Unconstrained Optimization Algorithms

Descent Direction

Second-Order Methods

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$. We obtain:

$$
H_{k} s=-\nabla f_{k}
$$

Denote by s_{k} the solution, and set $x_{k+1}=x_{k}+s_{k}$.

Newton's Method

$$
\begin{aligned}
& \text { Algorithm } 1 \text { Newton's Method } \\
& \hline \text { Input: } x_{0} \text { starting point, } \varepsilon>0 \\
& \text { Output: } x^{*} \text { approximation to a } \\
& \text { 1: } k \leftarrow 0 \\
& \text { 2: while }\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon \text { do } \\
& \text { 3: } \quad p_{k} \leftarrow-H_{k}^{-1} \nabla f\left(x_{k}\right) \\
& \text { 4: } \quad x_{k+1} \leftarrow x_{k}+p_{k} \\
& \text { 5: } \quad k \leftarrow k+1 \\
& \text { 6: end while }
\end{aligned}
$$

Output: x^{*} approximation to a stationary point

Newton's Method - Example

Newton's method finds the minimum of a quadratic function in a single step.

Note that the Newton's method is scale-invariant!

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Convergence Issues

Negative curvature

Also, the computation of the Hessian is costly.

Local Quadratic Convergence of Newton's Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Local Quadratic Convergence of Newton's Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

Local Quadratic Convergence of Newton's Method

Theorem 1
Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically
to x_{*}.
Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

Local Quadratic Convergence of Newton's Method

Theorem 1

Assume f is defined and twice differentiable and assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically
to x_{*}.
Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

However, what happens if we start far away from a minimizer?

Newton's Method with Line Search

```
Algorithm 2 Newton's Method with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: \(\alpha_{\text {init }} \leftarrow 1\)
    3: while \(\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon\) do
    4: \(\quad p_{k} \leftarrow-H_{k}^{-1} \nabla f\left(x_{k}\right)\)
    5: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    6: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    7: \(\quad k \leftarrow k+1\)
    8: end while
```


$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - Newton's Method

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 32 iterations of gradient descent.

Rosenbrock Function - Newton's Method

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 10,662 iterations of gradient descent.

Global Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Theorem 2 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below, continuously differentiable, and L-smooth. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.
What if H_{k} is not positive definite or is (nearly) singular?

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Two questions are in order:

- What is a reasonably large δ ?
- How to modify H_{k} so the minimum is large enough?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(-1 / 10,1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(-1 / 10,1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.
Even though f decreases along p_{k}, it is far from the minimum of the quadratic approximation of f.
Note that the original Newton's direction is
$-\operatorname{diag}(1 / 10,1 / 3,-1)(1,-3,2)^{\top}=(-1 / 10,1,2)$ which is completely different.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?
Various methods for computing ΔH_{k} have been devised in literature. Typically, it is based on some computationally cheaper decomposition than spectral decomposition (e.g., Cholesky).

Modified Newton's Method

Algorithm 3 Newton's Method with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$
2: while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
3: $\quad H_{k} \leftarrow \nabla^{2} f\left(x_{k}\right)$
4: if H_{k} is not sufficiently positive definite then
5: $\quad H_{k} \leftarrow H_{k}+\Delta H_{k}$ so that H_{k} is sufficiently pos. definite
6: end if
7: \quad Solve $H_{k} p_{k}=-\nabla f\left(x_{k}\right)$ for p_{k}
8: \quad Set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, here α_{k} sat. the Wolfe cond.
9: $\quad k \leftarrow k+1$

10: end while

Convergence of Modified Newton's Method

Comments on Newton's Method

- Newton's method is scale invariant.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.
In a sense, Newton's method is an impractical "ideal" with which other methods are compared.

The efficiency issues (and the necessity of second-order derivatives) will be mitigated by using quasi-Newton methods.

Quasi-Newton Methods

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Can we find a compromise?

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $\nabla q(p)=0$ and solving

$$
H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian), which is computationally hard to obtain.
Gradient descent needs only the first derivatives but converges slowly.

Can we find a compromise?
Quasi-Newton methods use first derivatives to approximate the Hessian H_{k} in Newton's method with a matrix \tilde{H}_{k}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.

Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

First, it should be symmetric positive definite.
To always yield decrease direction.

Quasi-Newton Methods

Suppose we have just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.
Consider the Hessian $H_{k+1}=\nabla^{2} f\left(x_{k+1}\right)$ and its approximation denoted by \tilde{H}_{k+1}.
We aim to use \tilde{H}_{k+1} in the next step, that is, in the equation $\tilde{H}_{k+1} p=-\nabla f_{k+1}$ yielding p_{k+1}.

What conditions should \tilde{H}_{k+1} satisfy so that it functions as the "true" Hessian H_{k+1} ?

First, it should be symmetric positive definite.

To always yield decrease direction.

Second, extrapolating from the single variable secant method, we demand

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

This is the secant condition.

Secant Condition

Consider the secant condition:

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

The notation is usually simplified by

$$
s_{k}=x_{k+1}-x_{k} \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
$$

So that the secant condition becomes

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Secant Condition

Consider the secant condition:

$$
\tilde{H}_{k+1}\left(x_{k+1}-x_{k}\right)=\nabla f_{k+1}-\nabla f_{k}
$$

The notation is usually simplified by

$$
s_{k}=x_{k+1}-x_{k} \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
$$

So that the secant condition becomes

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Does it have a symmetric positive definite solution?

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

- The condition $s_{k}^{\top} y_{k}>0$ is satisfied if the line search satisfies the strong Wolfe conditions.

Curvature Condition

Consider the secant condition:

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

The following is true:

- The secant condition has a symmetric positive definite solution iff the following condition is satisfied:

$$
s_{k}^{\top} y_{k}>0
$$

- The condition $s_{k}^{\top} y_{k}>0$ is satisfied if the line search satisfies the strong Wolfe conditions.

As a corollary, we obtain the following:
Theorem 3
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

has a symmetric positive definite solution \tilde{H}_{k+1}.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.
We also want \tilde{H}_{k+1} to be symmetric positive definite.

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Note that even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.
Indeed, there are $n(n+1) / 2$ degrees of freedom in a symmetric matrix, and the secant conditions represent only n conditions.

Moreover, we want to obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.
We also want \tilde{H}_{k+1} to be symmetric positive definite.

We strive to choose \tilde{H}_{k+1} "close" to \tilde{H}_{k}.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Now, the secant condition is satisfied:

$$
\tilde{H}_{k+1} s_{k}=\tilde{H}_{k} s_{k}+\frac{u u^{\top} s_{k}}{u^{\top} s_{k}}=\tilde{H}_{k} s_{k}+u=\tilde{H}_{k} s_{k}+\left(y_{k}-\tilde{H}_{k} s_{k}\right)=y_{k}
$$

By the way, the matrix $\frac{u u^{\top}}{u^{\top} s_{k}}$ is of rank one and is a unique symmetric rank one matrix which makes \tilde{H}_{k+1} satisfy the secant condition.

Symmetric Rank One Update (SR1)

Note that the information about the solution is present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
Consider $u=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Now, the secant condition is satisfied:

$$
\tilde{H}_{k+1} s_{k}=\tilde{H}_{k} s_{k}+\frac{u u^{\top} s_{k}}{u^{\top} s_{k}}=\tilde{H}_{k} s_{k}+u=\tilde{H}_{k} s_{k}+\left(y_{k}-\tilde{H}_{k} s_{k}\right)=y_{k}
$$

By the way, the matrix $\frac{u u^{\top}}{u^{\top} s_{k}}$ is of rank one and is a unique symmetric rank one matrix which makes \tilde{H}_{k+1} satisfy the secant condition.
To obtain a quasi-Newton method, it suffices to initialize \tilde{H}_{0}, typically to the identity I, and use \tilde{H}_{k} instead of the Hessian $H_{k}=\nabla^{2} f_{k}$ in Newton's method.

Symmetric Rank One Update

Algorithm 4 SR1

$$
\begin{aligned}
& k \leftarrow 0 \\
& \alpha_{\text {nit }} \leftarrow 1 \\
& \tilde{H}_{0} \leftarrow I \\
& \text { while }\left\|\nabla f_{k}\right\|_{\infty}>\tau \text { do } \\
& \quad \text { Solve for } p_{k} \text { in } \tilde{H}_{k} p_{k}=-\nabla f_{k} \\
& \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right) \\
& x_{k+1} \leftarrow x_{k}+\alpha p_{k} \\
& s \leftarrow x_{k+1}-x_{k} \\
& y \leftarrow \nabla f_{k+1}-\nabla f_{k} \\
& u \leftarrow y-\tilde{H}_{k} s \\
& \tilde{H}_{k+1} \leftarrow \tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s} \\
& \quad k \leftarrow k+1 \\
& \text { end while }
\end{aligned}
$$

Note that the denominator $u^{\top} s_{k}$ can be 0 , in which case the update is impossible. The usual strategy is to skip the update and set $\tilde{H}_{k+1}=\tilde{H}_{k}$.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.
At the initial point, $\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=\|-c\|_{\infty}=9$, so this point is not optimal.

Example

We will look at a three-dimensional quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
The initial guesses are $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{\top}$.
At the initial point, $\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=\|-c\|_{\infty}=9$, so this point is not optimal.The first search direction is

$$
p_{0}=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

The exact line search gives $\alpha_{0}=0.3333$.

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

and

$$
\tilde{H}_{1}=I+\frac{\left(y_{0}-I s_{0}\right)\left(y_{0}-I s_{0}\right)^{\top}}{\left(y_{0}-I s_{0}\right)^{\top} s_{0}}=\left(\begin{array}{lll}
1.1531 & 0.3445 & 0.4593 \\
0.3445 & 1.7751 & 1.0335 \\
0.4593 & 1.0335 & 2.3780
\end{array}\right)
$$

Example

The new estimate of the solution, the update vectors, and the new Hessian approximation are:

$$
x_{1}=\left(\begin{array}{l}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), \nabla f_{1}=\left(\begin{array}{c}
2.66 \\
0 \\
-2.66
\end{array}\right), s_{0}=\left(\begin{array}{c}
-2.66 \\
-3.00 \\
-2.66
\end{array}\right), y_{0}=\left(\begin{array}{c}
-5.33 \\
-9.00 \\
-10.66
\end{array}\right),
$$

and

$$
\tilde{H}_{1}=I+\frac{\left(y_{0}-I s_{0}\right)\left(y_{0}-I s_{0}\right)^{\top}}{\left(y_{0}-I s_{0}\right)^{\top} s_{0}}=\left(\begin{array}{lll}
1.1531 & 0.3445 & 0.4593 \\
0.3445 & 1.7751 & 1.0335 \\
0.4593 & 1.0335 & 2.3780
\end{array}\right)
$$

At this new point $\left\|\nabla f\left(x_{1}\right)\right\|_{\infty}=2.66$ so we keep going, obtaining the search direction

$$
p_{1}=\left(\begin{array}{c}
-2.9137 \\
-0.5557 \\
1.9257
\end{array}\right)
$$

and the step length $\alpha_{1}=0.3942$.

Example

This gives the new estimates:

$$
x_{2}=\left(\begin{array}{l}
-3.81 \\
-3.21 \\
-1.90
\end{array}\right), \quad \nabla f_{2}=\left(\begin{array}{c}
0.36 \\
-0.65 \\
0.36
\end{array}\right), \quad s_{1}=\left(\begin{array}{c}
-1.14 \\
-0.21 \\
0.75
\end{array}\right), \quad y_{1}=\left(\begin{array}{c}
-2.29 \\
-0.65 \\
3.03
\end{array}\right)
$$

and

$$
\tilde{H}_{2}=\left(\begin{array}{ccc}
1.6568 & 0.6102 & -0.3432 \\
0.6102 & 1.9153 & 0.6102 \\
-0.3432 & 0.6102 & 3.6568
\end{array}\right)
$$

At the point $x_{2},\left\|\nabla f\left(x_{2}\right)\right\|_{\infty}=0.65$ so we keep going, with

$$
p_{2}=\left(\begin{array}{c}
-0.4851 \\
0.5749 \\
-0.2426
\end{array}\right)
$$

and $\alpha=0.3810$.

Example

This gives

$$
x_{3}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right), \quad \nabla f_{3}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad s_{2}=\left(\begin{array}{c}
-0.18 \\
0.21 \\
-0.09
\end{array}\right), \quad y_{2}=\left(\begin{array}{c}
-0.36 \\
0.65 \\
-0.36
\end{array}\right),
$$

and $\tilde{H}_{3}=Q$. Now $\left\|\nabla f\left(x_{3}\right)\right\|_{\infty}=0$, so we stop.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.
Still, the symmetric rank one approximation is used in practice, especially in trust region methods.

Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every \tilde{H}_{k} to be a symmetric positive definite solution to the secant condition.
Unfortunately, though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a positive definite.
Still, the symmetric rank one approximation is used in practice, especially in trust region methods.

However, for line search, let us try a bit "richer" solution to the secant condition.

Symmetric Rank Two Update

Consider

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

Once again, verifying $\tilde{H}_{k+1} s_{k}=y_{k}$ is not difficult.
Lemma 1
Assume that \tilde{H}_{k} is symmetric positive definite.
Then \tilde{H}_{k+1} is symmetric positive definite iff $y_{k}^{\top} s_{k}>0$.
We know that line search satisfying the strong Wolfe conditions preserves $y_{k}^{\top} s_{k}>0$.
Thus, starting with a symmetric positive definite \tilde{H}_{0} (e.g., a scalar multiple of I), every \tilde{H}_{k} is symmetric positive definite and satisfies the secant condition.

BFGS

Algorithm 5 BFGS v1

```
\(k \leftarrow 0\)
    \(\alpha_{\text {init }} \leftarrow 1\)
    \(\tilde{H}_{0} \leftarrow I\)
while \(\left\|\nabla f_{k}\right\|_{\infty}>\tau\) do
    Solve for \(p_{k}\) in \(\tilde{H}_{k} p_{k}=-\nabla f_{k}\)
    \(\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    \(x_{k+1} \leftarrow x_{k}+\alpha p_{k}\)
    \(s \leftarrow x_{k+1}-x_{k}\)
    \(y \leftarrow \nabla f_{k+1}-\nabla f_{k}\)
    \(\tilde{H}_{k+1} \leftarrow \tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s\right)\left(\tilde{H}_{k} s\right)^{\top}}{s^{\top} \tilde{H}_{k} s}+\frac{y y^{\top}}{y^{\top} s}\)
    \(k \leftarrow k+1\)
```

end while

Note that we still have to solve a linear system for p_{k}.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left[\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right]
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left[\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right]
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left[\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right]
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.
At iteration $0,\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=9$, so this point is not optimal.

Example

Consider the quadratic problem $f(x)=\frac{1}{2} x^{\top} Q x-c^{\top} x$ with

$$
Q=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) \quad \text { and } \quad c=\left[\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right]
$$

whose solution is $x_{*}=(-4,-3,-2)^{\top}$. Use the exact line search.
Choose $\tilde{H}_{0}=I$ and $x_{0}=(0,0,0)^{T}$.
At iteration $0,\left\|\nabla f\left(x_{0}\right)\right\|_{\infty}=9$, so this point is not optimal.
The search direction is

$$
p_{0}=\left(\begin{array}{l}
-8 \\
-9 \\
-8
\end{array}\right)
$$

and $\alpha_{0}=0.3333$.

Example

The new estimate of the solution and the new Hessian approximation are

$$
x_{1}=\left(\begin{array}{l}
-2.6667 \\
-3.0000 \\
-2.6667
\end{array}\right) \quad \text { and } \quad \tilde{H}_{1}=\left(\begin{array}{lll}
1.1021 & 0.3445 & 0.5104 \\
0.3445 & 1.7751 & 1.0335 \\
0.5104 & 1.0335 & 2.3270
\end{array}\right)
$$

Example

The new estimate of the solution and the new Hessian approximation are
$x_{1}=\left(\begin{array}{l}-2.6667 \\ -3.0000 \\ -2.6667\end{array}\right) \quad$ and $\quad \tilde{H}_{1}=\left(\begin{array}{lll}1.1021 & 0.3445 & 0.5104 \\ 0.3445 & 1.7751 & 1.0335 \\ 0.5104 & 1.0335 & 2.3270\end{array}\right)$.
At iteration $1,\left\|\nabla f\left(x_{1}\right)\right\|_{\infty}=2.6667$, so we continue. The next search direction is

$$
p_{1}=\left(\begin{array}{r}
-3.2111 \\
-0.6124 \\
2.1223
\end{array}\right)
$$

and $\alpha_{1}=0.3577$.

Example

This gives the estimates.
$x_{2}=\left(\begin{array}{l}-3.8152 \\ -3.2191 \\ -1.9076\end{array}\right) \quad$ and $\quad \tilde{H}_{2}=\left(\begin{array}{rrr}1.6393 & 0.6412 & -0.3607 \\ 0.6412 & 1.8600 & 0.6412 \\ -0.3607 & 0.6412 & 3.6393\end{array}\right)$.
At iteration 2, $\left\|\nabla f\left(x_{2}\right)\right\|_{\infty}=0.6572$, so we continue, computing

$$
p_{2}=\left(\begin{array}{r}
-0.5289 \\
0.6268 \\
-0.2644
\end{array}\right)
$$

and $\alpha_{2}=0.3495$. This gives

$$
x_{3}=\left(\begin{array}{l}
-4 \\
-3 \\
-2
\end{array}\right) \quad \text { and } \quad \tilde{H}_{3}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Now $\left\|\nabla f\left(x_{3}\right)\right\|_{\infty}=0$, so we stop.
Notice that we got the same x_{1}, x_{2}, x_{3} as for SR1. This follows from using the exact line search and the quadratic problem. It does not hold in general.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - BFGS

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$. Compare this with 32 iterations of gradient descent and 12 iterations of Newton's method.

Rosenbrock Function - BFGS

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare with 10,662 iterations of gradient descent and 24 iterations of Newton's method.

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.
Ideally, we would like to compute \tilde{H}_{k}^{-1} iteratively along the optimization, i.e.,

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\text { something }
$$

Sherman-Morrison-Woodbury Formula

Problem: SR1 and BFGS solve $\tilde{H}_{k} p=-\nabla f_{k}$ repeatedly. What if we could iteratively update H_{k}^{-1} ?
The equation would be solved by $p_{k}=-H_{k}^{-1} \nabla f_{k}$.
Ideally, we would like to compute \tilde{H}_{k}^{-1} iteratively along the optimization, i.e.,

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\text { something }
$$

To get such a "something" we use the following Sherman-Morrison-Woodbury (SMW) formula:

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}
$$

Here A is a $(n \times n)$-matrix, U, V are $(n \times m)$-matrices with $m \leq n$.

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top} y_{k}}
$$

Yes, only y and s swapped places.

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top} y_{k}}
$$

Yes, only y and s swapped places.
This allows us to avoid solving $\tilde{H}_{k} p_{k}=-\nabla f_{k}$ for p_{k} in every iteration.

Rank One Update V2

Algorithm 6 Rank 1 update v1

1: $k \leftarrow 0$
2: $\alpha_{\text {init }} \leftarrow 1$
3: $\tilde{H}_{0} \leftarrow I$
4: while $\left\|\nabla f_{k}\right\|_{\infty}>\tau$ do
5: $\quad p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k}$
6: $\quad \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
7: $\quad x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
8: $\quad s \leftarrow x_{k}-x_{k-1}$
9: $\quad y \leftarrow \nabla f_{k}-\nabla f_{k-1}$
10: $\quad \tilde{H}_{k+1}^{-1} \leftarrow \tilde{H}_{k}^{-1}+\frac{\left(s-\tilde{H}_{k}^{-1} y\right)\left(s-\tilde{H}_{k}^{-1} y\right)^{\top}}{\left(s-\tilde{H}_{k}^{-1} y\right)^{\top} y}$
11: $\quad k \leftarrow k+1$
12: end while

BFGS

Applying SMW to the BFGS Hessian update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

BFGS

Applying SMW to the BFGS Hessian update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\left(1-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) \tilde{H}_{k}^{-1}\left(1-\frac{y_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

We avoid solving the linear system for p_{k}.

BFGS V2

```
Algorithm 7 BFGS v2
    1: \(k \leftarrow 0\)
    2: \(\alpha_{\text {init }} \leftarrow 1\)
    3: \(\tilde{H}_{0} \leftarrow I\)
    4: while \(\left\|\nabla f_{k}\right\|_{\infty}>\tau\) do
    5: \(\quad p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k}\)
    6: \(\quad \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    7: \(\quad x_{k+1} \leftarrow x_{k}+\alpha p_{k}\)
    8: \(\quad k \leftarrow k+1\)
    9: \(\quad s \leftarrow x_{k}-x_{k-1}\)
10: \(\quad y \leftarrow \nabla f_{k}-\nabla f_{k-1}\)
11: \(\quad \tilde{H}_{k+1}^{-1} \leftarrow\left(I-\frac{s y^{\top}}{s^{\top} y}\right) \tilde{H}_{k}^{-1}\left(I-\frac{y s^{\top}}{s^{\top} y}\right)+\frac{s s^{\top}}{s^{\top} y}\)
```

12: end while

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=I$.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=l$.
This is the basic idea behind limited-memory BFGS which stores only the running window s_{k-m}, \ldots, s_{k} and y_{k-m}, \ldots, y_{k} and computes \tilde{H}_{k} using these values as if initialized by $\tilde{H}_{k-m-1}=I$.

Limited Memory BFGS Idea

Let us denote by s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k} the values of the variables s and y, resp., during the iterations $1, \ldots, k$ of BFGS.
Observe that \tilde{H}_{k} is determined completely by H_{0} and the two sequences s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.
So, the matrix \tilde{H}_{k} does not have to be stored if the algorithm remembers the values s_{0}, \ldots, s_{k} and y_{0}, \ldots, y_{k}.

Note that this would be more space efficient for $k<n$. However, we may go further and observe that typically only a few, say m, past values of s and y are sufficient for a good approximation of \tilde{H}_{k} when we set $\tilde{H}_{k-m-1}=l$.
This is the basic idea behind limited-memory BFGS which stores only the running window s_{k-m}, \ldots, s_{k} and y_{k-m}, \ldots, y_{k} and computes \tilde{H}_{k} using these values as if initialized by $\tilde{H}_{k-m-1}=l$.

The space complexity becomes $n m$, which is beneficial when n is large.

Another View on BFGS (Optional)

We search for \tilde{H}_{k+1}^{-1} where \tilde{H}_{k+1} satisfies $\tilde{H}_{k+1} s_{k}=y_{k}$. Search for a solution \tilde{V} for $\tilde{V}_{y_{k}}=s_{k}$.
The idea is to use \tilde{V} close to \tilde{H}_{k}^{-1} (in some sense):

$$
\min _{\tilde{H}}\left\|\tilde{V}-\tilde{H}_{k}^{-1}\right\|
$$

subject to $\quad \tilde{V}=\tilde{V}^{\top}, \quad \tilde{V}_{y_{k}}=s_{k}$
Here the norm is weighted Frobenius norm:

$$
\|A\| \equiv\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F},
$$

where $\|\cdot\|_{F}$ is defined by $\|C\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{2}$. The weight W can be chosen as any matrix satisfying the relation $W_{y_{k}}=s_{k}$.
BFGS is obtained with $W=\bar{G}_{k}^{-1}$ where \bar{G}_{k} is the average Hessian defined by $\bar{G}_{k}=\left[\int_{0}^{1} \nabla^{2} f\left(x_{k}+\tau \alpha_{k} p_{k}\right) d \tau\right]$
Solving this gives precisely the BFGS formula for \tilde{H}_{k+1}^{-1}.

Global Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathbb{R}^{n}
$$

Theorem 4 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below, continuously differentiable, and L-smooth. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-\tilde{H}_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Global Convergence of Quasi-Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the approximations to the Hessians \tilde{H}_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|\tilde{H}_{k}\right\|\left\|\tilde{H}_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-\tilde{H}_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Behavior of BFGS

- It may happen that \tilde{H}_{k} becomes a poor approximation of the Hessian H_{k}. If, e.g., y_{k}^{\top} is tiny, then \tilde{H}_{k+1} will be huge.
However, it has been proven experimentally that if \tilde{H}_{k} wrongly estimates the curvature of f and this estimate slows down the iteration, then the approximation will tend to correct the bad Hessian approximations.
The above self-correction works only if an appropriate line search is performed (strong Wolfe conditions).

Behavior of BFGS

- It may happen that \tilde{H}_{k} becomes a poor approximation of the Hessian H_{k}. If, e.g., y_{k}^{\top} is tiny, then \tilde{H}_{k+1} will be huge.
However, it has been proven experimentally that if \tilde{H}_{k} wrongly estimates the curvature of f and this estimate slows down the iteration, then the approximation will tend to correct the bad Hessian approximations.
The above self-correction works only if an appropriate line search is performed (strong Wolfe conditions).
- There are more sophisticated ways of setting the initial Hessian approximation H_{0}.
See Numerical Optimization, Nocedal \& Wright, page 201.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.
- Compared with Newton's method, no second derivatives are computed.

Quasi-Newton Methods - Comments

- Each iteration is performed for $\mathcal{O}\left(n^{2}\right)$ operations as opposed to $\mathcal{O}\left(n^{3}\right)$ for methods involving solutions of linear systems.
- There is even a memory-limited variant (L-BFGS) that uses only information from past m steps, and its single iteration complexity is $\mathcal{O}(m n)$.
- Compared with Newton's method, no second derivatives are computed.
- Local superlinear convergence can be proved under specific conditions.
Compare with local quadratic convergence of Newton's method and linear convergence of gradient descent.

Limited-Memory BFGS

Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods, In addition, these methods also improve the computational efficiency of medium-sized problems (hundreds or thousands of design variables) with minimal sacrifice in accuracy.

L-BFGS

Recall that we compute iteratively the approximation to the inverse Hessian by

$$
H_{k+1}^{-1}=\left(I-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) H_{k}^{-1}\left(1-\frac{y_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

However, eventually, we are interested in

$$
p_{k}=H_{k}^{-1} \nabla f
$$

Note that given the sequences s_{1}, \ldots, s_{k} and y_{1}, \ldots, y_{k} and H_{0}^{-1} we can recursively compute H_{k+1}^{-1} for every k.
What if we limit the sequences in memory to just m last elements:

$$
s_{k-m+1}, s_{k-m+2}, \ldots, s_{k} \quad y_{k-m+1}, y_{k-m+2}, \ldots, y_{k}
$$

In practice, m between 5 and 20 is usually sufficient. We also initialize the recurrence with the last iterate:

L-BFGS

Let us rewrite the BFGS update formula as follows:

$$
\tilde{H}_{k+1}^{-1}=V_{k}^{\top} \tilde{H}_{k}^{-1} V_{k}+\rho_{k} s_{k} s_{k}^{\top}
$$

where

$$
\begin{aligned}
& \rho_{k}=s_{k}^{\top} y_{k} \quad \text { and } \quad V_{k}=I-\rho_{k} s_{k} y_{k}^{\top} \\
& s_{k}=x_{k+1}-x_{k} \quad \text { and } \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
\end{aligned}
$$

By substitution, we obtain

$$
\begin{aligned}
\tilde{H}_{k}^{-1}= & \left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) \tilde{H}_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\rho_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2} \cdots V_{k}\right. \\
& +\cdots \\
& +\rho_{k-1} s_{k-1} s_{k-1}^{T}
\end{aligned}
$$

L-BFGS Algorithm

Algorithm 8 L-BFGS two-loop recursion
Input: : s_{k-1}, \ldots, s_{k-m} and y_{k-1}, \ldots, y_{k-m}
Output: : p_{k} the search direction $-\tilde{H}_{k}^{-1} \nabla f_{k}$
1: $q \leftarrow \nabla f_{k}$
2: for $i=k-1, k-2, \ldots, k-m$ do
3: $\quad \alpha_{i} \leftarrow \rho_{i} s_{i}^{\top} q$
4: $\quad q \leftarrow q-\alpha_{i} y_{i}$
5: end for
6: $r \leftarrow H_{k}^{0} q$
7: for $i=k-m, k-m+1, \ldots, k-1$ do
8: $\quad \beta \leftarrow \rho_{i} y_{i}^{\top} r$
9: $\quad r \leftarrow r+s_{i}\left(\alpha_{i}-\beta\right)$
10: end for
11: stop with result $\tilde{H}_{k}^{-1} \nabla f_{k}=r$

L-BFGS Algorithm

```
Algorithm 9 L-BFGS
    1: Choose starting point }\mp@subsup{x}{0}{}\mathrm{ , integer m>0
    2: }k\leftarrow
    3: repeat
    4: Choose H
    5: Compute }\mp@subsup{p}{k}{}\leftarrow-\mp@subsup{H}{k}{}\nabla\mp@subsup{f}{k}{}\mathrm{ using the previous algorithm
    6: Compute }\mp@subsup{x}{k+1}{}\leftarrow\mp@subsup{x}{k}{}+\mp@subsup{\alpha}{k}{}\mp@subsup{p}{k}{}\mathrm{ , where }\mp@subsup{\alpha}{k}{}\mathrm{ is chosen to satisfy
        the strong Wolfe conditions
    7: if k>m}\mathrm{ then
    8: Discard the vector pair {sk-m, yk-m}}\mathrm{ from storage
    9: end if
10: Compute and save sk}\leftarrow\leftarrow\mp@subsup{x}{k+1}{}-\mp@subsup{x}{k}{},\mp@subsup{y}{k}{}\leftarrow\nabla\mp@subsup{f}{k+1}{}-\nabla\mp@subsup{f}{k}{
11:
12: until convergence
```

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

In L-BFGS, the memory length m was 5 . The results are similar.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Steepest descent

Quasi-Newton

Newton

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Steepest descent

Quasi-Newton

Newton

Rosenbrock:

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}
$$

Computational Complexity

> Algorithm
> Steepest Descent
> Newton's Method $O\left(n^{3}\right)$ to compute Hessian and solve system BFGS $\quad O\left(n^{2}\right)$ to update Hessian approximation

Table: Summary of the computational complexity for each optimization algorithm.

- Steepest Descent: Simple but often slow, requiring many iterations.
- Newton's Method: Fast convergence but expensive per iteration.
- BFGS: Quasi-Newton, no Hessian needed, good speed and iteration count balance.

Constrained Optimization

Constrained Optimization Problem

Recall that the constrained optimization problem is

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

x^{*} is now a constrained minimizer if

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } \quad x \in \mathcal{F}
$$

where \mathcal{F} is the feasibility region

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, i=1, \ldots, n_{g}, j=1, \ldots, n_{h}\right\}
$$

Thus, to find a constrained minimizer, we have to inspect unconstrained minima of f inside of \mathcal{F} and points along the boundary of \mathcal{F}.

COP - Example

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}-\frac{1}{2} x_{1}-x_{2}-2 \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1}+x_{2}+1 \leq 0 \\
& g_{2}\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1}-4 \leq 0
\end{array}
$$

Equality Constraints

Let us restrict our problem only to the equality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Assume that f and h_{j} have continuous second derivatives.
Now, we try to imitate the theory from the unconstrained case and characterize minima using gradients.
This time, we must consider the gradient of f and h_{j}.

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Note that if x^{*} is an unconstrained minimum of f, then

$$
f\left(x^{*}+p\right) \geq f\left(x^{*}\right)
$$

for all p small enough.

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Note that if x^{*} is an unconstrained minimum of f, then

$$
f\left(x^{*}+p\right) \geq f\left(x^{*}\right)
$$

for all p small enough.
Together with the Taylor approximation, we obtain

$$
f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top} p \geq f\left(x^{*}\right)
$$

and hence

$$
\nabla f\left(x^{*}\right)^{\top} p \geq 0
$$

The hyperplane defined by $\nabla f^{\top} p=0$ contains directions p of zero variation in f.

In the unconstrained case, x^{*} is minimizer only if $\nabla f\left(x^{*}\right)=0$ because otherwise there would be a direction p satisfying $\nabla f\left(x^{*}\right) p<0$, a decrease direction.

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
l.e., point into the feasible region.

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Assuming $x \in \mathcal{F}$, we have $h_{j}(x)=0$ for all j and thus

$$
h_{j}(x+p) \approx \nabla h_{j}(x)^{\top} p
$$

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ if $\nabla f(x)^{\top} p<0$ and if p is a feasible direction!
I.e., point into the feasible region. How do we characterize feasible directions?

Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Assuming $x \in \mathcal{F}$, we have $h_{j}(x)=0$ for all j and thus

$$
h_{j}(x+p) \approx \nabla h_{j}(x)^{\top} p
$$

As p is a feasible direction iff $h_{j}(x+p)=0$, we obtain that p is a feasible direction iff $\nabla h_{j}(x)^{\top} p=0$ for all j

Feasible Points and Directions

Feasible point

Here, the only feasible direction at x is $p=0$.

Feasible Points and Directions

Here the feasible directions at x^{*} point along the red line, i.e.,

$$
\nabla h_{1}\left(x^{*}\right) p=0 \quad \nabla h_{2}\left(x^{*}\right) p=0
$$

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.
Note that if p is a feasible direction, then $-p$ is also, and thus $\nabla f\left(x^{*}\right)^{\top}(-p) \geq 0$. So finally,

Necessary Condition for Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x^{*} must be feasible and every direction satisfying $h_{j}\left(x^{*}\right)^{\top} p=0$ for all j must also satisfy $\nabla f\left(x^{*}\right)^{\top} p \geq 0$.
Note that if p is a feasible direction, then $-p$ is also, and thus $\nabla f\left(x^{*}\right)^{\top}(-p) \geq 0$. So finally,
If x^{*} is a constrained minimizer, then

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.
Observe that at an optimum, ∇f lies in the space spanned by the gradients of constraint functions.

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.
Observe that at an optimum, ∇f lies in the space spanned by the gradients of constraint functions.

There are Lagrange multipliers λ_{1}, λ_{2} satisfying

$$
\nabla f\left(x^{*}\right)=-\left(\lambda_{1} \nabla h_{1}+\lambda_{2} \nabla h_{2}\right)
$$

The minus sign is arbitrary for equality constraints but will be significant when dealing with inequality constraints.

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f\left(x^{*}\right)^{\top} p=0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

But then, from the geometry of the problem, we obtain
Theorem 5
Consider the COP with only equality constraints and f and all h_{j} twice continuously differentiable.
Assume that x^{*} is a constrained minimizer and that x^{*} is regular, which means that $\nabla h_{j}\left(x^{*}\right)$ are linearly independent.
Then there are $\lambda_{1}, \ldots, \lambda_{n_{h}} \in \mathbb{R}$ satisfying

$$
\nabla f\left(x^{*}\right)=-\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}\left(x^{*}\right)
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{n_{h}}$ are called Lagrange multipliers.

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+h(x)^{\top} \lambda \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+h(x)^{\top} \lambda \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Note that the stationary point of \mathcal{L} gives us the Lagrange multipliers:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\nabla f(x)+\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x) \\
& \nabla_{\lambda} \mathcal{L}=h(x)
\end{aligned}
$$

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+h(x)^{\top} \lambda \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Note that the stationary point of \mathcal{L} gives us the Lagrange multipliers:

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\nabla f(x)+\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x) \\
& \nabla_{\lambda} \mathcal{L}=h(x)
\end{aligned}
$$

Now putting $\nabla \mathcal{L}(x)=0$, we obtain precisely the above properties of the constrained minimizer:

$$
h(x)=0 \quad \text { and } \quad \nabla f(x)=-\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}(x)
$$

However, we cannot use the unconstrained optimization methods here because searching for a minimizer in x asks for a maximizer in λ.
$\underset{x_{1}}{\operatorname{minimize}} f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

$\underset{x_{1}, x_{2}}{\operatorname{minimize}} \quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

$\underset{x_{1}, x_{2}}{\operatorname{minimize}} \quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $\quad h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

Solving these three equations for the three unknowns $\left(x_{1}, x_{2}, \lambda\right)$, we obtain two possible solutions:

$$
\begin{aligned}
& x_{A}=\left(x_{1}, x_{2}\right)=(-\sqrt{2},-\sqrt{2} / 2), \quad \lambda_{A}=\sqrt{2} \\
& x_{B}=\left(x_{1}, x_{2}\right)=(\sqrt{2}, \sqrt{2} / 2), \quad \lambda_{A}=-\sqrt{2}
\end{aligned}
$$

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).
Consider Lagrangian Hessian:

$$
H_{\mathcal{L}}(x, \lambda)=H_{f}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} H_{h_{j}}(x)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}.
The second-order sufficient conditions are as follows: Assume x^{*} is regular and feasible. Also, assume that there is λ s.t.

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}}-\lambda_{j} \nabla h_{j}\left(x^{*}\right)
$$

and that

$$
p^{\top} H_{\mathcal{L}}\left(x^{*}, \lambda\right) p>0 \text { for all } p \text { satisfying }\left(\forall j: \nabla h_{j}\left(x^{*}\right)^{\top} p=0\right)
$$

Then, x^{*} is a constrained minimizer of f.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{array}
$$

The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

Solving these three equations for the three unknowns $\left(x_{1}, x_{2}, \lambda\right)$, we obtain two possible solutions:

$$
\begin{aligned}
& x_{A}=\left(x_{1}, x_{2}\right)=(-\sqrt{2},-\sqrt{2} / 2), \quad \lambda_{A}=\sqrt{2} \\
& x_{B}=\left(x_{1}, x_{2}\right)=(\sqrt{2}, \sqrt{2} / 2), \quad \lambda_{A}=-\sqrt{2}
\end{aligned}
$$

Which one is a minimum?

Second Order Conditions - Example

Compute the Hessian:

$$
H_{\mathcal{L}}=\left(\begin{array}{cc}
\frac{1}{2} \lambda & 0 \\
0 & 2 \lambda
\end{array}\right)
$$

The Hessian is positive definite only for the case $\lambda_{A}=\sqrt{2}$.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+3\left(x_{2}-2\right)^{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=\beta x_{1}^{2}-x_{2}=0
\end{array}
$$

where β is a parameter. The Lagrangian for this problem is

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}^{2}+3\left(x_{2}-2\right)^{2}+\lambda\left(\beta x_{1}^{2}-x_{2}\right) .
$$

Differentiating for the first-order optimality conditions, we get

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\left[\begin{array}{c}
2 x_{1}(1+\lambda \beta) \\
6\left(x_{2}-2\right)-\lambda
\end{array}\right]=0 \\
& \nabla_{\lambda} \mathcal{L}=\beta x_{1}^{2}-x_{2}=0
\end{aligned}
$$

Solving these three equations for the three unknowns $\left(x_{1}, x_{2}, \lambda\right)$, the solution is $x_{A}=(0,0), \lambda_{A}=-12$, independent of β.

The Hessian of the Lagrangian,

$$
H_{\mathcal{L}}=\left[\begin{array}{cc}
2(1-12 \beta) & 0 \\
0 & 6
\end{array}\right]
$$

We need this to be positive definite in feasible directions.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}+3\left(x_{2}-2\right)^{2} \\
\text { subject to } & h\left(x_{1}, x_{2}\right)=\beta x_{1}^{2}-x_{2}=0,
\end{array}
$$

The Hessian of the Lagrangian,

$$
H_{\mathcal{L}}=\left[\begin{array}{cc}
2(1-12 \beta) & 0 \\
0 & 6
\end{array}\right]
$$

What are the feasible directions?
$\nabla h=\left(2 \beta x_{1},-1\right)$ and thus $\nabla h\left(x^{*}\right)=(0,-1)$.
Thus all p satisfying $\nabla h^{\top} p=0$ are $(\alpha, 0)$ for $\alpha \in \mathbb{R}$.
Thus, for positive curvature in the feasible direction, we need

$$
p^{\top} H_{\mathcal{L}} p=2 \alpha^{2}(1-12 \beta)>0
$$

which is equivalent to $\beta<1 / 12$.

Inequality Constraints

Recall that the constrained optimization problem is

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

We say that a constraint $g_{i}(x) \leq 0$ is active for x if $g_{i}(x)=0$, otherwise it is inactive for x.

As before, if x^{*} is a minimizer, any small step in a feasible direction p must not decrease f, i.e.,

$$
\nabla f\left(x^{*}\right)^{\top} p \geq 0
$$

How do we identify feasible directions for inequality constraints?

Feasible Directions

For inactive constraints, arbitrary direction p is feasible.

Feasible Directions

For inactive constraints, arbitrary direction p is feasible.
For active constraints $g_{i}(x)=0$ we have p feasible at x if

$$
g_{i}(x+p) \approx g_{i}(x)+\nabla g_{i}(x)^{\top} p \leq 0, \quad i=1, \ldots, n_{g}
$$

Feasible Directions

For inactive constraints, arbitrary direction p is feasible.
For active constraints $g_{i}(x)=0$ we have p feasible at x if

$$
g_{i}(x+p) \approx g_{i}(x)+\nabla g_{i}(x)^{\top} p \leq 0, \quad i=1, \ldots, n_{g}
$$

thus p is feasible iff $\nabla g_{i}(x)^{\top} p \leq 0$ for all active constr. $g_{i}(x)=0$.

Lagrange Multipliers

When could f be decreased in a feasible direction?

Left: f decreases in the blue cone. Right: f does not decrease in any feasible direction.

At an optimum there are Lagrange multipliers $\sigma_{1}, \sigma_{2} \geq 0$:

$$
-\nabla f=\sigma_{1} \nabla g_{1}+\sigma_{2} \nabla g_{2}
$$

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then
$\nabla f(x)^{\top} p=0 \quad$ for all p feasible at x

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then

$$
\nabla f(x)^{\top} p=0 \quad \text { for all } p \text { feasible at } x
$$

One can prove the following
Theorem 6
Consider the COP with f and all g_{i}, h_{j} twice continuously differentiable.
Assume that x^{*} is a constrained minimizer and that x^{*} is regular which means that $\nabla g_{i}\left(x^{*}\right), \nabla h_{j}\left(x^{*}\right)$ are linearly independent.
Then there are Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{n_{h}} \in \mathbb{R}$ and $\sigma_{1}, \ldots, \sigma_{n_{g}} \in \mathbb{R}$ satisfying

$$
-\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}\left(x^{*}\right)+\sum_{i=1}^{n_{h}} \sigma_{i} \nabla g_{i}\left(x^{*}\right) \quad \text { where } \sigma_{i} \geq 0
$$

Lagrangian Function

Note that inequality $g_{i}(x) \leq 0$ can be equivalently expressed using a slack variable s_{i} by

$$
g(x)+s_{i}^{2}=0
$$

The Lagrangian function then generalizes from equality to inequality COP as follows.

$$
\mathcal{L}(x, \lambda, \sigma, s)=f(x)+h(x)^{\top} \lambda+(g(x)+s \odot s)^{\top} \sigma
$$

Here, $h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}, g(x)=\left(g_{1}(x), \ldots, g_{n_{g}}(x)\right)^{\top}$, $s=\left(s_{1}, \ldots, s_{n_{g}}\right)$, and \odot is the component-wise multiplication.
Now compute the stable point of \mathcal{L} by considering

$$
\begin{aligned}
\nabla_{x} \mathcal{L} & =0 \\
\nabla_{\lambda} \mathcal{L} & =0 \\
\nabla_{\sigma} \mathcal{L} & =0 \\
\nabla_{s} \mathcal{L} & =0
\end{aligned}
$$

(see the whiteboard)

If x^{*} is a constrained minimizer and x^{*} is regular. Then there are λ, σ, s satisfying

$$
\begin{aligned}
\frac{\partial f}{\partial x_{\ell}}\left(x^{*}\right)+\sum_{j=1}^{n_{h}} \lambda_{j} \frac{\partial h_{j}}{\partial x_{\ell}}\left(x^{*}\right)+\sum_{j=1}^{n_{g}} \sigma_{j} \frac{\partial g_{j}}{\partial x_{\ell}}\left(x^{*}\right) & =0 & & \ell=1, \ldots, n \\
h_{j}\left(x^{*}\right) & =0 & & j=1, \ldots, n_{h} \\
g_{i}\left(x^{*}\right)+s_{i}^{2} & =0 & & i=1, \ldots, n_{g} \\
2 \sigma_{i} s_{i} & =0 & & i=1, \ldots, n_{g} \\
\sigma_{i} & \geq 0 & &
\end{aligned}
$$

So, solving the above system allows us to identify potential constrained minimizers.

KKT

If x^{*} is a constrained minimizer and x^{*} is regular. Then there are λ, σ, s satisfying

$$
\begin{aligned}
\frac{\partial f}{\partial x_{\ell}}\left(x^{*}\right)+\sum_{j=1}^{n_{h}} \lambda_{j} \frac{\partial h_{j}}{\partial x_{\ell}}\left(x^{*}\right)+\sum_{j=1}^{n_{g}} \sigma_{j} \frac{\partial g_{j}}{\partial x_{\ell}}\left(x^{*}\right) & =0 & & \ell=1, \ldots, n \\
h_{j}\left(x^{*}\right) & =0 & & j=1, \ldots, n_{h} \\
g_{i}\left(x^{*}\right)+s_{i}^{2} & =0 & & i=1, \ldots, n_{g} \\
2 \sigma_{i} s_{i} & =0 & & i=1, \ldots, n_{g} \\
\sigma_{i} & \geq 0 & &
\end{aligned}
$$

So, solving the above system allows us to identify potential constrained minimizers.

To decide whether x^{*} solving KKT is a minimizer, check whether

$$
p^{\top} H_{\mathcal{L}}\left(x^{*}, \lambda\right) p>0
$$

For all feasible directions p (similarly to the equality case).

Example

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & g\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1 \leq 0 .
\end{array}
$$

The Lagrangian function for this problem is

$$
\mathcal{L}\left(x_{1}, x_{2}, \sigma, s\right)=x_{1}+2 x_{2}+\sigma\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1+s^{2}\right)
$$

Example

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \sigma x_{1}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \sigma x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \sigma}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0 \\
& \frac{\partial \mathcal{L}}{\partial s}=2 \sigma s=0
\end{aligned}
$$

Example

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \sigma x_{1}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \sigma x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \sigma}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0 \\
& \frac{\partial \mathcal{L}}{\partial s}=2 \sigma s=0
\end{aligned}
$$

Setting $\sigma=0$ does not yield any solution. Setting $s=0$ and $\sigma \neq 0$ we obtain

$$
x_{A}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
-\sqrt{2} / 2 \\
\sqrt{2}
\end{array}\right], \quad x_{B}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
\sqrt{2} / 2 \\
-\sqrt{2}
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \sigma x_{1}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \sigma x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \sigma}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0 \\
& \frac{\partial \mathcal{L}}{\partial s}=2 \sigma s=0
\end{aligned}
$$

Setting $\sigma=0$ does not yield any solution. Setting $s=0$ and $\sigma \neq 0$ we obtain

$$
x_{A}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
-\sqrt{2} / 2 \\
\sqrt{2}
\end{array}\right], \quad x_{B}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
\sqrt{2} / 2 \\
-\sqrt{2}
\end{array}\right]
$$

Now, σ must be non-negative, so only x_{A} is the solution. There is no feasible descent direction at x_{A}. We already know that the Hessian Lagrangian is positive definite, so this is a minimizer.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1 \leq 0 \\
& g_{2}\left(x_{2}\right)=-x_{2} \leq 0
\end{array}
$$

The feasible region is the top half of the ellipse defined by g_{1}.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1 \leq 0 \\
& g_{2}\left(x_{2}\right)=-x_{2} \leq 0
\end{array}
$$

The feasible region is the top half of the ellipse defined by g_{1}. The Lagrangian for this problem is
$\mathcal{L}(x, \sigma, s)=x_{1}+2 x_{2}+\sigma_{1}\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1+s_{1}^{2}\right)+\sigma_{2}\left(-x_{2}+s_{2}^{2}\right)$.

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1 \leq 0 \\
& g_{2}\left(x_{2}\right)=-x_{2} \leq 0
\end{array}
$$

The feasible region is the top half of the ellipse defined by g_{1}. The Lagrangian for this problem is
$\mathcal{L}(x, \sigma, s)=x_{1}+2 x_{2}+\sigma_{1}\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1+s_{1}^{2}\right)+\sigma_{2}\left(-x_{2}+s_{2}^{2}\right)$.
Differentiating the Lagrangian with respect to all the variables, we get the first-order optimality conditions,

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \sigma_{1} x_{1}=0 & \frac{\partial \mathcal{L}}{\partial \sigma_{2}}=-x_{2}+s_{2}^{2}=0 \\
\frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \sigma_{1} x_{2}-\sigma_{2}=0 & \frac{\partial \mathcal{L}}{\partial s_{1}}=2 \sigma_{1} s_{1}=0 \\
\frac{\partial \mathcal{L}}{\partial \sigma_{1}}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1+s_{1}^{2}=0 & \frac{\partial \mathcal{L}}{\partial s_{2}}=2 \sigma_{2} s_{2}=0
\end{array}
$$

Assumption	Meaning	x_{1}	x_{2}	σ_{1}	σ_{2}	s_{1}	s_{2}	Point
$s_{1}=0$	g_{1} is active	-2	0	1	2	0	0	x^{*}
$s_{2}=0$	g_{2} is active	2	0	-1	2	0	0	x_{C}
$\sigma_{1}=0$	g_{1} is inactive							
$\sigma_{2}=0$	g_{2} is inactive		-	-	-	-	-	
$s_{1}=0$	g_{1} is active	$\sqrt{2}$	$\frac{\sqrt{2}}{2}$	$-\sqrt{2}$	0	0	$2^{-\frac{1}{4}}$	x_{B}
$\sigma_{2}=0$	g_{2} is inactive							
$\sigma_{1}=0$	g_{1} is inactive							
$s_{2}=0$	g_{2} is active			-	-			

