
Unconstrained Optimization
Algorithms

Descent Direction

Second-Order Methods

1

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

2

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

2

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0.

We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

2

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

2

Newton’s Method

Algorithm 1 Newton’s Method

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: pk ← −H−1

k ∇f (xk)
4: xk+1 ← xk + pk
5: k ← k + 1
6: end while

3

Newton’s Method - Example

Newton’s method finds the minimum of a quadratic function in a
single step.

Note that the Newton’s method is scale-invariant!

4

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

5

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

5

Convergence Issues

Also, the computation of the Hessian is costly.
6

Local Quadratic Convergence of Newton’s Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

7

Local Quadratic Convergence of Newton’s Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

7

Local Quadratic Convergence of Newton’s Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

7

Local Quadratic Convergence of Newton’s Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

7

Newton’s Method with Line Search

Algorithm 2 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: αinit ← 1
3: while ∥∇fk∥∞ > ε do
4: pk ← −H−1

k ∇f (xk)
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

8

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
9

Two Spring Problem - Newton’s Method

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent.

10

Rosenbrock Function - Newton’s Method
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 10,662 iterations of gradient descent.

11

Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 2 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

12

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?

13

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?

13

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?

13

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?

13

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?
13

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?

14

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?

14

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?
14

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

15

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

15

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8?

Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

15

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

15

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

15

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (−1/10, 1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.
15

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

16

Modified Newton’s Method

Algorithm 3 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: Hk ← ∇2f (xk)
4: if Hk is not sufficiently positive definite then
5: Hk ← Hk +∆Hk so that Hk is sufficiently pos. definite
6: end if
7: Solve Hkpk = −∇f (xk) for pk
8: Set xk+1 = xk + αkpk , here αk sat. the Wolfe cond.
9: k ← k + 1

10: end while

17

Convergence of Modified Newton’s Method

18

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.

▶ O(n3) arithmetic operations to solve the linear system for the
direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

19

Quasi-Newton Methods

20

Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .

21

Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .

21

Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .

21

Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .

21

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.

22

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.

22

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.

22

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.

22

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.

22

Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.
22

Secant Condition

Consider the secant condition:

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

The notation is usually simplified by

sk = xk+1 − xk yk = ∇fk+1 −∇fk

So that the secant condition becomes

H̃k+1sk = yk

Does it have a symmetric positive definite solution?

23

Secant Condition

Consider the secant condition:

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

The notation is usually simplified by

sk = xk+1 − xk yk = ∇fk+1 −∇fk

So that the secant condition becomes

H̃k+1sk = yk

Does it have a symmetric positive definite solution?

23

Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 3
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

24

Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 3
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

24

Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 3
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

24

Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 3
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.
24

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .

25

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .

25

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .

25

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .

25

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .

25

Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.

26

Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.

26

Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.

26

Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.

26

Symmetric Rank One Update

Algorithm 4 SR1

k ← 0
αinit ← 1
H̃0 ← I
while ∥∇fk∥∞ > τ do

Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
u ← y − H̃ks
H̃k+1 ← H̃k +

uu⊤

u⊤s
k ← k + 1

end while

Note that the denominator u⊤sk can be 0, in which case the update is

impossible. The usual strategy is to skip the update and set H̃k+1 = H̃k .
27

Example
We will look at a three-dimensional quadratic problem
f (x) = 1

2x
⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

The initial guesses are H̃0 = I and x0 = (0, 0, 0)⊤.

At the initial point, ∥∇f (x0)∥∞ = ∥−c∥∞ = 9, so this point is not
optimal.The first search direction is

p0 =

−8−9
−8

 .

The exact line search gives α0 = 0.3333.

28

Example
We will look at a three-dimensional quadratic problem
f (x) = 1

2x
⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

The initial guesses are H̃0 = I and x0 = (0, 0, 0)⊤.

At the initial point, ∥∇f (x0)∥∞ = ∥−c∥∞ = 9, so this point is not
optimal.

The first search direction is

p0 =

−8−9
−8

 .

The exact line search gives α0 = 0.3333.

28

Example
We will look at a three-dimensional quadratic problem
f (x) = 1

2x
⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

The initial guesses are H̃0 = I and x0 = (0, 0, 0)⊤.

At the initial point, ∥∇f (x0)∥∞ = ∥−c∥∞ = 9, so this point is not
optimal.The first search direction is

p0 =

−8−9
−8

 .

The exact line search gives α0 = 0.3333.
28

Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.

29

Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.

29

Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.
29

Example

This gives the new estimates:

x2 =

−3.81−3.21
−1.90

 , ∇f2 =

 0.36
−0.65
0.36

 , s1 =

−1.14−0.21
0.75

 , y1 =

−2.29−0.65
3.03

 ,

and

H̃2 =

 1.6568 0.6102 −0.3432
0.6102 1.9153 0.6102
−0.3432 0.6102 3.6568

 .

At the point x2, ∥∇f (x2)∥∞ = 0.65 so we keep going, with

p2 =

−0.48510.5749
−0.2426

 ,

and α = 0.3810.

30

Example

This gives

x3 =

−4−3
−2

 , ∇f3 =

0
0
0

 , s2 =

−0.180.21
−0.09

 , y2 =

−0.360.65
−0.36

 ,

and H̃3 = Q. Now ∥∇f (x3)∥∞ = 0, so we stop.

31

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.

32

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.

32

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.

32

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.

32

Symmetric Rank Two Update

Consider

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

Once again, verifying H̃k+1sk = yk is not difficult.

Lemma 1
Assume that H̃k is symmetric positive definite.
Then H̃k+1 is symmetric positive definite iff y⊤k sk > 0.

We know that line search satisfying the strong Wolfe conditions
preserves y⊤k sk > 0.

Thus, starting with a symmetric positive definite H̃0 (e.g., a scalar
multiple of I), every H̃k is symmetric positive definite and satisfies
the secant condition.

33

BFGS

Algorithm 5 BFGS v1

k ← 0
αinit ← 1
H̃0 ← I
while ∥∇fk∥∞ > τ do

Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
H̃k+1 ← H̃k −

(H̃k s)(H̃k s)
⊤

s⊤H̃k s
+ yy⊤

y⊤s

k ← k + 1
end while

Note that we still have to solve a linear system for pk .

34

Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8

and α0 = 0.3333.

35

Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8

and α0 = 0.3333.

35

Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8

and α0 = 0.3333.

35

Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8

and α0 = 0.3333.

35

Example

The new estimate of the solution and the new Hessian
approximation are

x1 =

 −2.6667−3.0000
−2.6667

 and H̃1 =

 1.1021 0.3445 0.5104
0.3445 1.7751 1.0335
0.5104 1.0335 2.3270

 .

At iteration 1, ∥∇f (x1)∥∞ = 2.6667, so we continue. The next
search direction is

p1 =

 −3.2111−0.6124
2.1223

and α1 = 0.3577.

36

Example

The new estimate of the solution and the new Hessian
approximation are

x1 =

 −2.6667−3.0000
−2.6667

 and H̃1 =

 1.1021 0.3445 0.5104
0.3445 1.7751 1.0335
0.5104 1.0335 2.3270

 .

At iteration 1, ∥∇f (x1)∥∞ = 2.6667, so we continue. The next
search direction is

p1 =

 −3.2111−0.6124
2.1223

and α1 = 0.3577.

36

Example
This gives the estimates.

x2 =

 −3.8152−3.2191
−1.9076

 and H̃2 =

 1.6393 0.6412 −0.3607
0.6412 1.8600 0.6412
−0.3607 0.6412 3.6393

 .

At iteration 2, ∥∇f (x2)∥∞ = 0.6572, so we continue, computing

p2 =

 −0.52890.6268
−0.2644

and α2 = 0.3495. This gives

x3 =

 −4−3
−2

 and H̃3 =

 2 0 0
0 3 0
0 0 4

 .

Now ∥∇f (x3)∥∞ = 0, so we stop.

Notice that we got the same x1, x2, x3 as for SR1. This follows from using the

exact line search and the quadratic problem. It does not hold in general.
37

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
38

Two Spring Problem - BFGS

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent and 12
iterations of Newton’s method.

39

Rosenbrock Function - BFGS
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.

Compare with 10,662 iterations of gradient descent and 24 iterations of

Newton’s method. 40

Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.

41

Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.

41

Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.

41

Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.

41

Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤

(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤

(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.

42

Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤

(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤

(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.

42

Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤

(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤

(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.

42

Rank One Update V2

Algorithm 6 Rank 1 update v1

1: k ← 0
2: αinit ← 1
3: H̃0 ← I
4: while ∥∇fk∥∞ > τ do
5: pk ← −H̃−1

k ∇fk
6: α← linesearch(pk , αinit)
7: xk+1 ← xk + αpk
8: s ← xk − xk−1

9: y ← ∇fk −∇fk−1

10: H̃−1
k+1 ← H̃−1

k +
(s−H̃−1

k y)(s−H̃−1
k y)

⊤

(s−H̃−1
k y)

⊤
y

11: k ← k + 1
12: end while

43

BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

yields

H̃−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H̃−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .

44

BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

yields

H̃−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H̃−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .

44

BFGS V2

Algorithm 7 BFGS v2

1: k ← 0
2: αinit ← 1
3: H̃0 ← I
4: while ∥∇fk∥∞ > τ do
5: pk ← −H̃−1

k ∇fk
6: α← linesearch(pk , αinit)
7: xk+1 ← xk + αpk
8: k ← k + 1
9: s ← xk − xk−1

10: y ← ∇fk −∇fk−1

11: H̃−1
k+1 ←

(
I − sy⊤

s⊤y

)
H̃−1
k

(
I − ys⊤

s⊤y

)
+ ss⊤

s⊤y

12: end while

45

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.

46

Another View on BFGS (Optional)

We search for H̃−1
k+1 where H̃k+1 satisfies H̃k+1sk = yk . Search for

a solution Ṽ for Ṽ yk = sk .

The idea is to use Ṽ close to H̃−1
k (in some sense):

min
H̃

∥∥∥Ṽ − H̃−1
k

∥∥∥
subject to Ṽ = Ṽ⊤, Ṽ yk = sk

Here the norm is weighted Frobenius norm:

∥A∥ ≡
∥∥∥W 1/2AW 1/2

∥∥∥
F
,

where ∥ · ∥F is defined by ∥C∥2F =
∑n

i=1

∑n
j=1 c

2
ij . The weight W

can be chosen as any matrix satisfying the relation Wyk = sk .

BFGS is obtained with W = Ḡ−1
k where Ḡk is the average Hessian

defined by Ḡk =
[∫ 1

0 ∇
2f (xk + ταkpk) dτ

]
Solving this gives precisely the BFGS formula for H̃−1

k+1.
47

Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 4 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

48

Global Convergence of Quasi-Newton’s Method

Assume that all αk satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians H̃k are positive
definite with a uniformly bounded condition number:∣∣∣∣∣∣H̃k

∣∣∣∣∣∣ ∣∣∣∣∣∣H̃−1
k

∣∣∣∣∣∣ ≤ M for all k

Then θk between pk = −H̃−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

49

Global Convergence of Quasi-Newton’s Method

Assume that all αk satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians H̃k are positive
definite with a uniformly bounded condition number:∣∣∣∣∣∣H̃k

∣∣∣∣∣∣ ∣∣∣∣∣∣H̃−1
k

∣∣∣∣∣∣ ≤ M for all k

Then θk between pk = −H̃−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

49

Global Convergence of Quasi-Newton’s Method

Assume that all αk satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians H̃k are positive
definite with a uniformly bounded condition number:∣∣∣∣∣∣H̃k

∣∣∣∣∣∣ ∣∣∣∣∣∣H̃−1
k

∣∣∣∣∣∣ ≤ M for all k

Then θk between pk = −H̃−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

49

Behavior of BFGS

▶ It may happen that H̃k becomes a poor approximation of the
Hessian Hk . If, e.g., y

⊤
k is tiny, then H̃k+1 will be huge.

However, it has been proven experimentally that if H̃k wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.
The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).

▶ There are more sophisticated ways of setting the initial
Hessian approximation H0.
See Numerical Optimization, Nocedal & Wright, page 201.

50

Behavior of BFGS

▶ It may happen that H̃k becomes a poor approximation of the
Hessian Hk . If, e.g., y

⊤
k is tiny, then H̃k+1 will be huge.

However, it has been proven experimentally that if H̃k wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.
The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).

▶ There are more sophisticated ways of setting the initial
Hessian approximation H0.
See Numerical Optimization, Nocedal & Wright, page 201.

50

Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.

51

Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.

51

Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.

51

Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.

51

Limited-Memory BFGS

52

Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the
whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods,

In addition, these methods also improve the computational
efficiency of medium-sized problems (hundreds or thousands of
design variables) with minimal sacrifice in accuracy.

53

L-BFGS
Recall that we compute iteratively the approximation to the inverse
Hessian by

H−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

However, eventually, we are interested in

pk = H−1
k ∇f

Note that given the sequences s1, . . . , sk and y1, . . . , yk and H−1
0

we can recursively compute H−1
k+1 for every k .

What if we limit the sequences in memory to just m last elements:

sk−m+1, sk−m+2, . . . , sk yk−m+1, yk−m+2, . . . , yk

In practice, m between 5 and 20 is usually sufficient. We also
initialize the recurrence with the last iterate:

54

L-BFGS
Let us rewrite the BFGS update formula as follows:

H̃−1
k+1 = V T

k H̃−1
k Vk + ρksks

⊤
k

where

ρk = s⊤k yk and Vk = I − ρksky
⊤
k

sk = xk+1 − xk and yk = ∇fk+1 −∇fk
By substitution, we obtain

H̃−1
k =

(
V T
k−1 · · ·V T

k−m

)
H̃0
k (Vk−m · · ·Vk−1)

+ ρk−m

(
V T
k−1 · · ·V T

k−m+1

)
sk−ms

T
k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1

55

L-BFGS Algorithm

Algorithm 8 L-BFGS two-loop recursion

Input: : sk−1, . . . , sk−m and yk−1, . . . , yk−m

Output: : pk the search direction −H̃−1
k ∇fk

1: q ← ∇fk
2: for i = k − 1, k − 2, . . . , k −m do
3: αi ← ρi s

T
i q

4: q ← q − αiyi
5: end for
6: r ← H0

kq
7: for i = k −m, k −m + 1, . . . , k − 1 do
8: β ← ρiy

T
i r

9: r ← r + si (αi − β)
10: end for
11: stop with result H̃−1

k ∇fk = r

56

L-BFGS Algorithm

Algorithm 9 L-BFGS

1: Choose starting point x0, integer m > 0
2: k ← 0
3: repeat

4: Choose H0
k e.g.

s⊤k−1yk−1

y⊤
k−1yk−1

5: Compute pk ← −Hk∇fk using the previous algorithm
6: Compute xk+1 ← xk + αkpk , where αk is chosen to satisfy

the strong Wolfe conditions
7: if k > m then
8: Discard the vector pair {sk−m, yk−m} from storage
9: end if

10: Compute and save sk ← xk+1 − xk , yk ← ∇fk+1 −∇fk
11: k ← k + 1
12: until convergence

57

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

In L-BFGS, the memory length m was 5. The results are similar.
58

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
59

60

Rosenbrock: f (x1, x2) = (1− x1)
2 + 100

(
x2 − x21

)2

61

Rosenbrock:
f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

62

Computational Complexity

Algorithm Computational Complexity
Steepest Descent O(n) per iteration
Newton’s Method O(n3) to compute Hessian and solve system
BFGS O(n2) to update Hessian approximation

Table: Summary of the computational complexity for each optimization
algorithm.

▶ Steepest Descent: Simple but often slow, requiring many
iterations.

▶ Newton’s Method: Fast convergence but expensive per
iteration.

▶ BFGS: Quasi-Newton, no Hessian needed, good speed and
iteration count balance.

63

Constrained Optimization

64

Constrained Optimization Problem

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

x∗ is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F

where F is the feasibility region

F = {x | gi (x) ≤ 0, hj(x) = 0, i = 1, . . . , ng , j = 1, . . . , nh}

Thus, to find a constrained minimizer, we have to inspect
unconstrained minima of f inside of F and points along the
boundary of F .

65

COP - Example

minimize
x1,x2

f (x1, x2) = x21 − 1
2x1 − x2 − 2

subject to g1 (x1, x2) = x21 − 4x1 + x2 + 1 ≤ 0
g2 (x1, x2) =

1
2x

2
1 + x22 − x1 − 4 ≤ 0

66

Equality Constraints

Let us restrict our problem only to the equality constraints:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Assume that f and hj have continuous second derivatives.

Now, we try to imitate the theory from the unconstrained case and
characterize minima using gradients.

This time, we must consider the gradient of f and hj .

67

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimum of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

68

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimum of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

68

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimum of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗)⊤p ≥ 0

68

The hyperplane defined by ∇f ⊤p = 0 contains directions p of zero
variation in f .

In the unconstrained case, x∗ is minimizer only if ∇f (x∗) = 0
because otherwise there would be a direction p satisfying
∇f (x∗)p < 0, a decrease direction.

69

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region.

How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

70

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

70

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

70

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

70

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F if ∇f (x)⊤p < 0 and if
p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible

directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that

p is a feasible direction iff ∇hj(x)⊤p = 0 for all j

70

Feasible Points and Directions

Here, the only feasible direction at x is p = 0.

71

Feasible Points and Directions

Here the feasible directions at x∗ point along the red line, i.e.,

∇h1(x∗)p = 0 ∇h2(x∗)p = 0

72

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Necessary Condition for Constrained Minima
Consider a direction p. Observe that
▶ If hj(x)

⊤p ̸= 0, then moving a short step in the direction p
violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x∗ must be feasible and every direction
satisfying hj(x

∗)⊤p = 0 for all j must also satisfy ∇f (x∗)⊤p ≥ 0.

Note that if p is a feasible direction, then −p is also, and thus
∇f (x∗)⊤(−p) ≥ 0. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

73

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.

74

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.

74

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = −(λ1∇h1 + λ2∇h2)

The minus sign is arbitrary for equality constraints but will be significant when

dealing with inequality constraints.
74

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

But then, from the geometry of the problem, we obtain

Theorem 5
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) = −
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.

75

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x∗)⊤p = 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

But then, from the geometry of the problem, we obtain

Theorem 5
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) = −
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.
75

Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+h(x)⊤λ here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in λ.

76

Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+h(x)⊤λ here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in λ.

76

Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+h(x)⊤λ here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in λ.

76

Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+h(x)⊤λ here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that the stationary point of L gives us the Lagrange multipliers:

∇xL = ∇f (x) +
nh∑
j=1

λj∇hj(x)

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) = −
nh∑
j=1

λj∇hj(x)

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in λ.
76

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)

Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

77

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

77

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

77

78

Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any “stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

HL(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ s.t.

∇f (x∗) =
nh∑
j=1

−λj∇hj(x∗)

and that

p⊤HL(x
∗, λ)p > 0 for all p satisfying (∀j : ∇hj(x∗)⊤p = 0)

Then, x∗ is a constrained minimizer of f .
79

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

Which one is a minimum?
80

Second Order Conditions - Example
Compute the Hessian:

HL =

(
1
2λ 0
0 2λ

)
The Hessian is positive definite only for the case λA =

√
2.

81

minimize
x1,x2

f (x1, x2) = x21 + 3 (x2 − 2)2

subject to h (x1, x2) = βx21 − x2 = 0,

where β is a parameter. The Lagrangian for this problem is

L (x1, x2, λ) = x21 + 3 (x2 − 2)2 + λ
(
βx21 − x2

)
.

Differentiating for the first-order optimality conditions, we get

∇xL =

[
2x1(1 + λβ)
6 (x2 − 2)− λ

]
= 0

∇λL = βx21 − x2 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
the solution is xA = (0, 0), λA = −12, independent of β.

The Hessian of the Lagrangian,

HL =

[
2(1− 12β) 0

0 6

]
We need this to be positive definite in feasible directions.

82

minimize
x1,x2

f (x1, x2) = x21 + 3 (x2 − 2)2

subject to h (x1, x2) = βx21 − x2 = 0,

The Hessian of the Lagrangian,

HL =

[
2(1− 12β) 0

0 6

]
What are the feasible directions?

∇h = (2βx1,−1) and thus ∇h(x∗) = (0,−1).
Thus all p satisfying ∇h⊤p = 0 are (α, 0) for α ∈ R.

Thus, for positive curvature in the feasible direction, we need

p⊤HLp = 2α2(1− 12β) > 0

which is equivalent to β < 1/12.

83

β = −0.5 β = 1/12

β = 0.5

84

Inequality Constraints

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

We say that a constraint gi (x) ≤ 0 is active for x if gi (x) = 0,
otherwise it is inactive for x .

As before, if x∗ is a minimizer, any small step in a feasible
direction p must not decrease f , i.e.,

∇f (x∗)⊤p ≥ 0

How do we identify feasible directions for inequality constraints?

85

Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gi (x) = 0 we have p feasible at x if

gi (x + p) ≈ gi (x) +∇gi (x)⊤p ≤ 0, i = 1, . . . , ng

thus p is feasible iff ∇gi (x)⊤p ≤ 0 for all active constr. gi (x) = 0.

86

Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gi (x) = 0 we have p feasible at x if

gi (x + p) ≈ gi (x) +∇gi (x)⊤p ≤ 0, i = 1, . . . , ng

thus p is feasible iff ∇gi (x)⊤p ≤ 0 for all active constr. gi (x) = 0.

86

Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gi (x) = 0 we have p feasible at x if

gi (x + p) ≈ gi (x) +∇gi (x)⊤p ≤ 0, i = 1, . . . , ng

thus p is feasible iff ∇gi (x)⊤p ≤ 0 for all active constr. gi (x) = 0.

86

Lagrange Multipliers
When could f be decreased in a feasible direction?

Left: f decreases in the blue cone. Right: f does not decrease in
any feasible direction.

At an optimum there are Lagrange multipliers σ1, σ2 ≥ 0 :

−∇f = σ1∇g1 + σ2∇g2
87

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then

∇f (x)⊤p = 0 for all p feasible at x

One can prove the following

Theorem 6
Consider the COP with f and all gi , hj twice continuously
differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular
which means that ∇gi (x∗),∇hj(x∗) are linearly independent.
Then there are Lagrange multipliers λ1, . . . , λnh ∈ R and
σ1, . . . , σng ∈ R satisfying

−∇f (x∗) =
nh∑
j=1

λj∇hj(x∗) +
nh∑
i=1

σi∇gi (x∗) where σi ≥ 0

88

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then

∇f (x)⊤p = 0 for all p feasible at x

One can prove the following

Theorem 6
Consider the COP with f and all gi , hj twice continuously
differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular
which means that ∇gi (x∗),∇hj(x∗) are linearly independent.
Then there are Lagrange multipliers λ1, . . . , λnh ∈ R and
σ1, . . . , σng ∈ R satisfying

−∇f (x∗) =
nh∑
j=1

λj∇hj(x∗) +
nh∑
i=1

σi∇gi (x∗) where σi ≥ 0

88

Lagrangian Function
Note that inequality gi (x) ≤ 0 can be equivalently expressed using
a slack variable si by

g(x) + s2i = 0

The Lagrangian function then generalizes from equality to
inequality COP as follows.

L(x , λ, σ, s) = f (x) + h(x)⊤λ+ (g(x) + s ⊙ s)⊤σ

Here, h(x) = (h1(x), . . . , hnh(x))
⊤, g(x) = (g1(x), . . . , gng (x))

⊤,
s = (s1, . . . , sng), and ⊙ is the component-wise multiplication.

Now compute the stable point of L by considering

∇xL = 0

∇λL = 0

∇σL = 0

∇sL = 0

(see the whiteboard)
89

KKT
If x∗ is a constrained minimizer and x∗ is regular. Then there are
λ, σ, s satisfying

∂f

∂xℓ
(x∗) +

nh∑
j=1

λj
∂hj
∂xℓ

(x∗) +

ng∑
j=1

σj
∂gj
∂xℓ

(x∗) = 0 ℓ = 1, . . . , n

hj(x
∗) = 0 j = 1, . . . , nh

gi (x
∗) + s2i = 0 i = 1, . . . , ng

2σi si = 0 i = 1, . . . , ng

σi ≥ 0

So, solving the above system allows us to identify potential
constrained minimizers.

To decide whether x∗ solving KKT is a minimizer, check whether

p⊤HL(x
∗, λ)p > 0

For all feasible directions p (similarly to the equality case).

90

KKT
If x∗ is a constrained minimizer and x∗ is regular. Then there are
λ, σ, s satisfying

∂f

∂xℓ
(x∗) +

nh∑
j=1

λj
∂hj
∂xℓ

(x∗) +

ng∑
j=1

σj
∂gj
∂xℓ

(x∗) = 0 ℓ = 1, . . . , n

hj(x
∗) = 0 j = 1, . . . , nh

gi (x
∗) + s2i = 0 i = 1, . . . , ng

2σi si = 0 i = 1, . . . , ng

σi ≥ 0

So, solving the above system allows us to identify potential
constrained minimizers.

To decide whether x∗ solving KKT is a minimizer, check whether

p⊤HL(x
∗, λ)p > 0

For all feasible directions p (similarly to the equality case).
90

Example

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to g (x1, x2) =
1
4x

2
1 + x22 − 1 ≤ 0.

The Lagrangian function for this problem is

L (x1, x2, σ, s) = x1 + 2x2 + σ

(
1

4
x21 + x22 − 1 + s2

)

91

Example

∂L
∂x1

= 1 +
1

2
σx1 = 0

∂L
∂x2

= 2 + 2σx2 = 0

∂L
∂σ

=
1

4
x21 + x22 − 1 = 0

∂L
∂s

= 2σs = 0.

Setting σ = 0 does not yield any solution. Setting s = 0 and σ ̸= 0
we obtain

xA =

 x1
x2
σ

 =

 −
√
2

−
√
2/2√
2

 , xB =

 x1
x2
σ

 =

√
2√

2/2

−
√
2

Now, σ must be non-negative, so only xA is the solution. There is
no feasible descent direction at xA. We already know that the
Hessian Lagrangian is positive definite, so this is a minimizer.

92

Example

∂L
∂x1

= 1 +
1

2
σx1 = 0

∂L
∂x2

= 2 + 2σx2 = 0

∂L
∂σ

=
1

4
x21 + x22 − 1 = 0

∂L
∂s

= 2σs = 0.

Setting σ = 0 does not yield any solution. Setting s = 0 and σ ̸= 0
we obtain

xA =

 x1
x2
σ

 =

 −
√
2

−
√
2/2√
2

 , xB =

 x1
x2
σ

 =

√
2√

2/2

−
√
2

Now, σ must be non-negative, so only xA is the solution. There is
no feasible descent direction at xA. We already know that the
Hessian Lagrangian is positive definite, so this is a minimizer.

92

Example

∂L
∂x1

= 1 +
1

2
σx1 = 0

∂L
∂x2

= 2 + 2σx2 = 0

∂L
∂σ

=
1

4
x21 + x22 − 1 = 0

∂L
∂s

= 2σs = 0.

Setting σ = 0 does not yield any solution. Setting s = 0 and σ ̸= 0
we obtain

xA =

 x1
x2
σ

 =

 −
√
2

−
√
2/2√
2

 , xB =

 x1
x2
σ

 =

√
2√

2/2

−
√
2

Now, σ must be non-negative, so only xA is the solution. There is
no feasible descent direction at xA. We already know that the
Hessian Lagrangian is positive definite, so this is a minimizer. 92

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to g1 (x1, x2) =
1
4x

2
1 + x22 − 1 ≤ 0

g2 (x2) = −x2 ≤ 0.

The feasible region is the top half of the ellipse defined by g1.

The Lagrangian for this problem is

L(x , σ, s) = x1 + 2x2 + σ1

(
1

4
x21 + x22 − 1 + s21

)
+ σ2

(
−x2 + s22

)
.

Differentiating the Lagrangian with respect to all the variables, we
get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
σ1x1 = 0

∂L
∂x2

= 2 + 2σ1x2 − σ2 = 0

∂L
∂σ1

=
1

4
x21 + x22 − 1 + s21 = 0

∂L
∂σ2

= −x2 + s22 = 0

∂L
∂s1

= 2σ1s1 = 0

∂L
∂s2

= 2σ2s2 = 0.

93

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to g1 (x1, x2) =
1
4x

2
1 + x22 − 1 ≤ 0

g2 (x2) = −x2 ≤ 0.

The feasible region is the top half of the ellipse defined by g1.
The Lagrangian for this problem is

L(x , σ, s) = x1 + 2x2 + σ1

(
1

4
x21 + x22 − 1 + s21

)
+ σ2

(
−x2 + s22

)
.

Differentiating the Lagrangian with respect to all the variables, we
get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
σ1x1 = 0

∂L
∂x2

= 2 + 2σ1x2 − σ2 = 0

∂L
∂σ1

=
1

4
x21 + x22 − 1 + s21 = 0

∂L
∂σ2

= −x2 + s22 = 0

∂L
∂s1

= 2σ1s1 = 0

∂L
∂s2

= 2σ2s2 = 0.

93

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to g1 (x1, x2) =
1
4x

2
1 + x22 − 1 ≤ 0

g2 (x2) = −x2 ≤ 0.

The feasible region is the top half of the ellipse defined by g1.
The Lagrangian for this problem is

L(x , σ, s) = x1 + 2x2 + σ1

(
1

4
x21 + x22 − 1 + s21

)
+ σ2

(
−x2 + s22

)
.

Differentiating the Lagrangian with respect to all the variables, we
get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
σ1x1 = 0

∂L
∂x2

= 2 + 2σ1x2 − σ2 = 0

∂L
∂σ1

=
1

4
x21 + x22 − 1 + s21 = 0

∂L
∂σ2

= −x2 + s22 = 0

∂L
∂s1

= 2σ1s1 = 0

∂L
∂s2

= 2σ2s2 = 0.

93

Assumption Meaning x1 x2 σ1 σ2 s1 s2 Point

s1 = 0 g1 is active -2 0 1 2 0 0 x∗

s2 = 0 g2 is active 2 0 -1 2 0 0 xC
σ1 = 0 g1 is inactive
σ2 = 0 g2 is inactive - - - - -

s1 = 0 g1 is active
√
2

√
2

2
−
√
2 0 0 2−

1
4 xB

σ2 = 0 g2 is inactive

σ1 = 0 g1 is inactive
s2 = 0 g2 is active - -

94

