2 —xp = 0.

VL = [

Solving these three equations for the three unknowns (xi,x2, A),
the solution is x4 = (0,0), Aa = —12, independent of f.

The Hessian of the Lagrangian,

H£:[2(1—0125) 2]

We need this to be positive definite in feasible directions.
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minimize f(x1,%) = x2 +3(x —2)?

X1,X2

subject to  h(x1,x0) = Bx? — xp = 0,

The Hessian of the Lagrangian,

HL:[2(1012B) g]

What are the feasible directions?
Vh=(28xy,—1) and thus Vh(x*) = (0, —-1).
Thus all p satisfying VA" p = 0 are (a,0) for a € R.

Thus, for positive curvature in the feasible direction, we need
p Hep=2a2(1-128) >0

which is equivalent to 8 < 1/12.
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Inequality Constraints

Recall that the constrained optimization problem is

minimize f(x)

by varying  x
subject to  gi(x) <0 i=1,...,n,
hj(X):O j:].,...,nh

We say that a constraint gj(x) < 0 is active for x if gi(x) =0,

otherwise it is inactive for x.

As before, if x* is a minimizer, any small step in a feasible

direction p must not decrease f, i.e.,

VFf(x*)'p>0

How do we identify feasible directions for inequality constraints?



Feasible Directions
For inactive constraints, arbitrary direction p is feasible.
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Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gj(x) = 0 we have p feasible at x if

g:(X+p)%gl(x)‘f‘Vg:(X)TPSOa i:]-a"-vng
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Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gj(x) = 0 we have p feasible at x if
gilx+p)~g(x)+Veg(x)'p<0, i=1,..., ng
thus p is feasible iff Vgi(x)"p < 0 for all active constr. g;(x) = 0.

VeTp >0

S F

[nfeasible 01Vg1 +02Vgo

directions Vo

X
Feasible
directions

Feasible
directions
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Lagrange Multipliers

When could f be decreased in a feasible direction?

Vg2 _vr Ve
o1Vg1 +02Vge '

81

-Vf

/Feasible ¥/

descent
/ directions Vf

Left: f decreases in the blue cone. Right: f does not decrease in
any feasible direction.
At an optimum there are Lagrange multipliers 01,02 > 0 :

~Vf =01Vgi +02Vg
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Lagrange Multipliers

We know that if x* is a constrained minimizer, then

VFf(x)'p=0 for all p feasible at x
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Lagrange Multipliers

We know that if x* is a constrained minimizer, then

VFf(x)'p=0 for all p feasible at x
One can prove the following

Theorem 6

Consider the COP with f and all gj, h; twice continuously
differentiable.

Assume that x* is a constrained minimizer and that x* is regular
which means that Vgi(x*), Vhj(x*) are linearly independent.
Then there are Lagrange multipliers Ay, ..., A, € R and
01,-..,0n, € R satisfying

—Vf(x Z AV hi(x*) + ZO’ Vgi(x where o; > 0
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Lagrangian Function

Note that inequality gj(x) < 0 can be equivalently expressed using
a slack variable s; by

g(x)+s =0

The Lagrangian function then generalizes from equality to
inequality COP as follows.

L(x,\,0,8) = F(x)+h(x)"\+ (g(x) +509) o

Here, h(x) = (hi(x), ..., hn,(x)) ", g(x) = (g1(x), ..., &n, (x)) ",
s =(s1,...,5n), and © is the component-wise multiplication.

Now compute the stable point of £ by considering

ViL=0
VAL=0
VoL =0
VsL=0

(see the whiteboard)
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KKT

If x* is a constrained minimizer and x* is regular. Then there are
A, 0, s satisfying

ng

Jg;
an ZAJ JZ; Jax( =0 (=1,....n
hj(X):O j:].,...,nh
gi(x)+s?=0 i=1,...,ng
20‘;5,':0 i:].,...,ng
;>0

So, solving the above system allows us to identify potential
constrained minimizers.
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KKT

If x* is a constrained minimizer and x* is regular. Then there are
A, 0, s satisfying

ng

Jgj
§ /\ E J = (=1,...
an J = JaX( ) 0 ) , N

hi(x*) =0 j=1,...,n4
gi(x)+s?=0 i=1,...,ng
20i5i=0 i=1,...,ng

g >0

So, solving the above system allows us to identify potential
constrained minimizers.

To decide whether x* solving KKT is a minimizer, check whether
p He(x*, A\)p >0

For all feasible directions p (similarly to the equality case).
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Example

minimize f(x1,x2) =x1+2x
X1,X2
subject to g (x1,%) = 7x¢ +x3 —1<0.

The Lagrangian function for this problem is

1
L(x1,%,0,8) =x1+2x2+0 <4x12+x22 1+52>
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Example

oL
oxq
oL

1
7:14‘50')(1:0
— =2+420x0=0

8xz
oL

e =
or _
ds

1
Zx12+x§—1=o

20s = 0.
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Example

oL 1

_— = 1 — =

Bt + 2UX1 0

875 =2420x =0

8xz

oL 1

Sy =gt -1=0

(?)f =20s =0.
Setting 0 = 0 does not yield any solution. Setting s =0 and o #0
we obtain

x1 -2 x1 V2
MHNERNENES
o V2 o -2
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Example

oL 1
87)(1_1_'_50-)(1_0
87‘622-|-20X2=0
8xz

oL 1

Sy =gt -1=0
%:20520.

Setting 0 = 0 does not yield any solution. Setting s =0 and o #0
we obtain

x1 -2 X1 V2
XA = X2 = —\ﬁ/Q y XB = X2 = \ﬁ/2
g \/§ o _\/§

Now, 0 must be non-negative, so only x4 is the solution. There is
no feasible descent direction at x4. We already know that the
Hessian Lagrangian is positive definite, so this is a minimizer.
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minimize  f (x1,x2) = x1 + 2x2
X1,X2

subject to g1 (x1,%) = %xlz + x22 —-1<0
g (x2) = —x2 < 0.

The feasible region is the top half of the ellipse defined by g3.
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minimize  f (x1,x2) = x1 + 2x2
X1,X2

subject to g1 (x1,%) = %xlz + x22 —-1<0
& (x2) = —x2 <0.
The feasible region is the top half of the ellipse defined by g3.
The Lagrangian for this problem is

1
L(x,0,5) =x1+2x + 01 <4X12+X22 — 1+Sf> + 092 (—X2+522).
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minimize  f (x1,x2) = x1 + 2x2

X1,X2
subject to g1 (x1,%) = xl + x2 —-1<0
g (x2) = —x2 < 0.
The feasible region is the top half of the ellipse defined by g3.
The Lagrangian for this problem is

1
L(x,0,5) =x1+2x + 01 <4X12+X22 — 1+Sf> + 092 (—X2+522).

Differentiating the Lagrangian with respect to all the variables, we
get the first-order optimality conditions,

0

1 oL 2 _
oL L =0 p) X+ =0
8X1 2 85
% :2+201X2—J2 -0 7851 :20’151 =0
8X2 a
oL 1 - = =

— o142 =0 o5, 2022 =0

801 4
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Assumption  Meaning X1 X2 o1 o2 S S Point
s1=0 g1 is active -2 0 1 2 0 0 x*
=0 & is active 2 0 -1 2 0 0 Xc
01=0 g1 is inactive

o0 =0 & is inactive - - - - -

s1=0 g1 is active V2 % -2 0 0 274 XB
o2=0 &> is inactive

o1 =0 g1 is inactive

=0 g is active - -

A
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