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Notation
In what follows, we will work with vectors in Rn.

The vectors will be (usually) denoted by x ∈ Rn.

We often consider sequences of vectors, x0, x1, . . . , xk , . . ..

The index k will usually indicate that xk is the k-the vector in a
sequence.

When we talk (relatively rarely) about components of vectors, we
use i as an index, i.e., xi will be the i-th component of x ∈ Rn.

We denote by ||x || the Euclidean norm of x .

We denote by ||x ||∞ the L∞ norm giving the maximum of
absolute values of components of x .

We ocasionally use the matrix morn ||A||, consistent with the
Euclidean norm, defined by

||A|| = sup
||x ||=1

||Ax || =
√
λ1

Here λ1 is the largest eigenvalue of A⊤A.
2



How to Recognize (Local) Minimum

How do we verify that x∗ ∈ Rn is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity
if one has a smaller value (impractical).

Assuming the smoothness of f , we may benefit from the “stable”
behavior of f around x∗.
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Derivatives and Gradients

The gradient of f : Rn → R, denoted by ∇f (x), is a column vector
of first-order partial derivatives of the function concerning each
variable:

∇f (x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]⊤
,

Where each partial derivative is defined as the following limit:

∂f

∂xi
= lim

ε→0

f (x1, . . . , xi + ε, . . . , xn)− f (x1, . . . , xi , . . . , xn)

ε
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Gradient

The gradient is a vector pointing in the direction of the most
significant function increase from the current point.
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Gradient
Consider the following function of two variables:

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

∇f (x1, x2) =
[
3x21 + 2x22 − 20
4x1x2 − 3x22

]
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Directional Derivatives vs Gradient
The rate of change in a direction p is quantified by a directional
derivative, defined as

∇pf (x) = lim
ε→0

f (x + εp)− f (x)

ε
.

We can find this derivative by projecting the gradient onto the
desired direction p using the dot product ∇pf (x) = (∇f (x))⊤p

(Here, we assume continuous partial derivatives.)
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Geometry of Gradient
Consider the geometric interpretation of the dot product:

∇pf (x) = (∇f (x))⊤p = ||∇f || ||p|| cos θ
Here θ is the angle between ∇f and p.

The directional derivative is maximized by θ = 0, i.e. when ∇f
and p point in the same direction.
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Hessian
Taking derivative twice, possibly w.r.t. different variables, gives the
Hessian of f

∇2f (x) = H(x) =


∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Note that the Hessian is a function which takes x ∈ Rn and gives a
n × n-matrix of second derivatives of f .

We have

Hij =
∂2f

∂xi∂xj
.

If f has continuous second partial derivatives, then H is symmetric,
i.e., Hij = Hji .
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Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.
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Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,

and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .

11



Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,
and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .

11



Consider f (x) = x⊤Hx where

H =

(
4/3 0
0 1

)
The eigenvalues are

κ1 = 4/3 κ2 = 1

Their corresponding eigenvectors
are (1, 0)⊤ and (0, 1)⊤.

Note that

f (x) = κ1x
2
1 + κ2x

2
2

Considering a direction vector p we get

g(t) = f (0 + tp) = t2
(
κ1p

2
1 + κ2p

2
2

)
which is a parabola with g ′′ = 2

(
κ1p

2
1 + κ2p

2
2

)
.
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Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)

The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.
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Hessian Visualization Example
Consider

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

And it’s Hessian.

H (x1, x2) =

[
6x1 4x2
4x2 4x1 − 6x2

]
.

14



Taylor’s Theorem

Theorem 1 (Taylor)

Suppose that f : Rn → R is twice continuously differentiable and
that p ∈ Rn. Then, we have

f (x + p) = f (x) +∇f (x)Tp +
1

2
pTH(x)p + o(||p||2).

Here H = ∇2f is the Hessian of f .
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First-Order Necessary Conditions

Theorem 2
If x∗ is a local minimizer and f is continuously differentiable in an
open neighborhood of x∗, then ∇f (x∗) = 0.
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Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.
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Definiteness
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Second-Order Necessary Condition

Theorem 3 (Second-Order Necessary Conditions)

If x∗ is a local minimizer of f and ∇2f is continuous in a
neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive
semidefinite.

Theorem 4 (Second-Order Sufficient Conditions)

Suppose that ∇2f is continuous in a neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict
local minimizer of f .
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[ √
7
2 −

3
2√

7
2 −

3
2

]
.
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Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21
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−2 2
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[
6x21 + 12x1 + 3 −2

−2 2

]
.

The Hessian, at the first point, is

H (xA) =

[
3 −2
−2 2

]
,

whose eigenvalues are κ1 ≈ 0.438 and κ2 ≈ 4.561. Because both
eigenvalues are positive, this point is a local minimum.

21



Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the second point,

H (xB) =

[
3(3 +

√
7) −2

−2 2

]
.

The eigenvalues are κ1 ≈ 1.737 and κ2 ≈ 17.200, so this point is
another local minimum.
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For the third point,

H (xC ) =

[
9− 3

√
7 −2

−2 2

]
.

The eigenvalues for this Hessian are κ1 ≈ −0.523 and κ2 ≈ 3.586,
so this point is a saddle point.
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Example
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Proofs of Some Theorems
Optional
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Taylor’s Theorem

To prove the theorems characterizing minima/maxima, we need
the following form of Taylor’s theorem:

Theorem 5 (Taylor)

Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have that.

f (x + p) = f (x) +∇f (x + tp)Tp,

for some t ∈ (0, 1). Moreover, if f is twice continuously
differentiable, we have that

f (x + p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p,

for some t ∈ (0, 1).
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Proof of Theorem 2 (Optional)

We prove that if x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f (x∗) = 0.

Suppose for contradiction that ∇f (x∗) ̸= 0. Define the vector
p = −∇f (x∗) and note that pT∇f (x∗) = −∥∇f (x∗)∥2 < 0.
Because ∇f is continuous near x∗, there is a scalar T > 0 such
that

pT∇f (x∗ + tp) < 0, for all t ∈ [0,T ]

For any t̄ ∈ (0,T ], we have by Taylor’s theorem that

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗ + tp) , for some t ∈ (0, t̄).

Therefore, f (x∗ + t̄p) < f (x∗) for all t̄ ∈ (0,T ]. We have found a
direction leading away from x∗ along which f decreases, so x∗ is
not a local minimizer, and we have a contradiction.
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Proof of Theorem 3 (Optional)

We prove that if x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f (x∗) = 0 and
∇2f (x∗) is positive semidefinite.

We know that ∇f (x∗) = 0. For contradiction, assume that
∇2f (x∗) is not positive semidefinite.

Then we can choose a vector p such that pT∇2f (x∗) p < 0.

As ∇2f is continuous near x∗, pT∇2f (x∗ + tp) p < 0 for all
t ∈ [0,T ] where T > 0.

By Taylor we have for all t̄ ∈ (0,T ] and some t ∈ (0, t̄)

f (x∗ + t̄p) = f (x∗)+t̄pT∇f (x∗)+1

2
t̄2pT∇2f (x∗ + tp) p < f (x∗) .

Thus, x∗ is not a local minimizer.
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Proof of Theorem 4 (Optional)

We prove the following: Suppose that ∇2f is continuous in an
open neighborhood of x∗ and that ∇f (x∗) = 0 and ∇2f (x∗) is
positive definite. Then x∗ is a strict local minimizer of f .

Because the Hessian is continuous and positive definite at x∗, we
can choose a radius r > 0 so that ∇2f (x) remains positive definite
for all x in the open ball D = {z | ∥z − x∗∥ < r}. Taking any
nonzero vector p with ∥p∥ < r , we have x∗ + p ∈ D and so

f (x∗ + p) = f (x∗) + pT∇f (x∗) + 1

2
pT∇2f (z)p

= f (x∗) +
1

2
pT∇2f (z)p,

where z = x∗ + tp for some t ∈ (0, 1). Since z ∈ D, we have
pT∇2f (z)p > 0, and therefore f (x∗ + p) > f (x∗), giving the
result.
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Unconstrained Optimization
Algorithms
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Search Algorithms

We consider algorithms that

▶ Start with an initial guess x0
▶ Generate a sequence of points x0, x1, . . .

▶ Stop when no progress can be made or when a minimizer
seems approximated with sufficient accuracy.

To compute xk+1 the algorithms use the information about f at
the previous iterates x0, x1, . . . , xk .

The monotone algorithms satisfy f (xk+1) < f (xk).

There are two overall strategies:

▶ Line search

▶ Trust region
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Line Search Overview

To compute xk+1, a line search algorithm chooses

▶ direction pk
▶ step size αk

and computes

xk+1 = xk + αkpk

The vector pk should be a descent direction, i.e., a direction in
which f decreases locally.

αk is selected to approximately solve

min
α>0

f (xk + αpk)

However, typically, an exact solution is expensive and unnecessary.
Instead, line search algorithms inspect a limited number of trial
step lengths and find one that decreases f appropriately (see later).
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A descent direction does not have to
be followed to the minimum.
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Trust Region

To compute xk+1, a trust region algorithm chooses

▶ model function mk whose behavior near xk is similar to f

▶ a trust region R ⊆ Rn around xk . Usually R is the ball defined
by ||x − xk || ≤ ∆ where ∆ > 0 is trust region radius.

and finds xk+1 solving

min
x∈R

mk(x)

If the solution does not sufficiently decrease f , we shrink the trust
region and re-solve.

The model mk is usually derived from the Taylor’s theorem.

mk (xk + p) = fk + pT∇fk +
1

2
pTBkp

Where Bk approximates the Hessian of f at xk .
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Line Search Methods
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Line Search

For setting the step size, we consider

▶ Armijo condition and backtracking algorithm

▶ strong Wolfe conditions and bracketing & zooming

For setting the direction, we consider

▶ Gradient descent

▶ Newton’s method

▶ quasi-Newton methods (BFGS)

▶ (Conjugate gradients)

We start with the step size.
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Step Size

Assume

xk+1 = xk + αkpk

Where pk is a descent direction

p⊤k ∇fk < 0

Define

ϕ(α) = f (xk + αpk)

We know that

ϕ′(α) = ∇f (xk + αpk)
⊤pk which means ϕ′(0) = ∇f ⊤k pk

Note that ϕ′(0) must be negative as pk is a descent direction.
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Armijo Condition
The sufficient decrease condition (aka Armijo condition)

ϕ(α) ≤ ϕ(0) + α
(
µ1ϕ

′(0)
)

where µ1 is a constant such that 0 < µ1 ≤ 1

In practice, µ1 is several orders smaller than 1, typically µ1 = 10−4.
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Backtracking Line Search Algorithm

Algorithm 1 Backtracking Line Search

Input: αinit > 0, 0 < µ1 < 1, 0 < ρ < 1
Output: α∗ satisfying sufficient decrease condition
1: α← αinit

2: while ϕ(α) > ϕ(0) + αµ1ϕ
′(0) do

3: α← ρα
4: end while

The parameter ρ is typically set to 0.5. It can also be a variable set
by a more sophisticated method (interpolation).

The αinit depends on the method for setting the descent direction
pk . For Newton and quasi-Newton, it is 1.0, but for other
methods, it might be different.
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Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.
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Backtracking Example

f (x1, x2) =

0.1x61 − 1.5x41 + 5x21

+ 0.1x42 + 3x22 − 9x2 + 0.5x1x2

µ1 = 10−4 and ρ = 0.7.

40



Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.
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Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions

▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣
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Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions
▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

42



Satisfiability of Strong Wolfe Conditions

Theorem 6
Suppose f : Rn → R is continuously differentiable. Let pk be a
descent direction at xk , and assume that f is bounded below along
the ray {xk + αpk | α > 0}. Then, if 0 < µ1 < µ2 < 1, step length
intervals exist that satisfy the strong Wolfe conditions.
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Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 7 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.
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Algorithm 2 Bracketing

Input: α1 > 0 and αmax

1: Set α0 ← 0
2: i ← 1
3: repeat
4: Evaluate ϕ(αi )
5: if ϕ(αi ) > ϕ(0)+αiµ1ϕ

′(0) or [ϕ(αi ) ≥ ϕ(αi−1) and i > 1]
then

6: α∗ ← zoom(αi−1, αi ) and stop
7: end if
8: Evaluate ϕ′(αi )
9: if |ϕ′(αi )| ≤ µ2|ϕ′(0)| then

10: set α∗ ← αi and stop
11: else if ϕ′(αi ) ≥ 0 then
12: set α∗ ← zoom(αi , αi−1) and stop
13: end if
14: Choose αi+1 ∈ (αi , αmax)
15: i ← i + 1
16: until a condition is met
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Explanation of Bracketing

Note that the sequence of trial steps αi is monotonically
increasing.

Note that zoom is called when one of the following conditions is
satisfied:

▶ αi violates the sufficient decrease condition (lines 5 and 6)

▶ ϕ(αi ) ≥ ϕ(αi−1) (also lines 5 and 6)

▶ ϕ′(αi ) ≥ 0 (lines 11 and 12)

The last step increases the αi . May use, e.g., a constant multiple.
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Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.
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1: function zoom(αlo, αhi)
2: repeat
3: Set α between αlo and αhi using interpolation

(bisection, quadratic, etc.)

4: Evaluate ϕ(α)
5: if ϕ(α) > ϕ(0) + αµ1ϕ

′(0) or ϕ(α) ≥ ϕ(αlo) then
6: αhi ← α
7: else
8: Evaluate ϕ′(α)
9: if |ϕ′(α)| ≤ µ2|ϕ′(0)| then

10: Set α∗ ← α and stop
11: end if
12: if ϕ′(α)(αhi − αlo) ≥ 0 then
13: αhi ← αlo

14: end if
15: αlo ← α
16: end if
17: until a condition is met
18: end function
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Bracketing & Zooming Example
We use quadratic interpolation; the bracketing chooses
αi+1 = 2αi , and the sufficient curvature factor is µ2 = 0.9.

Bracketing is achieved in the first iteration by using a significant
initial step of αinit = 1.2 (left). Then, zooming finds an improved
point through interpolation.
The small initial step of αinit = 0.05 (right) does not satisfy the
strong Wolfe conditions, and the bracketing phase moves forward
toward a flatter part of the function.
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Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html
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Unconstrained Optimization
Algorithms

Descent Direction

First-Order Methods
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Gradient Descent

Consider the gradient descent (aka
gradient descent) method where

xk+1 = xk+αkpk pk = −∇f (xk)

Unfortunately, the gradient does not possess much information
about the step size.

So usually, a normalized gradient is used to obtain the direction,
and then a line search is performed:

xk+1 = xk + αkpk pk = − ∇f (xk)
||∇f (xk)||

The line search is exact if αk minimizes f (xk + αkpk). Not
practical, we usually find αk satisfying the strong Wolfe conditions.
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Gradient Descent Algorithm with Line Search

Algorithm 3 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk )
∥∇f (xk )∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇fk ≈ αk−1p

⊤
k−1∇fk−1 ⇒ αinit = αk−1

p⊤k−1∇fk−1

p⊤k ∇fk
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Gradient Descent Algorithm with Line Search

Algorithm 4 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk )
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Gradient Descent Algorithm with Line Search

Algorithm 5 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk )
∥∇f (xk )∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇f ⊤k ≈ αk−1p

⊤
k−1∇f ⊤k−1 ⇒ αinit = αk−1

αk−1p
⊤
k−1∇f ⊤k−1

∇p⊤k f ⊤k
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f (x1, x2) = x21 + βx22

Consider β = 1, 5, 15 and
exact line search

Note that pk+1 and pk are always orthogonal. 56



f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

The gradient descent can be prolonged.
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Global Convergence with Line Search
Recall the Zoutendijk’s theorem.

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 8 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Global Convergence of Gradient Descent

Assume that each αk satisfies strong Wolfe conditions.

Note that the angle θk between pk = −∇fk and the negative
gradient −∇fk equals 0. Hence, cos θk = 1.

Thus, under the assumptions of Zoutendijk’s theorem, we obtain∑
k≥0

cos2 θk ∥∇fk∥2 =
∑
k≥0

∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.
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Local Linear Convergence of Gradient Descent

Theorem 9
Suppose that f : Rn → R is twice continuously differentiable, that
the line search is exact, and that the descent converges to x∗

where ∇f (x∗) = 0 and the Hessian matrix ∇2f (x∗) is positive
definite. Then

f (xk+1)− f (x∗) ≤
(
λn − λ1

λn + λ1

)2

[f (xk)− f (x∗)] ,

where λ1 ≤ · · · ≤ λn are the eigenvalues of ∇2f (x∗).
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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k1
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Two Spring Problem - Gradient Descent

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
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Rosenbrock Function - Gradient Descent
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
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Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).
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Unconstrained Optimization
Algorithms

Descent Direction

Second-Order Methods
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Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66



Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66



Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0.

We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66



Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66



Newton’s Method

Algorithm 7 Newton’s Method

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: pk ← −H−1

k ∇f (xk)
4: xk+1 ← xk + pk
5: k ← k + 1
6: end while
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Newton’s Method - Example

Newton’s method finds the minimum of a quadratic function in a
single step.

Note that the Newton’s method is scale-invariant!
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f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

69



f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.
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Convergence Issues

Also, the computation of the Hessian is costly.
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Local Quadratic Convergence of Newton’s Method

Theorem 10
Assume f is defined and twice differentiable and assume that ∇f is
L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?
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Newton’s Method with Line Search

Algorithm 8 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: αinit ← 1
3: while ∥∇fk∥∞ > ε do
4: pk ← −H−1

k ∇f (xk)
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + pk
7: k ← k + 1
8: end while
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
73



Two Spring Problem - Newton’s Method

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent.
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Rosenbrock Function - Newton’s Method
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 10,662 iterations of gradient descent.
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Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 11 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or is (nearly) singular?
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Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?
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Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.
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Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).
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Modified Newton’s Method

Algorithm 9 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: Hk ← ∇2f (xk)
4: if Hk is not sufficiently positive definite then
5: Hk ← Hk +∆Hk so that Hk is sufficiently pos. definite
6: end if
7: Solve Hkpk = −∇f (xk) for pk
8: Set xk+1 = xk + αkpk , here αk sat. the Wolfe cond.
9: k ← k + 1

10: end while
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Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.
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Quasi-Newton Methods
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Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting ∇q(p) = 0 and solving

Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian), which
is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .
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Quasi-Newton Methods
Suppose we have just obtained the new point xk+1 after a line
search starting from xk in the direction pk .

Consider the Hessian Hk+1 = ∇2f (xk+1) and its approximation
denoted by H̃k+1.

We aim to use H̃k+1 in the next step, that is, in the equation
H̃k+1p = −∇fk+1 yielding pk+1.

What conditions should H̃k+1 satisfy so that it functions as the
“true” Hessian Hk+1?

First, it should be symmetric positive definite.
To always yield decrease direction.

Second, extrapolating from the single variable secant method, we
demand

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

This is the secant condition.
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Secant Condition

Consider the secant condition:

H̃k+1(xk+1 − xk) = ∇fk+1 −∇fk

The notation is usually simplified by

sk = xk+1 − xk yk = ∇fk+1 −∇fk

So that the secant condition becomes

H̃k+1sk = yk

Does it have a symmetric positive definite solution?
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Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 12
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

87



Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 12
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

87



Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 12
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.

87



Curvature Condition
Consider the secant condition:

H̃k+1sk = yk

The following is true:
▶ The secant condition has a symmetric positive definite

solution iff the following condition is satisfied:

s⊤k yk > 0

▶ The condition s⊤k yk > 0 is satisfied if the line search satisfies
the strong Wolfe conditions.

As a corollary, we obtain the following:

Theorem 12
Assume that we use line search satisfying strong Wolfe conditions.
Then in every step, the secant condition

H̃k+1sk = yk

has a symmetric positive definite solution H̃k+1.
87



Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Note that even if we demand symmetric positive definite solutions
to the secant condition, there are infinitely many.
Indeed, there are n(n+ 1)/2 degrees of freedom in a symmetric matrix, and the

secant conditions represent only n conditions.

Moreover, we want to obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

We also want H̃k+1 to be symmetric positive definite.

We strive to choose H̃k+1 “close” to H̃k .
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Symmetric Rank One Update (SR1)
Note that the information about the solution is present in sk and
yk , so it is natural to compose the solution using these vectors.

Consider u =
(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk+
uu⊤sk
u⊤sk

= H̃ksk+u = H̃ksk+
(
yk − H̃ksk

)
= yk

By the way, the matrix uu⊤

u⊤sk
is of rank one and is a unique symmetric rank one

matrix which makes H̃k+1 satisfy the secant condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.
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Symmetric Rank One Update

Algorithm 10 SR1

k ← 0
αinit ← 1
H̃0 ← I
while ∥∇fk∥∞ > τ do

Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
u ← y − H̃ks
H̃k+1 ← H̃k +

uu⊤

u⊤s
k ← k + 1

end while

Note that the denominator u⊤sk can be 0, in which case the update is

impossible. The usual strategy is to skip the update and set H̃k+1 = H̃k .
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Example
We will look at a three-dimensional quadratic problem
f (x) = 1

2x
⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

The initial guesses are H̃0 = I and x0 = (0, 0, 0)⊤.

At the initial point, ∥∇f (x0)∥∞ = ∥−c∥∞ = 9, so this point is not
optimal.The first search direction is

p0 =

−8−9
−8

 .

The exact line search gives α0 = 0.3333.
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Example
The new estimate of the solution, the update vectors, and the new
Hessian approximation are:

x1 =

−2.66−3.00
−2.66

 ,∇f1 =

 2.66
0

−2.66

 , s0 =

−2.66−3.00
−2.66

 , y0 =

 −5.33−9.00
−10.66

 ,

and

H̃1 = I+
(y0 − Is0)(y0 − Is0)

⊤

(y0 − Is0)⊤s0
=

1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

 .

At this new point ∥∇f (x1)∥∞ = 2.66 so we keep going, obtaining
the search direction

p1 =

−2.9137−0.5557
1.9257

 ,

and the step length α1 = 0.3942.
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Example

This gives the new estimates:

x2 =

−3.81−3.21
−1.90

 , ∇f2 =

 0.36
−0.65
0.36

 , s1 =

−1.14−0.21
0.75

 , y1 =

−2.29−0.65
3.03

 ,

and

H̃2 =

 1.6568 0.6102 −0.3432
0.6102 1.9153 0.6102
−0.3432 0.6102 3.6568

 .

At the point x2, ∥∇f (x2)∥∞ = 0.65 so we keep going, with

p2 =

−0.48510.5749
−0.2426

 ,

and α = 0.3810.
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Example

This gives

x3 =

−4−3
−2

 , ∇f3 =

0
0
0

 , s2 =

−0.180.21
−0.09

 , y2 =

−0.360.65
−0.36

 ,

and H̃3 = Q. Now ∥∇f (x3)∥ = 0, so we stop.
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Properties of SR1

Does symmetric rank one update satisfy our demands?
We want every H̃k to be a symmetric positive definite solution to the secant

condition.

Unfortunately, though H̃k is a symmetric positive definite, the
updated matrix H̃k+1 does not have to be a positive definite.

Still, the symmetric rank one approximation is used in practice,
especially in trust region methods.

However, for line search, let us try a bit “richer” solution to the
secant condition.
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Symmetric Rank Two Update

Consider

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

Once again, verifying H̃k+1sk = yk is not difficult.

Lemma 1
Assume that H̃k is symmetric positive definite.
Then H̃k+1 is symmetric positive definite iff y⊤k sk > 0.

We know that line search satisfying the strong Wolfe conditions
preserves y⊤k sk > 0.

Thus, starting with a symmetric positive definite H̃0 (e.g., a scalar
multiple of I ), every H̃k is symmetric positive definite and satisfies
the secant condition.
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BFGS

Algorithm 11 BFGS v1

k ← 0
αinit ← 1
H̃0 ← I
while ∥∇fk∥∞ > τ do

Solve for pk in H̃kpk = −∇fk
α← linesearch(pk , αinit)
xk+1 ← xk + αpk
s ← xk+1 − xk
y ← ∇fk+1 −∇fk
H̃k+1 ← H̃k −

(H̃k s)(H̃k s)
⊤

s⊤H̃k s
+ yy⊤

y⊤s

k ← k + 1
end while

Note that we still have to solve a linear system for pk .
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Example

Consider the quadratic problem f (x) = 1
2x

⊤Qx − c⊤x with

Q =

2 0 0
0 3 0
0 0 4

 and c =

−8−9
−8

 ,

whose solution is x∗ = (−4,−3,−2)⊤. Use the exact line search.

Choose H̃0 = I and x0 = (0, 0, 0)T .

At iteration 0, ∥∇f (x0)∥∞ = 9, so this point is not optimal.

The search direction is

p0 =

 −8−9
−8


and α0 = 0.3333.
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Example

The new estimate of the solution and the new Hessian
approximation are

x1 =

 −2.6667−3.0000
−2.6667

 and H̃1 =

 1.1021 0.3445 0.5104
0.3445 1.7751 1.0335
0.5104 1.0335 2.3270

 .

At iteration 1, ∥∇f (x1)∥∞ = 2.6667, so we continue. The next
search direction is

p1 =

 −3.2111−0.6124
2.1223


and α1 = 0.3577.
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Example
This gives the estimates.

x2 =

 −3.8152−3.2191
−1.9076

 and H̃2 =

 1.6393 0.6412 −0.3607
0.6412 1.8600 0.6412
−0.3607 0.6412 3.6393

 .

At iteration 2, ∥∇f (x2)∥∞ = 0.6572, so we continue, computing

p2 =

 −0.52890.6268
−0.2644


and α2 = 0.3495. This gives

x3 =

 −4−3
−2

 and H̃3 =

 2 0 0
0 3 0
0 0 4

 .

Now ∥∇f (x3)∥∞ = 0, so we stop.

Notice that we got the same x1, x2, x3 as for SR1. This follows from using the

exact line search and the quadratic problem. It does not hold in general.
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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Two Spring Problem - BFGS

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent and 12
iterations of Newton’s method.
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Rosenbrock Function - BFGS
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.

Compare with 10,662 iterations of gradient descent and 24 iterations of

Newton’s method. 103



Sherman–Morrison–Woodbury Formula

Problem: SR1 and BFGS solve H̃kp = −∇fk repeatedly. What if
we could iteratively update H−1

k ?

The equation would be solved by pk = −H−1
k ∇fk .

Ideally, we would like to compute H̃−1
k iteratively along the

optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a “something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TA−1U

)−1
V TA−1

Here A is a (n× n)-matrix, U,V are (n×m)-matrices with m ≤ n.
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Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤

(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤

(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.
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This allows us to avoid solving H̃kpk = −∇fk for pk in every
iteration.

105



Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
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Rank One Update V2

Algorithm 12 Rank 1 update v1

1: k ← 0
2: αinit ← 1
3: H̃0 ← I
4: while ∥∇fk∥∞ > τ do
5: pk ← −H̃−1

k ∇fk
6: α← linesearch(pk , αinit)
7: xk+1 ← xk + αpk
8: s ← xk − xk−1

9: y ← ∇fk −∇fk−1

10: H̃−1
k+1 ← H̃−1

k +
(s−H̃−1

k y)(s−H̃−1
k y)

⊤

(s−H̃−1
k y)

⊤
y

11: k ← k + 1
12: end while
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BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

yields

H̃−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H̃−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .
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BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤

s⊤k H̃ksk
+

yky
⊤
k

y⊤k sk

yields

H̃−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H̃−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .
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BFGS V2

Algorithm 13 BFGS v2

1: k ← 0
2: αinit ← 1
3: H̃0 ← I
4: while ∥∇fk∥∞ > τ do
5: pk ← −H̃−1

k ∇fk
6: α← linesearch(pk , αinit)
7: xk+1 ← xk + αpk
8: k ← k + 1
9: s ← xk − xk−1

10: y ← ∇fk −∇fk−1

11: H̃−1
k+1 ←

(
I − sy⊤

s⊤y

)
H̃−1
k

(
I − ys⊤

s⊤y

)
+ ss⊤

s⊤y

12: end while
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Limited Memory BFGS Idea
Let us denote by s0, . . . , sk and y0, . . . , yk the values of the
variables s and y , resp., during the iterations 1, . . . , k of BFGS.

Observe that H̃k is determined completely by H0 and the two
sequences s0, . . . , sk and y0, . . . , yk .

So, the matrix H̃k does not have to be stored if the algorithm
remembers the values s0, . . . , sk and y0, . . . , yk .

Note that this would be more space efficient for k < n.

However, we may go further and observe that typically only a few,
say m, past values of s and y are sufficient for a good
approximation of H̃k when we set H̃k−m−1 = I .

This is the basic idea behind limited-memory BFGS which stores
only the running window sk−m, . . . , sk and yk−m, . . . , yk and
computes H̃k using these values as if initialized by H̃k−m−1 = I .

The space complexity becomes nm, which is beneficial when n is
large.
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Another View on BFGS (Optional)

We search for H̃−1
k+1 where H̃k+1 satisfies H̃k+1sk = yk . Search for

a solution Ṽ for Ṽ yk = sk .

The idea is to use Ṽ close to H̃−1
k (in some sense):

min
H̃

∥∥∥Ṽ − H̃−1
k

∥∥∥
subject to Ṽ = Ṽ⊤, Ṽ yk = sk

Here the norm is weighted Frobenius norm:

∥A∥ ≡
∥∥∥W 1/2AW 1/2

∥∥∥
F
,

where ∥ · ∥F is defined by ∥C∥2F =
∑n

i=1

∑n
j=1 c

2
ij . The weight W

can be chosen as any matrix satisfying the relation Wyk = sk .

BFGS is obtained with W = Ḡ−1
k where Ḡk is the average Hessian

defined by Ḡk =
[∫ 1

0 ∇
2f (xk + ταkpk) dτ

]
Solving this gives precisely the BFGS formula for H̃−1

k+1.
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Global Convergence of Line Search

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ Rn

Theorem 13 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below, continuously differentiable, and L-smooth. Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.
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Global Convergence of Quasi-Newton’s Method

Assume that all αk satisfy strong Wolfe conditions.

Assume that the approximations to the Hessians H̃k are positive
definite with a uniformly bounded condition number:∣∣∣∣∣∣H̃k

∣∣∣∣∣∣ ∣∣∣∣∣∣H̃−1
k

∣∣∣∣∣∣ ≤ M for all k

Then θk between pk = −H̃−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.
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Behavior of BFGS

▶ It may happen that H̃k becomes a poor approximation of the
Hessian Hk . If, e.g., y

⊤
k is tiny, then H̃k+1 will be huge.

However, it has been proven experimentally that if H̃k wrongly
estimates the curvature of f and this estimate slows down the
iteration, then the approximation will tend to correct the bad
Hessian approximations.
The above self-correction works only if an appropriate line search is

performed (strong Wolfe conditions).

▶ There are more sophisticated ways of setting the initial
Hessian approximation H0.
See Numerical Optimization, Nocedal & Wright, page 201.
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Quasi-Newton Methods - Comments

▶ Each iteration is performed for O(n2) operations as opposed
to O(n3) for methods involving solutions of linear systems.

▶ There is even a memory-limited variant (L-BFGS) that uses
only information from past m steps, and its single iteration
complexity is O(mn).

▶ Compared with Newton’s method, no second derivatives are
computed.

▶ Local superlinear convergence can be proved under specific
conditions.
Compare with local quadratic convergence of Newton’s method and linear

convergence of gradient descent.
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Limited-Memory BFGS
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Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the
whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods,

In addition, these methods also improve the computational
efficiency of medium-sized problems (hundreds or thousands of
design variables) with minimal sacrifice in accuracy.
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L-BFGS
Recall that we compute iteratively the approximation to the inverse
Hessian by

H−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

However, eventually, we are interested in

pk = H−1
k ∇f

Note that given the sequences s1, . . . , sk and y1, . . . , yk and H−1
0

we can recursively compute H−1
k+1 for every k .

What if we limit the sequences in memory to just m last elements:

sk−m+1, sk−m+2, . . . , sk yk−m+1, yk−m+2, . . . , yk

In practice, m between 5 and 20 is usually sufficient. We also
initialize the recurrence with the last iterate:
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L-BFGS
Let us rewrite the BFGS update formula as follows:

H̃−1
k+1 = V T

k H̃−1
k Vk + ρksks

⊤
k

where

ρk = s⊤k yk and Vk = I − ρksky
⊤
k

sk = xk+1 − xk and yk = ∇fk+1 −∇fk
By substitution, we obtain

H̃−1
k =

(
V T
k−1 · · ·V T

k−m

)
H̃0
k (Vk−m · · ·Vk−1)

+ ρk−m

(
V T
k−1 · · ·V T

k−m+1

)
sk−ms

T
k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1
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L-BFGS Algorithm

Algorithm 14 L-BFGS two-loop recursion

Input: : sk−1, . . . , sk−m and yk−1, . . . , yk−m

Output: : pk the search direction −H̃−1
k ∇fk

1: q ← ∇fk
2: for i = k − 1, k − 2, . . . , k −m do
3: αi ← ρi s

T
i q

4: q ← q − αiyi
5: end for
6: r ← H0

kq
7: for i = k −m, k −m + 1, . . . , k − 1 do
8: β ← ρiy

T
i r

9: r ← r + si (αi − β)
10: end for
11: stop with result H̃−1

k ∇fk = r
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L-BFGS Algorithm

Algorithm 15 L-BFGS

1: Choose starting point x0, integer m > 0
2: k ← 0
3: repeat

4: Choose H0
k e.g.

s⊤k−1yk−1

y⊤
k−1yk−1

5: Compute pk ← −Hk∇fk using the previous algorithm
6: Compute xk+1 ← xk + αkpk , where αk is chosen to satisfy

the strong Wolfe conditions
7: if k > m then
8: Discard the vector pair {sk−m, yk−m} from storage
9: end if

10: Compute and save sk ← xk+1 − xk , yk ← ∇fk+1 −∇fk
11: k ← k + 1
12: until convergence
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f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

In L-BFGS, the memory length m was 5. The results are similar.
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f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
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Rosenbrock: f (x1, x2) = (1− x1)
2 + 100

(
x2 − x21

)2
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Rosenbrock:
f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2
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Computational Complexity

Algorithm Computational Complexity
Steepest Descent O(n) per iteration
Newton’s Method O(n3) to compute Hessian and solve system
BFGS O(n2) to update Hessian approximation

Table: Summary of the computational complexity for each optimization
algorithm.

▶ Steepest Descent: Simple but often slow, requiring many
iterations.

▶ Newton’s Method: Fast convergence but expensive per
iteration.

▶ BFGS: Quasi-Newton, no Hessian needed, good speed and
iteration count balance.
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