Unconstrained Optimization Overview

Notation

In what follows, we will work with vectors in \mathbb{R}^{n}.
The vectors will be (usually) denoted by $x \in \mathbb{R}^{n}$.
We often consider sequences of vectors, $x_{0}, x_{1}, \ldots, x_{k}, \ldots$.
The index k will usually indicate that x_{k} is the k-the vector in a sequence.
When we talk (relatively rarely) about components of vectors, we use i as an index, i.e., x_{i} will be the i-th component of $x \in \mathbb{R}^{n}$.
We denote by $\|x\|$ the Euclidean norm of x.
We denote by $\|x\|_{\infty}$ the \mathcal{L}^{∞} norm giving the maximum of absolute values of components of x.

We ocasionally use the matrix morn $\|A\|$, consistent with the Euclidean norm, defined by

$$
\|A\|=\sup _{\|x\|=1}\|A x\|=\sqrt{\lambda_{1}}
$$

Here λ_{1} is the largest eigenvalue of $A^{\top} A$.

How to Recognize (Local) Minimum

How do we verify that $x^{*} \in \mathbb{R}^{n}$ is a minimizer of f ?

How to Recognize (Local) Minimum

How do we verify that $x^{*} \in \mathbb{R}^{n}$ is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity if one has a smaller value (impractical).

Assuming the smoothness of f, we may benefit from the "stable" behavior of f around x^{*}.

Derivatives and Gradients

The gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denoted by $\nabla f(x)$, is a column vector of first-order partial derivatives of the function concerning each variable:

$$
\nabla f(x)=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]^{\top}
$$

Where each partial derivative is defined as the following limit:

$$
\frac{\partial f}{\partial x_{i}}=\lim _{\varepsilon \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+\varepsilon, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{\varepsilon}
$$

Gradient

The gradient is a vector pointing in the direction of the most significant function increase from the current point.

Gradient

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{1} x_{2}^{2}-x_{2}^{3}-20 x_{1} .
$$

$$
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
3 x_{1}^{2}+2 x_{2}^{2}-20 \\
4 x_{1} x_{2}-3 x_{2}^{2}
\end{array}\right]
$$

Directional Derivatives vs Gradient

The rate of change in a direction p is quantified by a directional derivative, defined as

$$
\nabla_{p} f(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon p)-f(x)}{\varepsilon}
$$

We can find this derivative by projecting the gradient onto the desired direction p using the dot product $\nabla_{p} f(x)=(\nabla f(x))^{\top} p$

(Here, we assume continuous partial derivatives.)

Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$
\nabla_{p} f(x)=(\nabla f(x))^{\top} p=\|\nabla f\|\|p\| \cos \theta
$$

Here θ is the angle between ∇f and p.

Geometry of Gradient

Consider the geometric interpretation of the dot product:

$$
\nabla_{p} f(x)=(\nabla f(x))^{\top} p=\|\nabla f\|\|p\| \cos \theta
$$

Here θ is the angle between ∇f and p.
The directional derivative is maximized by $\theta=0$, i.e. when ∇f and p point in the same direction.

Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$
\nabla^{2} f(x)=H(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{f} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right] .
$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^{n}$ and gives a $n \times n$-matrix of second derivatives of f.

Hessian

Taking derivative twice, possibly w.r.t. different variables, gives the Hessian of f

$$
\nabla^{2} f(x)=H(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{f} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Note that the Hessian is a function which takes $x \in \mathbb{R}^{n}$ and gives a $n \times n$-matrix of second derivatives of f.

We have

$$
H_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

If f has continuous second partial derivatives, then H is symmetric, i.e., $H_{i j}=H_{j i}$.

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
g^{\prime}(t)=f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i}
\end{aligned}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i} \\
g^{\prime \prime}(t) & =\sum_{i=1}^{n} h_{i}^{\prime}(t) p_{i}=\sum_{i=1}^{n}[H(x+t p) p]_{i} p_{i}=p^{\top} H(x+t p) p
\end{aligned}
$$

Geometry of Hessian

Let x be fixed and let $g(t)=f(x+t p)$ and let $h_{i}(t)=\frac{\partial f}{\partial x_{i}}(x+t p)$ for $t \in \mathbb{R}$.

What exactly are $g^{\prime}(0)$ and $g^{\prime \prime}(0)$?

$$
\begin{aligned}
g^{\prime}(t) & =f(x+t p)^{\prime}=[\nabla f(x+t p)]^{\top} p=\sum_{i=1}^{n} h_{i}(t) p_{i} \\
h_{i}^{\prime}(t) & =\left[\nabla \frac{\partial f}{\partial x_{i}}(x+t p)\right]^{\top} p=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial x_{i} \partial x_{j}}(x+t p)\right) p_{j} \\
& =[H(x+t p) p]_{i} \\
g^{\prime \prime}(t) & =\sum_{i=1}^{n} h_{i}^{\prime}(t) p_{i}=\sum_{i=1}^{n}[H(x+t p) p]_{i} p_{i}=p^{\top} H(x+t p) p
\end{aligned}
$$

Thus,

$$
g^{\prime \prime}(0)=p^{\top} H(x) p .
$$

Principal Curvature Directions

Fix x and consider $H=H(x)$. Consider unit eigenvectors \hat{v}_{k} of H :

$$
H \hat{v}_{k}=\kappa_{k} \hat{v}_{k}
$$

For symmetric H, the unit eigenvectors form an orthonormal basis,

Principal Curvature Directions

Fix x and consider $H=H(x)$. Consider unit eigenvectors \hat{v}_{k} of H :

$$
H \hat{v}_{k}=\kappa_{k} \hat{v}_{k}
$$

For symmetric H, the unit eigenvectors form an orthonormal basis, and there is a rotation matrix R such that

$$
H=R D R^{-1}=R D R^{\top}
$$

Here D is diagonal with $\kappa_{1}, \ldots, \kappa_{n}$ on the diagonal.

If $\kappa_{1} \geq \cdots \geq \kappa_{n}$, the direction of \hat{v}_{1} is the maximum curvature direction of f at x.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{cc}
4 / 3 & 0 \\
0 & 1
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=4 / 3 \quad \kappa_{2}=1
$$

Their corresponding eigenvectors are $(1,0)^{\top}$ and $(0,1)^{\top}$.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{cc}
4 / 3 & 0 \\
0 & 1
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=4 / 3 \quad \kappa_{2}=1
$$

Their corresponding eigenvectors are $(1,0)^{\top}$ and $(0,1)^{\top}$.

Note that

$$
f(x)=\kappa_{1} x_{1}^{2}+\kappa_{2} x_{2}^{2}
$$

Considering a direction vector p we get

$$
g(t)=f(0+t p)=t^{2}\left(\kappa_{1} p_{1}^{2}+\kappa_{2} p_{2}^{2}\right)
$$

which is a parabola with $g^{\prime \prime}=2\left(\kappa_{1} p_{1}^{2}+\kappa_{2} p_{2}^{2}\right)$.

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=\frac{1}{6}(7+\sqrt{5}) \quad \kappa_{2}=\frac{1}{6}(7-\sqrt{5})
$$

Their corresponding eigenvectors are

$$
\hat{v}_{1}=\left(\frac{1}{2}(1+\sqrt{5}), 1\right) \quad \hat{v}_{2}=\left(\frac{1}{2}(1-\sqrt{5}), 1\right)
$$

Consider $f(x)=x^{\top} H x$ where

$$
H=\left(\begin{array}{ll}
4 / 3 & 1 / 3 \\
1 / 3 & 3 / 3
\end{array}\right)
$$

The eigenvalues are

$$
\kappa_{1}=\frac{1}{6}(7+\sqrt{5}) \quad \kappa_{2}=\frac{1}{6}(7-\sqrt{5})
$$

Their corresponding eigenvectors are

$$
\hat{v}_{1}=\left(\frac{1}{2}(1+\sqrt{5}), 1\right) \quad \hat{v}_{2}=\left(\frac{1}{2}(1-\sqrt{5}), 1\right)
$$

Note that

$$
H=\left(\hat{v}_{1} \hat{v}_{2}\right)\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)\left(\begin{array}{ll}
\hat{v}_{1} & \hat{v}_{2}
\end{array}\right)^{\top}
$$

Here $\left(\hat{v}_{1} \hat{v}_{2}\right)$ is a 2×2 matrix whose columns are \hat{v}_{1}, \hat{v}_{2}.

Hessian Visualization Example

Consider

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{1} x_{2}^{2}-x_{2}^{3}-20 x_{1} .
$$

And it's Hessian.

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
6 x_{1} & 4 x_{2} \\
4 x_{2} & 4 x_{1}-6 x_{2}
\end{array}\right] .
$$

Taylor's Theorem

Theorem 1 (Taylor)
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable and that $p \in \mathbb{R}^{n}$. Then, we have

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} H(x) p+o\left(\|p\|^{2}\right) .
$$

Here $H=\nabla^{2} f$ is the Hessian of f.

First-Order Necessary Conditions

Theorem 2
If x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

Second-Order Conditions

Note that $\nabla f\left(x^{*}\right)=0$ does not tell us whether x^{*} is a minimizer, maximizer, or a saddle point.

However, knowing the curvature in all directions from x^{*} might tell us what x^{*} is, right?

All comes down to the definiteness of $H:=H\left(x^{*}\right)$.

- H is positive definite if $p^{\top} H p>0$ for all p iff all eigenvalues of H are positive
- H is positive semi-definite if $p^{\top} H p \geq 0$ for all p
iff all eigenvalues of H are nonnegative
- H is negative semi-definite if $p^{\top} H p \leq 0$ for all p
iff all eigenvalues of H are nonpositive
- H is negative definite if $p^{\top} H p<0$ for all p
iff all eigenvalues of H are negative
- H is indefinite if it is not definite in the above sense iff H has at least one positive and one negative eigenvalue.

Definiteness

Positive definite

Indefinite

Positive semidefinite

Second-Order Necessary Condition

Theorem 3 (Second-Order Necessary Conditions) If x^{*} is a local minimizer of f and $\nabla^{2} f$ is continuous in a neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

Theorem 4 (Second-Order Sufficient Conditions)
Suppose that $\nabla^{2} f$ is continuous in a neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.

Positive definite

Positive semidefinite

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From the second equation, we have that $x_{2}=x_{1}$. Substituting this into the first equation yields

$$
x_{1}\left(2 x_{1}^{2}+6 x_{1}+1\right)=0 .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Consider the gradient equal to zero:

$$
\nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1}^{3}+6 x_{1}^{2}+3 x_{1}-2 x_{2} \\
2 x_{2}-2 x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

From the second equation, we have that $x_{2}=x_{1}$. Substituting this into the first equation yields

$$
x_{1}\left(2 x_{1}^{2}+6 x_{1}+1\right)=0 .
$$

The solution of this equation yields three points:

$$
x_{A}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad x_{B}=\left[\begin{array}{l}
-\frac{3}{2}-\frac{\sqrt{7}}{2} \\
-\frac{3}{2}-\frac{\sqrt{7}}{2}
\end{array}\right], \quad x_{C}=\left[\begin{array}{c}
\frac{\sqrt{7}}{2}-\frac{3}{2} \\
\frac{\sqrt{7}}{2}-\frac{3}{2}
\end{array}\right] .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} .
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

The Hessian, at the first point, is

$$
H\left(x_{A}\right)=\left[\begin{array}{cc}
3 & -2 \\
-2 & 2
\end{array}\right]
$$

whose eigenvalues are $\kappa_{1} \approx 0.438$ and $\kappa_{2} \approx 4.561$. Because both eigenvalues are positive, this point is a local minimum.

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right] .
$$

For the second point,

$$
H\left(x_{B}\right)=\left[\begin{array}{cc}
3(3+\sqrt{7}) & -2 \\
-2 & 2
\end{array}\right]
$$

The eigenvalues are $\kappa_{1} \approx 1.737$ and $\kappa_{2} \approx 17.200$, so this point is another local minimum.

Example

Consider the following function of two variables:

$$
f\left(x_{1}, x_{2}\right)=0.5 x_{1}^{4}+2 x_{1}^{3}+1.5 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}
$$

To classify x_{A}, x_{B}, x_{C}, we need to compute the Hessian matrix:

$$
H\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right]=\left[\begin{array}{cc}
6 x_{1}^{2}+12 x_{1}+3 & -2 \\
-2 & 2
\end{array}\right]
$$

For the third point,

$$
H\left(x_{C}\right)=\left[\begin{array}{cc}
9-3 \sqrt{7} & -2 \\
-2 & 2
\end{array}\right]
$$

The eigenvalues for this Hessian are $\kappa_{1} \approx-0.523$ and $\kappa_{2} \approx 3.586$, so this point is a saddle point.

Example

Proofs of Some Theorems
 Optional

Taylor's Theorem

To prove the theorems characterizing minima/maxima, we need the following form of Taylor's theorem:

Theorem 5 (Taylor)
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and that $p \in \mathbb{R}^{n}$. Then we have that.

$$
f(x+p)=f(x)+\nabla f(x+t p)^{T} p
$$

for some $t \in(0,1)$. Moreover, if f is twice continuously differentiable, we have that

$$
f(x+p)=f(x)+\nabla f(x)^{T} p+\frac{1}{2} p^{T} \nabla^{2} f(x+t p) p
$$

for some $t \in(0,1)$.

Proof of Theorem 2 (Optional)

We prove that if x^{*} is a local minimizer and f is continuously differentiable in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$.

Suppose for contradiction that $\nabla f\left(x^{*}\right) \neq 0$. Define the vector $p=-\nabla f\left(x^{*}\right)$ and note that $p^{T} \nabla f\left(x^{*}\right)=-\left\|\nabla f\left(x^{*}\right)\right\|^{2}<0$. Because ∇f is continuous near x^{*}, there is a scalar $T>0$ such that

$$
p^{T} \nabla f\left(x^{*}+t p\right)<0, \quad \text { for all } t \in[0, T]
$$

For any $\bar{t} \in(0, T]$, we have by Taylor's theorem that

$$
f\left(x^{*}+\bar{t} p\right)=f\left(x^{*}\right)+\bar{t} p^{T} \nabla f\left(x^{*}+t p\right), \quad \text { for some } t \in(0, \bar{t}) .
$$

Therefore, $f\left(x^{*}+\bar{t} p\right)<f\left(x^{*}\right)$ for all $\bar{t} \in(0, T]$. We have found a direction leading away from x^{*} along which f decreases, so x^{*} is not a local minimizer, and we have a contradiction.

Proof of Theorem 3 (Optional)

We prove that if x^{*} is a local minimizer of f and $\nabla^{2} f$ is continuous in an open neighborhood of x^{*}, then $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.

We know that $\nabla f\left(x^{*}\right)=0$. For contradiction, assume that $\nabla^{2} f\left(x^{*}\right)$ is not positive semidefinite.
Then we can choose a vector p such that $p^{T} \nabla^{2} f\left(x^{*}\right) p<0$.
As $\nabla^{2} f$ is continuous near $x^{*}, p^{T} \nabla^{2} f\left(x^{*}+t p\right) p<0$ for all $t \in[0, T]$ where $T>0$.
By Taylor we have for all $\bar{t} \in(0, T]$ and some $t \in(0, \bar{t})$
$f\left(x^{*}+\bar{t} p\right)=f\left(x^{*}\right)+\bar{t} p^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} \bar{t}^{2} p^{T} \nabla^{2} f\left(x^{*}+t p\right) p<f\left(x^{*}\right)$.
Thus, x^{*} is not a local minimizer.

Proof of Theorem 4 (Optional)

We prove the following: Suppose that $\nabla^{2} f$ is continuous in an open neighborhood of x^{*} and that $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then x^{*} is a strict local minimizer of f.
Because the Hessian is continuous and positive definite at x^{*}, we can choose a radius $r>0$ so that $\nabla^{2} f(x)$ remains positive definite for all x in the open ball $\mathcal{D}=\left\{z \mid\left\|z-x^{*}\right\|<r\right\}$. Taking any nonzero vector p with $\|p\|<r$, we have $x^{*}+p \in \mathcal{D}$ and so

$$
\begin{aligned}
f\left(x^{*}+p\right) & =f\left(x^{*}\right)+p^{T} \nabla f\left(x^{*}\right)+\frac{1}{2} p^{T} \nabla^{2} f(z) p \\
& =f\left(x^{*}\right)+\frac{1}{2} p^{T} \nabla^{2} f(z) p
\end{aligned}
$$

where $z=x^{*}+t p$ for some $t \in(0,1)$. Since $z \in \mathcal{D}$, we have $p^{T} \nabla^{2} f(z) p>0$, and therefore $f\left(x^{*}+p\right)>f\left(x^{*}\right)$, giving the result.

Unconstrained Optimization Algorithms

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

The monotone algorithms satisfy $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

Search Algorithms

We consider algorithms that

- Start with an initial guess x_{0}
- Generate a sequence of points x_{0}, x_{1}, \ldots
- Stop when no progress can be made or when a minimizer seems approximated with sufficient accuracy.
To compute x_{k+1} the algorithms use the information about f at the previous iterates $x_{0}, x_{1}, \ldots, x_{k}$.

The monotone algorithms satisfy $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.

There are two overall strategies:

- Line search
- Trust region

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

The vector p_{k} should be a descent direction, i.e., a direction in which f decreases locally.

Line Search Overview

To compute x_{k+1}, a line search algorithm chooses

- direction p_{k}
- step size α_{k}
and computes

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

The vector p_{k} should be a descent direction, i.e., a direction in which f decreases locally.
α_{k} is selected to approximately solve

$$
\min _{\alpha>0} f\left(x_{k}+\alpha p_{k}\right)
$$

However, typically, an exact solution is expensive and unnecessary. Instead, line search algorithms inspect a limited number of trial step lengths and find one that decreases f appropriately (see later).

A descent direction does not have to be followed to the minimum.

Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius. and finds x_{k+1} solving

```
min}\mp@subsup{m}{k}{}(x
x\inR
```


Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius.
and finds x_{k+1} solving

$$
\min _{x \in R} m_{k}(x)
$$

If the solution does not sufficiently decrease f, we shrink the trust region and re-solve.

Trust Region

To compute x_{k+1}, a trust region algorithm chooses

- model function m_{k} whose behavior near x_{k} is similar to f
- a trust region $R \subseteq \mathbb{R}^{n}$ around x_{k}. Usually R is the ball defined by $\left\|x-x_{k}\right\| \leq \Delta$ where $\Delta>0$ is trust region radius.
and finds x_{k+1} solving

$$
\min _{x \in R} m_{k}(x)
$$

If the solution does not sufficiently decrease f, we shrink the trust region and re-solve.

The model m_{k} is usually derived from the Taylor's theorem.

$$
m_{k}\left(x_{k}+p\right)=f_{k}+p^{T} \nabla f_{k}+\frac{1}{2} p^{T} B_{k} p
$$

Where B_{k} approximates the Hessian of f at x_{k}.

Line Search Methods

Line Search

For setting the step size, we consider

- Armijo condition and backtracking algorithm
- strong Wolfe conditions and bracketing \& zooming

Line Search

For setting the step size, we consider

- Armijo condition and backtracking algorithm
- strong Wolfe conditions and bracketing \& zooming

For setting the direction, we consider

- Gradient descent
- Newton's method
- quasi-Newton methods (BFGS)
- (Conjugate gradients)

We start with the step size.

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Define

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

Step Size

Assume

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k}
$$

Where p_{k} is a descent direction

$$
p_{k}^{\top} \nabla f_{k}<0
$$

Define

$$
\phi(\alpha)=f\left(x_{k}+\alpha p_{k}\right)
$$

We know that

$$
\phi^{\prime}(\alpha)=\nabla f\left(x_{k}+\alpha p_{k}\right)^{\top} p_{k} \quad \text { which means } \quad \phi^{\prime}(0)=\nabla f_{k}^{\top} p_{k}
$$

Note that $\phi^{\prime}(0)$ must be negative as p_{k} is a descent direction.

Armijo Condition

The sufficient decrease condition (aka Armijo condition)

$$
\phi(\alpha) \leq \phi(0)+\alpha\left(\mu_{1} \phi^{\prime}(0)\right)
$$

where μ_{1} is a constant such that $0<\mu_{1} \leq 1$

In practice, μ_{1} is several orders smaller than 1 , typically $\mu_{1}=10^{-4}$.

Backtracking Line Search Algorithm

Algorithm 1 Backtracking Line Search
Input: $\alpha_{\text {init }}>0,0<\mu_{1}<1,0<\rho<1$
Output: α^{*} satisfying sufficient decrease condition
1: $\alpha \leftarrow \alpha_{\text {init }}$
2: while $\phi(\alpha)>\phi(0)+\alpha \mu_{1} \phi^{\prime}(0)$ do
3: $\quad \alpha \leftarrow \rho \alpha$
4: end while

The parameter ρ is typically set to 0.5 . It can also be a variable set by a more sophisticated method (interpolation).
The $\alpha_{\text {init }}$ depends on the method for setting the descent direction p_{k}. For Newton and quasi-Newton, it is 1.0, but for other methods, it might be different.

Issues with Backtracking

There are two scenarios where the method does not perform well:

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.
- The guess for the initial step immediately satisfies sufficient decrease. However, the function's slope is still highly negative, and we could have decreased the function value by much more if we had taken a more significant step. In this case, our guess for the initial step is far too small.

Issues with Backtracking

There are two scenarios where the method does not perform well:

- The guess for the initial step is far too large, and the step sizes that satisfy sufficient decrease are smaller than the starting step by several orders of magnitude. Depending on the value of ρ, this scenario requires many backtracking evaluations.
- The guess for the initial step immediately satisfies sufficient decrease. However, the function's slope is still highly negative, and we could have decreased the function value by much more if we had taken a more significant step. In this case, our guess for the initial step is far too small.
Even if our original step size is not too far from an acceptable one, the basic backtracking algorithm ignores any information we have about the function values and gradients. It blindly takes a reduced step based on a preselected ratio ρ.

Backtracking Example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)= \\
& \quad 0.1 x_{1}^{6}-1.5 x_{1}^{4}+5 x_{1}^{2} \\
& \quad+0.1 x_{2}^{4}+3 x_{2}^{2}-9 x_{2}+0.5 x_{1} x_{2} \\
& \mu_{1}= \\
& \\
& \\
& 0^{-4} \text { and } \rho=0.7 .
\end{aligned}
$$

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Typical values of μ_{2} range from 0.1 to 0.9 , depending on the direction setting method.

Sufficient Curvature Condition

We want to prevent too short of steps and to "motivate" the search to move closer to the minimum.

We introduce the sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

where $\mu_{1}<\mu_{2}<1$ is a constant.

Typical values of μ_{2} range from 0.1 to 0.9 , depending on the direction setting method.

As μ_{2} tends to 0 , the condition enforces $\phi^{\prime}(\alpha)=0$, which would yield an exact line search.

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

- Sufficient decrease condition

$$
\phi(\alpha) \leq \phi(0)+\mu_{1} \alpha \phi^{\prime}(0)
$$

Strong Wolfe Conditions

Putting together Armijo and sufficient curvature conditions, we obtain strong Wolfe conditions

- Sufficient decrease condition

$$
\phi(\alpha) \leq \phi(0)+\mu_{1} \alpha \phi^{\prime}(0)
$$

- Sufficient curvature condition

$$
\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|
$$

Satisfiability of Strong Wolfe Conditions

Theorem 6
Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable. Let p_{k} be a descent direction at x_{k}, and assume that f is bounded below along the ray $\left\{x_{k}+\alpha p_{k} \mid \alpha>0\right\}$. Then, if $0<\mu_{1}<\mu_{2}<1$, step length intervals exist that satisfy the strong Wolfe conditions.

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth on a set \mathcal{N} for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathcal{N}
$$

Convergence of Line Search

Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth on a set \mathcal{N} for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathcal{N}
$$

Theorem 7 (Zoutendijk)

Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below in \mathbb{R}^{n} and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$. Assume also that f is L-smooth on \mathcal{N}. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

1. The bracketing phase finds an interval within which we are certain to find a point that satisfies the strong Wolfe conditions.

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?
Use a bracketing and zoom algorithm, which proceeds in the following two phases:

1. The bracketing phase finds an interval within which we are certain to find a point that satisfies the strong Wolfe conditions.
2. The zooming phase finds a point that satisfies the strong Wolfe conditions within the interval provided by the bracketing phase.

Algorithm 2 Bracketing
Input: $\alpha_{1}>0$ and $\alpha_{\text {max }}$
1: Set $\alpha_{0} \leftarrow 0$
2: $i \leftarrow 1$
3: repeat
4: \quad Evaluate $\phi\left(\alpha_{i}\right)$
5: \quad if $\phi\left(\alpha_{i}\right)>\phi(0)+\alpha_{i} \mu_{1} \phi^{\prime}(0)$ or $\left[\phi\left(\alpha_{i}\right) \geq \phi\left(\alpha_{i-1}\right)\right.$ and $\left.i>1\right]$ then
6: $\quad \alpha^{*} \leftarrow \operatorname{zoom}\left(\alpha_{i-1}, \alpha_{i}\right)$ and stop
7: end if
8: \quad Evaluate $\phi^{\prime}\left(\alpha_{i}\right)$
9: \quad if $\left|\phi^{\prime}\left(\alpha_{i}\right)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|$ then
10: \quad set $\alpha^{*} \leftarrow \alpha_{i}$ and stop
11: else if $\phi^{\prime}\left(\alpha_{i}\right) \geq 0$ then
12: \quad set $\alpha^{*} \leftarrow \operatorname{zoom}\left(\alpha_{i}, \alpha_{i-1}\right)$ and stop
13: end if
14: \quad Choose $\alpha_{i+1} \in\left(\alpha_{i}, \alpha_{\max }\right)$
15: $\quad i \leftarrow i+1$
16: until a condition is met

Explanation of Bracketing

Note that the sequence of trial steps α_{i} is monotonically increasing.

Explanation of Bracketing

Note that the sequence of trial steps α_{i} is monotonically increasing.

Note that zoom is called when one of the following conditions is satisfied:

- α_{i} violates the sufficient decrease condition (lines 5 and 6)
- $\phi\left(\alpha_{i}\right) \geq \phi\left(\alpha_{i-1}\right)$ (also lines 5 and 6)
- $\phi^{\prime}\left(\alpha_{i}\right) \geq 0$ (lines 11 and 12)

The last step increases the α_{i}. May use, e.g., a constant multiple.

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{\mathrm{lo}} \leq \alpha_{\mathrm{hi}}$

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{\mathrm{lo}} \leq \alpha_{\mathrm{hi}}$
- α_{lo} is, among all step lengths generated so far and satisfying the sufficient decrease condition, the one giving the smallest value of ϕ,

Zoom

The following algorithm keeps two step lengths: $\alpha_{l o}$ and $\alpha_{\text {hi }}$
The following invariants are being preserved:

- The interval bounded by α_{lo} and α_{hi} always contains one or more intervals satisfying the strong Wolfe conditions.
Note that we do not assume $\alpha_{10} \leq \alpha_{\mathrm{hi}}$
- α_{lo} is, among all step lengths generated so far and satisfying the sufficient decrease condition, the one giving the smallest value of ϕ,
- α_{hi} is chosen so that $\phi^{\prime}\left(\alpha_{\mathrm{lo}}\right)\left(\alpha_{\mathrm{hi}}-\alpha_{\mathrm{lo}}\right)<0$.

That is, ϕ always slopes down from α_{10} to α_{h}.

```
1: function \(\operatorname{zOOM}\left(\alpha_{\mathrm{lo}}, \alpha_{\text {hi }}\right)\)
2: repeat
3: \(\quad\) Set \(\alpha\) between \(\alpha_{\text {lo }}\) and \(\alpha_{\text {hi }}\) using interpolation
(bisection, quadratic, etc.)
4: \(\quad\) Evaluate \(\phi(\alpha)\)
5 :
if \(\phi(\alpha)>\phi(0)+\alpha \mu_{1} \phi^{\prime}(0)\) or \(\phi(\alpha) \geq \phi\left(\alpha_{10}\right)\) then
    \(\alpha_{\text {hi }} \leftarrow \alpha\)
    else
    Evaluate \(\phi^{\prime}(\alpha)\)
    if \(\left|\phi^{\prime}(\alpha)\right| \leq \mu_{2}\left|\phi^{\prime}(0)\right|\) then
        Set \(\alpha^{*} \leftarrow \alpha\) and stop
        end if
        if \(\phi^{\prime}(\alpha)\left(\alpha_{\mathrm{hi}}-\alpha_{\mathrm{lo}}\right) \geq 0\) then
        \(\alpha_{\text {hi }} \leftarrow \alpha_{\text {lo }}\)
        end if
    \(\alpha_{\text {lo }} \leftarrow \alpha\)
    end if
17: until a condition is met
18: end function
```


Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing is achieved in the first iteration by using a significant initial step of $\alpha_{\text {init }}=1.2$ (left). Then, zooming finds an improved point through interpolation.

Bracketing \& Zooming Example

We use quadratic interpolation; the bracketing chooses $\alpha_{i+1}=2 \alpha_{i}$, and the sufficient curvature factor is $\mu_{2}=0.9$.

Bracketing is achieved in the first iteration by using a significant initial step of $\alpha_{\text {init }}=1.2$ (left). Then, zooming finds an improved point through interpolation.
The small initial step of $\alpha_{\text {init }}=0.05$ (right) does not satisfy the strong Wolfe conditions, and the bracketing phase moves forward toward a flatter part of the function.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.
- Some procedures also stop if the relative change in x is close to machine accuracy or some user-specified threshold.

Comments on Line Search

- The interpolation of the zoom phase that determines α should be safeguarded to ensure that the new step length is not too close to the endpoints of the interval.
- Practical line search algorithms also use the interpolating polynomials' properties to make educated guesses of where the next step length should lie.
- A problem that can arise in the implementation is that as the optimization algorithm approaches the solution, two consecutive function values $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$ may be indistinguishable in finite-precision arithmetic.
- Some procedures also stop if the relative change in x is close to machine accuracy or some user-specified threshold.
- The presented algorithm is implemented in https://docs.scipy.org/doc/scipy/reference/ generated/scipy.optimize.line_search.html

Unconstrained Optimization Algorithms

Descent Direction

First-Order Methods

Gradient Descent

Consider the gradient descent (aka gradient descent) method where

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\nabla f\left(x_{k}\right)
$$

Gradient Descent

Consider the gradient descent (aka gradient descent) method where

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\nabla f\left(x_{k}\right)
$$

Unfortunately, the gradient does not possess much information about the step size.

So usually, a normalized gradient is used to obtain the direction, and then a line search is performed:

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad p_{k}=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}
$$

The line search is exact if α_{k} minimizes $f\left(x_{k}+\alpha_{k} p_{k}\right)$. Not practical, we usually find α_{k} satisfying the strong Wolfe conditions.

Gradient Descent Algorithm with Line Search

```
Algorithm 3 Gradient Descent with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: while \(\|\nabla f\|_{\infty}>\varepsilon\) do
    3: \(\quad p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\)
    4: \(\quad\) Set \(\alpha_{\text {init }}\) for line search
    5: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    6: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    7: \(\quad k \leftarrow k+1\)
    8: end while
```


Gradient Descent Algorithm with Line Search

Algorithm 4 Gradient Descent with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$

$$
\begin{array}{ll}
\text { 2: } & \text { while }\|\nabla f\|_{\infty}>\varepsilon \text { do } \\
\text { 3: } & p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \\
\text { 4: } & \text { Set } \alpha_{\text {init for fine search }} \\
\text { 5: } & \alpha_{k} \leftarrow \text { linesearch }\left(p_{k}, \alpha_{\text {init }}\right) \\
\text { 6: } & x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
\text { 7: } & k \leftarrow k+1
\end{array}
$$

8: end while

Here $\alpha_{\text {init }}$ can be estimated from the previous step size α_{k-1} by demanding similar decrease in the objective:

$$
\alpha_{i n i t} p_{k}^{\top} \nabla f_{k}^{\top} \approx \alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top} \quad \Rightarrow \quad \alpha_{i n i t}=\alpha_{k-1} \frac{\alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top}}{\nabla p_{k}^{\top} f_{k}^{\top}}
$$

Gradient Descent Algorithm with Line Search

```
Algorithm 5 Gradient Descent with Line Search
Input: \(x_{0}\) starting point, \(\varepsilon>0\)
Output: \(x^{*}\) approximation to a stationary point
    1: \(k \leftarrow 0\)
    2: while \(\|\nabla f\|_{\infty}>\varepsilon\) do
    3: \(\quad p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}\)
    4: \(\quad\) Set \(\alpha_{\text {init }}\) for line search
    5: \(\quad \alpha_{k} \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    6: \(\quad x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k}\)
    7: \(\quad k \leftarrow k+1\)
    8: end while
```


Gradient Descent Algorithm with Line Search

Algorithm 6 Gradient Descent with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$

$$
\begin{array}{ll}
\text { 2: } & \text { while }\|\nabla f\|_{\infty}>\varepsilon \text { do } \\
\text { 3: } & p_{k} \leftarrow-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \\
\text { 4: } & \text { Set } \alpha_{\text {init for fine search }} \\
\text { 5: } & \alpha_{k} \leftarrow \text { linesearch }\left(p_{k}, \alpha_{\text {init }}\right) \\
\text { 6: } & x_{k+1} \leftarrow x_{k}+\alpha_{k} p_{k} \\
\text { 7: } & k \leftarrow k+1
\end{array}
$$

8: end while

Here $\alpha_{\text {init }}$ can be estimated from the previous step size α_{k-1} by demanding similar decrease in the objective:

$$
\alpha_{i n i t} p_{k}^{\top} \nabla f_{k}^{\top} \approx \alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top} \quad \Rightarrow \quad \alpha_{i n i t}=\alpha_{k-1} \frac{\alpha_{k-1} p_{k-1}^{\top} \nabla f_{k-1}^{\top}}{\nabla p_{k}^{\top} f_{k}^{\top}}
$$

$$
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+\beta x_{2}^{2}
$$

Consider $\beta=1,5,15$ and exact line search

Note that p_{k+1} and p_{k} are always orthogonal.

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

The gradient descent can be prolonged.

Global Convergence with Line Search

Recall the Zoutendijk's theorem.
Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth on a set \mathcal{N} for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathcal{N}
$$

Theorem 8 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below in \mathbb{R}^{n} and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$. Assume also that f is L-smooth on \mathcal{N}. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.
Note that the angle θ_{k} between $p_{k}=-\nabla f_{k}$ and the negative gradient $-\nabla f_{k}$ equals 0 . Hence, $\cos \theta_{k}=1$.

Global Convergence of Gradient Descent

Assume that each α_{k} satisfies strong Wolfe conditions.
Note that the angle θ_{k} between $p_{k}=-\nabla f_{k}$ and the negative gradient $-\nabla f_{k}$ equals 0 . Hence, $\cos \theta_{k}=1$.

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}=\sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Local Linear Convergence of Gradient Descent

Theorem 9
Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice continuously differentiable, that the line search is exact, and that the descent converges to x^{*} where $\nabla f\left(x^{*}\right)=0$ and the Hessian matrix $\nabla^{2} f\left(x^{*}\right)$ is positive definite. Then

$$
f\left(x_{k+1}\right)-f\left(x^{*}\right) \leq\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}\left[f\left(x_{k}\right)-f\left(x^{*}\right)\right]
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of $\nabla^{2} f\left(x^{*}\right)$.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - Gradient Descent

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Rosenbrock Function - Gradient Descent

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.
- Susceptible to scaling of variables (see the paraboloid example).

Comments on Gradient Descent

- The method needs evaluation of ∇f at each x_{k}. If f is not differentiable at x_{k}, subgradients can be considered (out of the scope of this course).
- Slow, zig-zagging, provides insufficient information for line search initialization.
- Susceptible to scaling of variables (see the paraboloid example).
- THE basis for algorithms training neural networks - a huge amount of specific adjustments are developed for working with huge numbers of variables in neural networks (trillions of weights).

Unconstrained Optimization Algorithms

Descent Direction

Second-Order Methods

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$.

Newton's Method

Consider an objective $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Assume that f is twice differentiable.
Then, by the Taylor's theorem,

$$
f\left(x_{k}+s\right) \approx f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

where we denote the Hessian $\nabla^{2} f\left(x_{k}\right)$ by H_{k}.
Define

$$
q(s)=f_{k}+\nabla f_{k}^{\top} s+\frac{1}{2} s^{\top} H_{k} s
$$

and minimize q w.r.t. s by setting $\nabla q(s)=0$. We obtain:

$$
H_{k} s=-\nabla f_{k}
$$

Denote by s_{k} the solution, and set $x_{k+1}=x_{k}+s_{k}$.

Newton's Method

```
Algorithm 7 Newton's Method
Input: }\mp@subsup{x}{0}{}\mathrm{ starting point, }\varepsilon>
Output: }\mp@subsup{x}{}{*}\mathrm{ approximation to a stationary point
    1: }k\leftarrow
    2: while |\nabla f}\mp@subsup{f}{k}{}\mp@subsup{|}{\infty}{}>\varepsilon\mathrm{ do
    3:
    4: }\quad\mp@subsup{x}{k+1}{*}\leftarrow\mp@subsup{x}{k}{}+\mp@subsup{p}{k}{
    5: 
    6: end while
```


Newton's Method - Example

Newton's method finds the minimum of a quadratic function in a single step.

Note that the Newton's method is scale-invariant!

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

Convergence Issues

Negative curvature

Also, the computation of the Hessian is costly.

Local Quadratic Convergence of Newton's Method

Theorem 10
Assume f is defined and twice differentiable on a convex set \mathcal{N}. Assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Local Quadratic Convergence of Newton's Method

Theorem 10
Assume f is defined and twice differentiable on a convex set \mathcal{N}.
Assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically to x_{*}.

Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

Local Quadratic Convergence of Newton's Method

Theorem 10
Assume f is defined and twice differentiable on a convex set \mathcal{N}.
Assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically
to x_{*}.
Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

Local Quadratic Convergence of Newton's Method

Theorem 10
Assume f is defined and twice differentiable on a convex set \mathcal{N}.
Assume that ∇f is L-smooth on \mathcal{N}.
Let x_{*} be a minimizer of $f(x)$ in \mathcal{N} and assume that $\nabla^{2} f\left(x_{*}\right)$ is positive definite.
If $\left\|x_{0}-x_{*}\right\|$ is sufficiently small, then $\left\{x_{k}\right\}$ converges quadratically
to x_{*}.
Note that the theorem implicitly assumes that $\nabla^{2} f\left(x_{k}\right)$ is nonsingular for every k.

As the theorem is concerned only with x_{k} approaching x^{*}, the continuity of $\nabla^{2} f\left(x_{k}\right)$ and positive definiteness of $\nabla^{2} f\left(x^{*}\right)$ imply that $\nabla^{2} f\left(x_{k}\right)$ is positive definite for all sufficiently large k.

However, what happens if we start far away from a minimizer?

Newton's Method with Line Search

```
Algorithm }8\mathrm{ Newton's Method with Line Search
Input: }\mp@subsup{x}{0}{}\mathrm{ starting point, }\varepsilon>
Output: x* approximation to a stationary point
    1: }k\leftarrow
    2: while |\nabla f}\mp@subsup{f}{k}{}\mp@subsup{|}{\infty}{}>\varepsilon\mathrm{ do
    3:
    4: Set }\mp@subsup{\alpha}{\mathrm{ init for line search}}{
    5: }\quad\mp@subsup{\alpha}{k}{}\leftarrow\operatorname{linesearch}(\mp@subsup{p}{k}{},\mp@subsup{\alpha}{\mathrm{ init }}{}
    6: }\quad\mp@subsup{x}{k+1}{*}\leftarrow\mp@subsup{x}{k}{}+\mp@subsup{p}{k}{
    7:
    8: end while
```


$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Two Spring Problem - Newton's Method

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 32 iterations of gradient descent.

Rosenbrock Function - Newton's Method

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Gradient descent, line search, stop. cond. $\|\nabla f\|_{\infty} \leq 10^{-6}$.
Compare this with 10,662 iterations of gradient descent.

Global Convergence with Line Search

Recall the Zoutendijk's theorem.
Denote by θ_{k} the angle between p_{k} and $-\nabla f_{k}$, i.e., satisfying

$$
\cos \theta_{k}=\frac{-\nabla f_{k}^{T} p_{k}}{\left\|\nabla f_{k}\right\|\left\|p_{k}\right\|}
$$

Recall that f is L-smooth on a set \mathcal{N} for some $L>0$ if

$$
\|\nabla f(x)-\nabla f(\tilde{x})\| \leq L\|x-\tilde{x}\|, \quad \text { for all } x, \tilde{x} \in \mathcal{N}
$$

Theorem 11 (Zoutendijk)
Consider $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, where p_{k} is a descent direction and α_{k} satisfies the strong Wolfe conditions. Suppose that f is bounded below in \mathbb{R}^{n} and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$. Assume also that f is L-smooth on \mathcal{N}. Then

$$
\sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.

Global Convergence of Newton's Method

Assume that all α_{k} satisfy strong Wolfe conditions.
Assume that the Hessians H_{k} are positive definite with a uniformly bounded condition number:

$$
\left\|H_{k}\right\|\left\|H_{k}^{-1}\right\| \leq M \quad \text { for all } k
$$

Then θ_{k} between $p_{k}=-H_{k}^{-1} \nabla f_{k}$ and $-\nabla f_{k}$ and satisfies

$$
\cos \theta_{k} \geq 1 / M
$$

Thus, under the assumptions of Zoutendijk's theorem, we obtain

$$
\frac{1}{M^{2}} \sum_{k \geq 0}\left\|\nabla f_{k}\right\|^{2} \leq \sum_{k \geq 0} \cos ^{2} \theta_{k}\left\|\nabla f_{k}\right\|^{2}<\infty
$$

which implies that $\lim _{k \rightarrow \infty}\left\|\nabla f_{k}\right\|=0$.
What if H_{k} is not positive definite or (nearly) singular?

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Eigenvalue Modification

Consider $H_{k}=\nabla^{2} f\left(x_{k}\right)$ and consider its diagonal form:

$$
H_{k}=Q D Q^{T}
$$

Where D contains the eigenvalues of H_{k} on the diagonal, i.e., $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and Q is an orthogonal matrix.

Observe that

- H_{k} is not positive definite iff $\lambda_{i} \leq 0$ for some i
- $\left\|H_{k}\right\|$ grows with $\max \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to infinity.
- $\left\|H_{k}^{-1}\right\|$ grows with $\min \left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some reasonably large $\delta>0$ we have $\lambda_{i} \geq \delta$ but not too large.

Two questions are in order:

- What is a reasonably large δ ?
- How to modify H_{k} so the minimum is large enough?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$?

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(1 / 10,-1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.

Sufficiently Large Eigenvalues

Consider an example:

$$
\nabla f\left(x_{k}\right)=(1,-3,2) \quad \text { and } \quad \nabla^{2} f\left(x_{k}\right)=\operatorname{diag}(10,3,-1)
$$

Now, the diagonalization is trivial:

$$
\nabla^{2} f\left(x_{k}\right)=Q \operatorname{diag}(10,3,-1) Q^{\top} \quad Q=I \text { is the identity matrix }
$$

What if we consider a minimum modification replacing the negative eigenvalue with a small number, say $\delta=10^{-8}$? Obtain

$$
B_{k}=Q \operatorname{diag}\left(10,3,10^{-8}\right) Q^{\top}=\operatorname{diag}\left(10,3,10^{-8}\right)
$$

If used in Newton's method, we obtain the following direction:

$$
p_{k}=-B_{k}^{-1} \nabla f\left(x_{k}\right)=\left(1 / 10,-1,-\left(2 \cdot 10^{8}\right)\right)
$$

Thus, a very long vector almost parallel to the third dimension.
Even though f decreases along p_{k}, it is far from the minimum of the quadratic approximation of f.
Note that the original Newton's direction is
$-\operatorname{diag}(1 / 10,1 / 3,-1)(1,-3,2)^{\top}=(-1 / 10,1,2)$ which is completely different.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular.
(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?

Modifying the Eigenvalues

Other strategies for eigenvalue modification can be devised.
The criteria are rather loose. The resulting matrix B_{k} should be

- positive definite,
- of bounded norm (for all k),
- not too close to being singular. (i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative eigenvalues to positive values, substituting negative eigenvalues with small positive ones, etc.

There is no consensus on the best method for the modification.
The implementation is based on computing $B_{k}=H_{k}+\Delta H_{k}$ for an appropriate modification matrix ΔH_{k}.
What is ΔH_{k} in our example?
Various methods for computing ΔH_{k} have been devised in literature. Typically, it is based on some computationally cheaper decomposition than spectral decomposition (e.g., Cholesky).

Modified Newton's Method

Algorithm 9 Newton's Method with Line Search
Input: x_{0} starting point, $\varepsilon>0$
Output: x^{*} approximation to a stationary point
1: $k \leftarrow 0$
2: while $\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon$ do
3: $\quad H_{k} \leftarrow \nabla^{2} f\left(x_{k}\right)$
4: if H_{k} is not sufficiently positive definite then
5: $\quad H_{k} \leftarrow H_{k}+\Delta H_{k}$ so that H_{k} is sufficiently pos. definite
6: end if
7: \quad Solve $H_{k} p_{k}=-\nabla f\left(x_{k}\right)$ for p_{k}
8: \quad Set $x_{k+1}=x_{k}+\alpha_{k} p_{k}$, here α_{k} sat. the Wolfe cond.
9: $\quad k \leftarrow k+1$

10: end while

Comments on Newton's Method

- Newton's method is scale invariant.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.

Comments on Newton's Method

- Newton's method is scale invariant.
- Quadratic convergence in a close vicinity of a strict minimizer.
- Without modification, it may converge to an arbitrary stationary point (maximum, saddle point).
- Computationally expensive:
- $\mathcal{O}\left(n^{2}\right)$ second derivatives in the Hessian, each may be hard to compute.
Automated derivation methods help but still need store $\mathcal{O}\left(n^{2}\right)$ results.
- $\mathcal{O}\left(n^{3}\right)$ arithmetic operations to solve the linear system for the direction p_{k}.
May be mitigated by more efficient methods in case of sparse Hessians.
In a sense, Newton's method is an impractical "ideal" with which other methods are compared.

The efficiency issues (and the necessity of second-order derivatives) will be mitigated by using quasi-Newton methods.

Quasi-Newton Methods

Quasi-Newton Methods

Recall that Newton's method step p_{k} in $x_{k+1}=x_{k}+p_{k}$ comes from minimization of

$$
q(p)=f_{k}+\nabla f_{k}^{\top} p+\frac{1}{2} p^{\top} H_{k} p
$$

w.r.t. p by setting $q^{\prime}(p)=0$ and solving

$$
-H_{k} p=-\nabla f_{k}
$$

So Newton's method needs the second derivative (Hessian) that is computationally hard to obtain.

Gradient descent needs only the first derivatives but converges slowly.

Can we find a compromise?
Quasi-Newton methods use first derivatives to approximate the Hessian H_{k} in Newton's method with a matrix \tilde{H}_{k}.

BFGS

Denote by \tilde{H}_{k} the approximate of the Hessian $H_{k}=\nabla^{2} f\left(x_{k}\right)$.
Suppose we just obtained the new point x_{k+1} after a line search starting from x_{k} in the direction p_{k}.

We can write the new quadratic approximation of f at x_{k+1} based on an updated Hessian approximation as follows:

$$
q(p)=f_{k+1}+\nabla f_{k+1}^{\top} p+\frac{1}{2} p^{\top} \tilde{H}_{k+1} p .
$$

Assume that f_{k+1} and ∇f_{k+1} are given, but we do not have the new approximate Hessian yet. Taking the gradient of this quadratic concerning p, we obtain

$$
\nabla q(p)=\nabla f_{k+1}+\tilde{H}_{k+1} p
$$

Now we demand that the gradient ∇q of q w.r.t. p matches the gradient of f at x_{k+1} and at x_{k}.

$$
\begin{aligned}
q(p) & =f_{k+1}+\nabla f_{k+1}^{\top} p+\frac{1}{2} p^{\top} \tilde{H}_{k+1} p \\
\nabla q(p) & =\nabla f_{k+1}+\tilde{H}_{k+1} p
\end{aligned}
$$

The gradient of the quadratic matching ∇f at x_{k} and x_{k+1} :

Note that $\nabla q(0)=\nabla f_{k+1}$ (just set $p=0$ above).

$$
\begin{aligned}
q(p) & =f_{k+1}+\nabla f_{k+1}^{\top} p+\frac{1}{2} p^{\top} \tilde{H}_{k+1} p \\
\nabla q(p) & =\nabla f_{k+1}+\tilde{H}_{k+1} p
\end{aligned}
$$

The gradient of the quadratic matching ∇f at x_{k} and x_{k+1} :

Note that $\nabla q(0)=\nabla f_{k+1}$ (just set $p=0$ above). Just impose $\nabla q\left(-\alpha_{k} p_{k}\right)=\nabla f_{k+1}-\alpha_{k} \tilde{H}_{k+1} p_{k}=\nabla f_{k}$

$$
\begin{aligned}
q(p) & =f_{k+1}+\nabla f_{k+1}^{\top} p+\frac{1}{2} p^{\top} \tilde{H}_{k+1} p \\
\nabla q(p) & =\nabla f_{k+1}+\tilde{H}_{k+1} p
\end{aligned}
$$

Just impose $\nabla q\left(-\alpha_{k} p_{k}\right)=\nabla f_{k+1}-\alpha_{k} \tilde{H}_{k+1} p_{k}=\nabla f_{k}$
Now, apparently, we have

$$
\begin{aligned}
\nabla f_{k+1}-\alpha_{k} \tilde{H}_{k+1} p_{k} & =\nabla f_{k} \Rightarrow \\
\alpha_{k} \tilde{H}_{k+1} p_{k} & =\nabla f_{k+1}-\nabla f_{k} .
\end{aligned}
$$

To simplify the notation, we define the step as

$$
s_{k}=x_{k+1}-x_{k}=\alpha_{k} p_{k}
$$

and the difference in the gradient as

$$
y_{k}=\nabla f_{k+1}-\nabla f_{k}
$$

Using this notation, we get the secant condition

$$
\tilde{H}_{k+1} s_{k}=y_{k}
$$

Now, we can obtain an approximate Hessian \tilde{H}_{k+1} by solving the secant condition $\tilde{H}_{k+1} s_{k}=y_{k}$.

Ideally, we want to

- have \tilde{H}_{k+1} symmetric positive definite

To have a nice model for minimization around x_{k+1}.

- obtain \tilde{H}_{k+1} from \tilde{H}_{k} by

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\text { something }
$$

To have a nice iterative algorithm.
Even if we demand symmetric positive definite solutions to the secant condition, there are infinitely many.

Note that the information about the solution is somehow present in s_{k} and y_{k}, so it is natural to compose the solution using these vectors.
We strive to choose \tilde{H}_{k+1} "close" to \tilde{H}_{k}.

Symmetric Rank One Update

Consider $u_{k}=\left(y_{k}-\tilde{H}_{k} s_{k}\right)$

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{u u^{\top}}{u^{\top} s_{k}}
$$

Now, the secant condition is satisfied:

$$
\tilde{H}_{k+1} s_{k}=\tilde{H}_{k} s_{k}+\frac{u u^{\top} s_{k}}{u^{\top} s_{k}}=\tilde{H}_{k} s_{k}+u_{k}=y_{k}
$$

Note that the updated matrix $\frac{u u^{\top}}{u^{\top} s_{k}}$ is of rank one and is a unique symmetric rank one matrix which makes \tilde{H}_{k+1} satisfy the secant condition.
To obtain a quasi-Newton method, it suffices to initialize \tilde{H}_{0}, typically to the identity I, and use \tilde{H}_{k} instead of the Hessian $H_{k}=\nabla^{2} f_{k}$ in Newton's method.
Even though \tilde{H}_{k} is a symmetric positive definite, the updated matrix \tilde{H}_{k+1} does not have to be a symmetric positive definite.

Rank One Update

Algorithm 10 Rank 1 update v1

```
\(k \leftarrow 0\)
    \(\alpha_{\text {init }} \leftarrow 1\)
    \(\tilde{V}_{0} \leftarrow I \quad\left(\right.\) or \(\left.\tilde{V}_{0} \leftarrow 1 /\|\nabla f\| \cdot I\right)\)
    while \(\left\|\nabla f_{k}\right\|_{\infty}>\varepsilon\) do
        \(s \leftarrow x_{k}-x_{k-1}\)
        \(y \leftarrow \nabla f_{k}-\nabla f_{k-1}\)
        \(\tilde{H}_{k}=\tilde{H}_{k-1}+\frac{u u^{\top}}{u^{\top} s_{k}}\)
    Solve for \(p_{k}\) in \(\tilde{H}_{k}^{-1} p_{k}=-\nabla f_{k}\)
    \(\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    \(x_{k+1} \leftarrow x_{k}+\alpha p_{k}\)
    \(k \leftarrow k+1\)
```

end while

Symmetric Rank Two Update

Consider

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

Once again, verifying $\tilde{H}_{k+1} s_{k}=y_{k}$ is not difficult.
Lemma 1
If \tilde{H}_{k} is symmetric positive definite, then \tilde{H}_{k+1} is positive definite iff $y_{k}^{\top} s_{k}>0$.
$y_{k}^{\top} s_{k}>0$ is called curvature condition
Now, it is not difficult to prove that if proper line search is performed, satisfying the strong Wolfe conditions, the curvature condition $y_{k}^{\top} s_{k}>0$ will always be satisfied.
Thus, starting with a symmetric positive definite \tilde{H}_{0} (e.g., a scalar multiple of I), every \tilde{H}_{k} is symmetric positive definite and satisfies the secant condition.

BFGS

Algorithm 11 BFGS v1

$k \leftarrow 0$

$$
\begin{aligned}
& \alpha_{\text {init }} \leftarrow 1 \\
& \tilde{V}_{0} \leftarrow I \quad\left(\text { or } \tilde{V}_{0} \leftarrow 1 /\|\nabla f\| \cdot l\right)
\end{aligned}
$$

$$
\text { while }\left\|\nabla f_{k}\right\|_{\infty}>\tau \text { do }
$$

$$
\begin{aligned}
& s \leftarrow x_{k}-x_{k-1} \\
& y \leftarrow \nabla f_{k}-\nabla f_{k-1}
\end{aligned}
$$

$$
\tilde{H}_{k} \leftarrow \tilde{H}_{k-1}-\frac{\left(\tilde{H}_{k-1} s_{k}\right)\left(\tilde{H}_{k-1} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k-1} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

Solve for p_{k} in $\tilde{H}_{k}^{-1} p_{k}=-\nabla f_{k}$
$\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)$
$x_{k+1} \leftarrow x_{k}+\alpha p_{k}$
$k \leftarrow k+1$
end while

Note that we still have to solve a linear system for p_{k}.

Sherman-Morrison-Woodbury Formula

Ideally, we would like to compute \tilde{H}_{k}^{-1} iteratively along the optimization, i.e.,

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\text { something }
$$

To get such a "something" we use the following Sherman-Morrison-Woodbury (SMW) formula:

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} U\right)^{-1} V^{T} A^{-1}
$$

where

$$
U=\left[u_{1}, u_{2}, \ldots, u_{k}\right] \quad V=\left[v_{1}, v_{2}, \ldots, v_{k}\right]
$$

SMW can be written as

$$
\left(A+\sum_{i=1}^{k} u_{i} v_{i}^{T}\right)^{-1}=A^{-1}-A^{-1} U C^{-1} V^{T} A^{-1}
$$

where

$$
C_{i j}=\delta_{i j}+v_{i}^{T} u_{j} \quad i, j=1,2, \ldots, k
$$

Rank 1 - Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}+\frac{\left(y_{k}-\tilde{H}_{k} s_{k}\right)\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top}}{\left(y_{k}-\tilde{H}_{k} s_{k}\right)^{\top} s_{k}}
$$

yields

$$
\tilde{H}_{k+1}^{-1}=\tilde{H}_{k}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k}^{-1} y_{k}\right)^{\top} y_{k}}
$$

Yes, only y and s swapped places.
This allows us to avoid solving for p_{k} in every iteration.

Rank One Update V2

Algorithm 12 Rank 1 update v1

```
\(k \leftarrow 0\)
\(\alpha_{\text {init }} \leftarrow 1\)
\(\tilde{V}_{0} \leftarrow I \quad\left(\right.\) or \(\left.\tilde{V}_{0} \leftarrow 1 /\|\nabla f\| \cdot I\right)\)
while \(\left\|\nabla f_{k}\right\|_{\infty}>\tau\) do
    \(s \leftarrow x_{k}-x_{k-1}\)
    \(y \leftarrow \nabla f_{k}-\nabla f_{k-1}\)
    \(\tilde{H}_{k}^{-1} \leftarrow \tilde{H}_{k-1}^{-1}+\frac{\left(s_{k}-\tilde{H}_{k-1}^{-1} y_{k}\right)\left(s_{k}-\tilde{H}_{k-1}^{-1} y_{k}\right)^{\top}}{\left(s_{k}-\tilde{H}_{k-1}^{-1} y_{k}\right)^{\top} y_{k}}\)
    \(p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k}\)
    \(\alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right)\)
    \(x_{k+1} \leftarrow x_{k}+\alpha p_{k}\)
    \(k \leftarrow k+1\)
```

end while

BFGS

Applying SMW to the BFGS Hessian update

$$
\tilde{H}_{k+1}=\tilde{H}_{k}-\frac{\left(\tilde{H}_{k} s_{k}\right)\left(\tilde{H}_{k} s_{k}\right)^{\top}}{s_{k}^{\top} \tilde{H}_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

yields

$$
H_{k+1}^{-1}=\left(I-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) H_{k}^{-1}\left(1-\frac{y_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

We avoid solving the linear system for p_{k}.

BFGS V2

Algorithm 13 BFGS v2

$k \leftarrow 0$
$\alpha_{\text {init }} \leftarrow 1$
$\tilde{V}_{0} \leftarrow I \quad\left(\right.$ or $\left.\tilde{V}_{0} \leftarrow 1 /\|\nabla f\| \cdot I\right)$
while $\left\|\nabla f_{k}\right\|_{\infty}>\tau$ do

$$
\begin{aligned}
& s \leftarrow x_{k}-x_{k-1} \\
& y \leftarrow \nabla f_{k}-\nabla f_{k-1} \\
& H_{k}^{-1} \leftarrow\left(I-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) H_{k-1}^{-1}\left(I-\frac{y_{k} k_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}} \\
& p_{k} \leftarrow-\tilde{H}_{k}^{-1} \nabla f_{k} \\
& \alpha \leftarrow \operatorname{linesearch}\left(p_{k}, \alpha_{\text {init }}\right) \\
& x_{k+1} \leftarrow x_{k}+\alpha p_{k} \\
& k \leftarrow k+1
\end{aligned}
$$

end while

Another View on BFGS (Optional)

We search for \tilde{H}_{k+1}^{-1} where \tilde{H}_{k+1} satisfies $\tilde{H}_{k+1} s_{k}=y_{k}$. Simply, search for a solution \tilde{V}_{k+1} for $\tilde{V}_{k+1} y_{k}=s_{k}$.
The idea is to use \tilde{V}_{k+1} close to \tilde{V}_{k} (in some sense):

$$
\min _{\tilde{V}}\left\|\tilde{V}-\tilde{V}_{k}\right\|
$$

subject to $\quad \tilde{V}=\tilde{V}^{\top}, \quad \tilde{V}_{y_{k}}=s_{k}$
Here the norm is weighted Frobenius norm:

$$
\|A\| \equiv\left\|W^{1 / 2} A W^{1 / 2}\right\|_{F}
$$

where $\|\cdot\|_{F}$ is defined by $\|C\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}^{2}$. The weight W can be chosen as any matrix satisfying the relation $W y_{k}=s_{k}$.
BFGS is obtained with $W=\bar{G}_{k}^{-1}$ where \bar{G}_{k} is the average Hessian defined by $\bar{G}_{k}=\left[\int_{0}^{1} \nabla^{2} f\left(x_{k}+\tau \alpha_{k} p_{k}\right) d \tau\right]$
Solving this gives precisely the BFGS formula for \tilde{H}_{k+1}^{-1}.

Quasi-Newton Methods Convergence

Quasi-Newton Methods Rate of Convergence

Quasi-Newton Methods - Practical Issues

Quasi-Newton Methods - Comments

Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods, In addition, these methods also improve the computational efficiency of medium-sized problems (hundreds or thousands of design variables) with minimal sacrifice in accuracy.

L-BFGS

Recall that we compute iteratively the approximation to the inverse Hessian by

$$
H_{k+1}^{-1}=\left(I-\frac{s_{k} y_{k}^{\top}}{s_{k}^{\top} y_{k}}\right) H_{k}^{-1}\left(1-\frac{y_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}\right)+\frac{s_{k} s_{k}^{\top}}{s_{k}^{\top} y_{k}}
$$

However, eventually, we are interested in

$$
p_{k}=H_{k}^{-1} \nabla f
$$

Note that given the sequences s_{1}, \ldots, s_{k} and y_{1}, \ldots, y_{k} and H_{0}^{-1} we can recursively compute H_{k+1}^{-1} for every k.
What if we limit the sequences in memory to just m last elements:

$$
s_{k-m+1}, s_{k-m+2}, \ldots, s_{k} \quad y_{k-m+1}, y_{k-m+2}, \ldots, y_{k}
$$

In practice, m between 5 and 20 is usually sufficient. We also initialize the recurrence with the last iterate:

L-BFGS

Let us rewrite the BFGS update formula as follows:

$$
\tilde{H}_{k+1}^{-1}=V_{k}^{\top} \tilde{H}_{k}^{-1} V_{k}+\rho_{k} s_{k} s_{k}^{\top}
$$

where

$$
\begin{aligned}
& \rho_{k}=s_{k}^{\top} y_{k} \quad \text { and } \quad V_{k}=I-\rho_{k} s_{k} y_{k}^{\top} \\
& s_{k}=x_{k+1}-x_{k} \quad \text { and } \quad y_{k}=\nabla f_{k+1}-\nabla f_{k}
\end{aligned}
$$

By substitution we obtain

$$
\begin{aligned}
\tilde{H}_{k}^{-1}= & \left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) \tilde{H}_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\rho_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1} \cdots V_{k-1}\right) \\
& +\rho_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2} \cdots V_{k}\right. \\
& +\cdots \\
& +\rho_{k-1} s_{k-1} s_{k-1}^{T}
\end{aligned}
$$

L-BFGS Algorithm

Algorithm 14 L-BFGS two-loop recursion
Input: : s_{k-1}, \ldots, s_{k-m} and y_{k-1}, \ldots, y_{k-m}
Output: : p_{k} the search direction $-\tilde{H}_{k}^{-1} \nabla f_{k}$
1: $q \leftarrow \nabla f_{k}$
2: for $i=k-1, k-2, \ldots, k-m$ do
3: $\quad \alpha_{i} \leftarrow \rho_{i} s_{i}^{\top} q$
4: $\quad q \leftarrow q-\alpha_{i} y_{i}$
5: end for
6: $r \leftarrow H_{k}^{0} q$
7: for $i=k-m, k-m+1, \ldots, k-1$ do
8: $\quad \beta \leftarrow \rho_{i} y_{i}^{\top} r$
9: $\quad r \leftarrow r+s_{i}\left(\alpha_{i}-\beta\right)$
10: end for
11: stop with result $\tilde{H}_{k}^{-1} \nabla f_{k}=r$

L-BFGS Algorithm

```
Algorithm 15 L-BFGS
    1: Choose starting point }\mp@subsup{x}{0}{}\mathrm{ , integer m>0
    2: }k\leftarrow
    3: repeat
    4: Choose H
    5: Compute }\mp@subsup{p}{k}{}\leftarrow-\mp@subsup{H}{k}{}\nabla\mp@subsup{f}{k}{}\mathrm{ using the previous algorithm
    6: Compute }\mp@subsup{x}{k+1}{}\leftarrow\mp@subsup{x}{k}{}+\mp@subsup{\alpha}{k}{}\mp@subsup{p}{k}{}\mathrm{ , where }\mp@subsup{\alpha}{k}{}\mathrm{ is chosen to satisfy
        the strong Wolfe conditions
    7: if k>m}\mathrm{ then
    8: Discard the vector pair {sk-m, yk-m}}\mathrm{ from storage
    9: end if
10: Compute and save sk}\leftarrow\leftarrow\mp@subsup{x}{k+1}{}-\mp@subsup{x}{k}{},\mp@subsup{y}{k}{}\leftarrow\nabla\mp@subsup{f}{k+1}{}-\nabla\mp@subsup{f}{k}{
11:
12: until convergence
```

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+\left(1-x_{2}\right)^{2}+\frac{1}{2}\left(2 x_{2}-x_{1}^{2}\right)^{2}
$$

Stopping: $\|\nabla f\|_{\infty} \leq 10^{-6}$.

In L-BFGS the memory length m was 5 . The results are similar.

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)= & \frac{1}{2} k_{1}\left(\sqrt{\left(\ell_{1}+x_{1}\right)^{2}+x_{2}^{2}}-\ell_{1}\right)^{2} \\
& +\frac{1}{2} k_{2}\left(\sqrt{\left(\ell_{2}-x_{1}\right)^{2}+x_{2}^{2}}-\ell_{2}\right)^{2}-m g x_{2}
\end{aligned}
$$

Here $\ell_{1}=12, \ell_{2}=8, k_{1}=1, k_{2}=10, m g=7$

Steepest descent

Quasi-Newton

Conjugate gradient

Newton

Rosenbrock: $f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}$

Steepest descent

Quasi-Newton

Conjugate gradient

Newton

Rosenbrock:

$$
f\left(x_{1}, x_{2}\right)=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}
$$

Computational Complexity

Algorithm	Computational Complexity
Steepest Descent	$O\left(n^{2}\right)$ per iteration
Conjugate Gradients	$O(n)$ per iteration
Newton's Method	$O\left(n^{3}\right)$ to compute Hessian and solve system
BFGS	$O\left(n^{2}\right)$ to update Hessian approximation

Table: Summary of the computational complexity for each optimization algorithm.

- Steepest Descent: Simple but often slow, requiring many iterations.
- Conjugate Gradients: Efficient for large sparse systems, fewer iterations.
- Newton's Method: Fast convergence but expensive per iteration.
- BFGS: Quasi-Newton, no Hessian needed, good speed and iteration count balance.

Constrained Optimization

Constrained Optimization Problem

Recall that the constrained optimization problem is

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{j}(x) \leq 0 \quad j=1, \ldots, n_{g} \\
& h_{l}(x)=0 \quad l=1, \ldots, n_{h}
\end{aligned}
$$

x^{*} is now a constrained minimizer if

$$
f\left(x^{*}\right) \leq f(x) \quad \text { for all } \quad x \in \mathcal{F}
$$

where \mathcal{F} is the feasibility region

$$
\mathcal{F}=\left\{x \mid g_{i}(x) \leq 0, h_{j}(x)=0, j=1, \ldots, n_{x}, l=1, \ldots, n_{h}\right\}
$$

Thus, to find a constrained minimizer, we have to inspect unconstrained minima of f inside of \mathcal{F} and points along the boundary of \mathcal{F}.

COP - Example

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}^{2}-\frac{1}{2} x_{1}-x_{2}-2 \\
\text { subject to } & g_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1}+x_{2}+1 \leq 0 \\
& g_{2}\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1}-4 \leq 0
\end{array}
$$

Equality Constraints

Let us restrict our problem only to the equality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Assume that f and h_{j} have continuous second derivatives.
Now, we try to imitate the theory from the unconstrained case and characterize minima using gradients.
This time, we have to consider the gradient of f and h_{j}.

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

$$
f(x+p) \approx f(x)+\nabla f(x)^{\top} p
$$

Note that if x^{*} is an unconstrained minimum of f, then

$$
f\left(x^{*}+p\right) \geq f\left(x^{*}\right)
$$

for all p small enough.
Together with the Taylor approximation, we obtain

$$
f\left(x^{*}\right)+\nabla f\left(x^{*}\right)^{\top} p \geq f\left(x^{*}\right)
$$

and hence

$$
\nabla f\left(x^{*}\right) \geq 0
$$

The hyperplane defined by $\nabla f^{\top} p=0$ contains directions p of zero variation in f.

In the unconstrained case, x^{*} is minimum only if $\nabla f\left(x^{*}\right)=0$ because otherwise there would be a direction p satisfying $\nabla f\left(x^{*}\right) p<0$, a decrease direction.

Decrease Direction in COP

In COP, p is a decrease direction in $x \in \mathcal{F}$ not only if $\nabla f(x) p<0$, it also needs to be a feasible direction!
l.e., point into the feasible region.

How do we characterize feasible directions?
Consider Taylor approximation of h_{j} for all j :

$$
h_{j}(x+p) \approx h_{j}(x)+\nabla h_{j}(x)^{\top} p
$$

Assuming $x \in \mathcal{F}$, we have $h_{j}(x)=0$ for all j and thus

$$
h_{j}(x+p) \approx \nabla h_{j}(x)^{\top} p
$$

As p is a feasible direction iff $h_{j}(x+p)=0$, we obtain that p is a feasible direction iff

$$
\nabla h_{j}(x)^{\top} p=0 \quad \text { for all } j
$$

Feasible Points and Directions

Feasible point

Here, the only feasible direction at x is $p=0$.

Feasible Points and Directions

Here the feasible directions at x^{*} point along the red line, i.e.,

$$
\nabla h_{1}\left(x^{*}\right) p=0 \quad \nabla h_{2}\left(x^{*}\right) p=0
$$

Constrained Minima

Consider a direction p. Observe that

- If $h_{j}(x)^{\top} p \neq 0$, then moving a short step in the direction p violates the constraint $h_{j}(x)=0$.
- If $h_{j}(x)^{\top} p=0$ for all j and
- $\nabla f(x) p>0$, then moving a short step in the direction p increases f and stays in \mathcal{F}.
- $\nabla f(x) p<0$, then moving a short step in the direction p decreases f and stays in \mathcal{F}.
- $\nabla f(x) p=0$, then moving a short step in the direction p does not change f and stays \mathcal{F}.
To be a minimizer, x must be feasible and every direction satisfying $h_{j}(x)^{\top} p=0$ for all j must also satisfy $\nabla f(x) p \geq 0$.
Note that if p is a feasible direction, then $-p$ is also. So finally, If x^{*} is a constrained minimizer, then

$$
\nabla f\left(x^{*}\right) p=0 \quad \text { for all } p \text { such that } \quad \nabla h_{j}\left(x^{*}\right)^{\top} p=0 \quad \text { for all } j
$$

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.
Observe that at an optimum, ∇f lies in the space spanned by the gradients of constraint functions.

There are Lagrange multipliers λ_{1}, λ_{2} satisfying

$$
\nabla f\left(x^{*}\right)=\lambda_{1} \nabla h_{1}+\lambda_{2} \nabla h_{2}
$$

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f(x) p=0 \quad \text { for all } p \text { such that } \quad \nabla h_{j}(x)^{\top} p=0 \quad \text { for all } j
$$

But then, from the geometry of the problem, we obtain
Theorem 12
Consider the COP with only equality constraints and f and all h_{j} twice continuously differentiable.
Assume that x^{*} is a constrained minimizer and that x^{*} is regular, which means that $\nabla h_{j}\left(x^{*}\right)$ are linearly independent.
Then there are $\lambda_{1}, \ldots, \lambda_{n_{h}} \in \mathbb{R}$ satisfying

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}\left(x^{*}\right)
$$

The coefficients $\lambda_{1}, \ldots, \lambda_{n_{h}}$ are called Lagrange multipliers.

Lagrangian Function

Try to transform the constrained problem into an unconstrained one by moving the constraints $h_{j}(x)=0$ into the objective.
Consider Lagrangian function $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}$ defined by

$$
\mathcal{L}(x, \lambda)=f(x)+h(x)^{\top} \lambda \quad \text { here } \quad h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}
$$

Note that

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}=\nabla f(x)+\sum_{j=1}^{n_{h}} \nabla h_{j}(x)^{\top} \lambda_{j} \\
& \nabla_{\lambda} \mathcal{L}=h(x)
\end{aligned}
$$

Now putting $\nabla \mathcal{L}(x)=0$, we obtain precisely the above properties of the constrained minimizer:

$$
h(x)=0 \quad \text { and } \quad \nabla f(x)=\sum_{j=1}^{n_{h}}-\lambda_{j} \nabla h_{j}(x)^{\top}
$$

However, we cannot use the unconstrained optimization methods here because searching for a minimizer in x asks for a maximizer in λ.
$\underset{x_{1}, x_{2}}{\operatorname{minimize}} \quad f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2}$
subject to $\quad h\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0$
The Lagrangian function

$$
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=x_{1}+2 x_{2}+\lambda\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)
$$

Differentiating this to get the first-order optimality conditions,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \lambda x_{1}=0 \quad \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \lambda x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0
\end{aligned}
$$

Solving these three equations for the three unknowns $\left(x_{1}, x_{2}, \lambda\right)$, we obtain two possible solutions:

$$
\begin{aligned}
& x_{A}=\left(x_{1}, x_{2}\right)=(-\sqrt{2},-\sqrt{2} / 2), \quad \lambda_{A}=\sqrt{2} \\
& x_{B}=\left(x_{1}, x_{2}\right)=(\sqrt{2}, \sqrt{2} / 2), \quad \lambda_{A}=-\sqrt{2}
\end{aligned}
$$

Second-Order Sufficient Conditions

As in the unconstrained case, the first-order conditions characterize any "stable" point (minimum, maximum, saddle).
Consider Lagrangian Hessian:

$$
H_{\mathcal{L}}(x, \lambda)=H_{f}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} H_{h_{j}}(x)
$$

Here H_{f} is the Hessian of f, and each $H_{h_{j}}$ is the Hessian of h_{j}.
The second-order sufficient conditions are as follows: Assume x^{*} is regular and feasible. Also, assume that there is λ s.t.

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}}-\lambda_{j} \nabla h_{j}\left(x^{*}\right)^{\top}
$$

and that

$$
p^{\top} H_{\mathcal{L}}\left(x^{*}, \lambda\right) p>0 \text { for all } p \text { satisfying } \nabla h_{j}\left(x^{*}\right)^{\top} p=0 \text { for all } j .
$$

Then, x^{*} is a constrained minimizer of f.

Inequality Constraints

Recall that the constrained optimization problem is

$$
\begin{aligned}
\begin{array}{r}
\operatorname{minimize}
\end{array} & f(x) \\
\text { by varying } & x \\
\text { subject to } & g_{i}(x) \leq 0 \quad i=1, \ldots, n_{g} \\
& h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

We say that a constraint $g_{i}(x) \leq 0$ is active for x^{*} if $g_{i}\left(x^{*}\right)=0$, otherwise it is inactive for x^{*}.

As before, if x^{*} is optimum, any small step in a feasible direction p must not decrease f, i.e.,

$$
\nabla f\left(x^{*}\right)^{\top} p \geq 0
$$

How do we identify feasible directions for inequality constraints?

Feasible Directions

For inactive constraints, arbitrary direction p is feasible.
For active constraints $g_{i}(x)=0$ we have

$$
g_{i}(x+p) \approx g_{i}(x)+\nabla g_{i}(x)^{\top} p \leq 0, \quad i=1, \ldots, n_{g}
$$

and p is feasible iff $\nabla g_{i}(x)^{\top} p \leq 0$ for all active constr. $g_{i}(x)=0$.

Lagrange Multipliers

When can f (not) be decreased in a feasible direction?

Left: f decreases in the blue cone. Right: f does not decrease in any feasible direction.

At an optimum there are Lagrange multipliers $\sigma_{1}, \sigma_{2} \geq 0$:

$$
-\nabla f=\sigma_{1} \nabla g_{1}+\sigma_{2} \nabla g_{2}
$$

Lagrange Multipliers

We know that if x^{*} is a constrained minimizer, then.

$$
\nabla f(x) p=0 \quad \text { for all } p \text { feasible }
$$

Using Farkas' lemma, one can prove the following
Theorem 13
Consider the COP with f and all g_{i}, h_{j} twice continuously differentiable.
Assume that x^{*} is a constrained minimizer and that x^{*} is regular which means that $\nabla g_{i}\left(x^{*}\right), \nabla h_{j}\left(x^{*}\right)$ are linearly independent.
Then there are Lagrange multipliers $\lambda_{1}, \ldots, \lambda_{n_{h}} \in \mathbb{R}$ and $\sigma_{1}, \ldots, \sigma_{n_{g}} \in \mathbb{R}$ satisfying

$$
\nabla f\left(x^{*}\right)=\sum_{j=1}^{n_{h}} \lambda_{j} \nabla h_{j}\left(x^{*}\right)+\sum_{i=1}^{n_{h}} \sigma_{i} \nabla g_{i}\left(x^{*}\right) \quad \text { where } \sigma_{i} \geq 0
$$

Lagrangian Function

Note that inequality $g_{i}(x) \leq 0$ can be equivalently expressed using a slack variable s_{i} by

$$
g(x)+s_{i}^{2}=0
$$

The Lagrangian function then generalizes from equality to inequality COP as follows.

$$
\mathcal{L}(x, \lambda, \sigma, s)=f(x)+h(x)^{\top} \lambda+(g(x)+s \odot s)^{\top} \sigma
$$

Here, $h(x)=\left(h_{1}(x), \ldots, h_{n_{h}}(x)\right)^{\top}, g(x)=\left(g_{1}(x), \ldots, g_{n_{g}}(x)\right)^{\top}$, $s=\left(s_{1}, \ldots, s_{n_{g}}\right)$, and \odot is the component-wise multiplication.
Now compute the stable point of \mathcal{L} by considering

$$
\begin{aligned}
\nabla_{x} \mathcal{L} & =0 \\
\nabla_{\lambda} \mathcal{L} & =0 \\
\nabla_{\sigma} \mathcal{L} & =0 \\
\nabla_{s} \mathcal{L} & =0
\end{aligned}
$$

(see the whiteboard)

KKT

If x^{*} is a constrained minimizer and that x^{*} is regular. Then there are λ, σ, s satisfying

$$
\begin{aligned}
\frac{\partial f}{\partial x_{\ell}}(x)+\sum_{j=1}^{n_{h}} \lambda_{j} \frac{\partial h_{j}}{\partial x_{\ell}}+\sum_{j=1}^{n_{g}} \sigma_{j} \frac{\partial g_{j}}{\partial x_{\ell}} & =0 & & \ell=1, \ldots, n \\
h_{j} & =0 & & j=1, \ldots, n_{h} \\
g_{i}+s_{i}^{2} & =0 & & =1, \ldots, n_{g} \\
2 \sigma_{i} s_{i} & =0 & & i=1, \ldots, n_{g} \\
\sigma_{i} & \geq 0 & &
\end{aligned}
$$

So, solving the above system allows us to identify potential constrained minimizers.

To decide whether x^{*} solving KKT is a minimizer, check whether

$$
p^{\top} H_{\mathcal{L}}(x, \lambda) p>0
$$

For all feasible directions p (similarly to the equality case).

Example

$$
\begin{array}{cl}
\underset{x_{1}, x_{2}}{\operatorname{minimize}} & f\left(x_{1}, x_{2}\right)=x_{1}+2 x_{2} \\
\text { subject to } & g\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1 \leq 0 .
\end{array}
$$

The Lagrangian function for this problem is

$$
\mathcal{L}\left(x_{1}, x_{2}, \sigma, s\right)=x_{1}+2 x_{2}+\sigma\left(\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1+s^{2}\right)
$$

Example

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=1+\frac{1}{2} \sigma x_{1}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=2+2 \sigma x_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial \sigma}=\frac{1}{4} x_{1}^{2}+x_{2}^{2}-1=0 \\
& \frac{\partial \mathcal{L}}{\partial s}=2 \sigma s=0
\end{aligned}
$$

Setting $\sigma=0$ does not yield any solution. Setting $s=0$ and $\sigma \neq 0$ we obtain

$$
x_{A}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
-\sqrt{2} / 2 \\
\sqrt{2}
\end{array}\right], \quad x_{B}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\sigma
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
\sqrt{2} / 2 \\
-\sqrt{2}
\end{array}\right]
$$

Now, σ must be non-negative, so only x_{A} is the solution. There is no feasible descent direction at x_{A}. We already know that the Hessian Lagrangian is positive definite, so this is a minimizer.

Penalty methods

The idea: Transform a constrained problem into an unconstrained one by adding a penalty to the objective function when constraints are violated or close to being violated.

Assuming an objective function f, the penalized objective is of the form

$$
\hat{f}(x)=f(x)+\mu \pi(x)
$$

Here, μ is a fixed constant determining how strong the penalty should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g., L-BFGS) to \hat{f} and obtain an approximation of a minimizer of f.
There are two types

- exterior - penalizing infeasible x
- interior - penalizing x close to being infeasible

Exterior Penalty Methods

Consider equality-constrained problems:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { by varying } & x \\
\text { subject to } & h_{j}(x)=0 \quad j=1, \ldots, n_{h}
\end{aligned}
$$

Consider quadratic penalty:

$$
\hat{f}(x ; \mu)=f(x)+\frac{\mu}{2} \sum_{j=1}^{n_{h}} h_{j}(x)^{2}
$$

If f is continuously differentiable, \hat{f} is as well (w.r.t. x).

Quadratic Penalty

The true solution would be recovered for $\mu=\infty$.
However, large μ means large condition number of the Hessian of \hat{f} Intuitively, curvature of \hat{f} changes rapidly with the direction.

Need to choose μ carefully, iteratively.

Quadratic Penalty

The problems

- Small μ may result in so weak penalty that f unbounded below results in \hat{f} unbounded as well
- As $\mu=\infty$ is impossible, the solution is always slightly infeasible
- Growing "curvature" of \hat{f} as μ grows making the Hessian of \hat{f} almost singular

$\mu=0.5$

$\mu=3.0$

$\mu=10.0$

Quadratic Penalty for Inequality Constraints

$$
\hat{f}(x ; \mu)=f(x)+\frac{\mu_{h}}{2} \sum_{j=1}^{n_{h}} h_{j}(x)^{2}+\frac{\mu_{g}}{2} \sum_{i=1}^{n_{g}} \max \left(0, g_{i}(x)\right)^{2}
$$

Minimizer approached from the infeasible side.

Example

$$
\hat{f}(x ; \mu)=x_{1}+2 x_{2}+\frac{\mu}{2} \max \left(0, \frac{1}{4} x_{1}^{2}+x_{2}^{2}-1\right)^{2}
$$

$\mu=0.5$

$\mu=3.0$

$\mu=10.0$

Augmented Lagrangian

Instead of minimizing f, we search for an optimal point of the Lagrangian.
Similarly, instead of minimizing \hat{f} we may augment the Lagrangian L with penalty and optimize the augmented Lagrangian

$$
\hat{L}(x ; \lambda, \mu)=f(x)+\sum_{i=1}^{n_{h}} \lambda_{i} h_{i}(x)+\frac{\mu}{2} \sum_{i=1}^{n_{h}} h_{i}(x)^{2}
$$

Note the relationship between optimality conditions for L and \hat{L}

$$
\begin{aligned}
& \nabla_{x} \hat{L}(x ; \lambda, \mu)=\nabla f(x)+\sum_{i=1}^{n_{h}}\left(\lambda_{i}+\mu h_{i}(x)\right) \nabla h_{i}=0 \\
& \nabla_{x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{i=1}^{n_{h}} \lambda_{i}^{*} \nabla h_{i}\left(x^{*}\right)=0 .
\end{aligned}
$$

Comparing these two conditions suggests an approximation:

$$
\lambda_{j}^{*} \approx \lambda_{j}+\mu h_{j} .
$$

Augmented Lagrangian Penalty Method

Inputs:

- x_{0} : Starting point
- $\lambda_{0}=0$: Initial Lagrange multiplier
- $\mu_{0}>0$: Initial penalty parameter
- $\rho>1$: Penalty increase factor

Outputs:

- x^{*} : Optimal point
- $f\left(x^{*}\right)$: Corresponding function value

Algorithm:

$$
\begin{aligned}
& k=0 \text { not converged } x_{k+1} \leftarrow x \text { minimizing } f\left(x ; \lambda_{k}, \mu_{k}\right) \\
& \lambda_{k+1}=\lambda_{k}+\mu_{k} h\left(x_{k}\right) \mu_{k+1}=\rho \mu_{k} k=k+1
\end{aligned}
$$

Comparison of Quadratic and Lagrangian Penalty

Compare

$$
h_{j} \approx \frac{1}{\mu}\left(\lambda_{j}^{*}-\lambda_{j}\right)
$$

with the corresponding approximation of h_{j} in the quadratic penalty method is

$$
h_{j} \approx \frac{\lambda_{j}^{*}}{\mu}
$$

Thus, the quadratic penalty relies solely on increasing μ.
However, the augmented Lagrangian also controls the numerator via estimating λ_{j}.

If λ_{j} is close to λ_{j}^{*}, we may obtain a close solution for modest values of μ.

Several variants of the Lagrangian penalty exist for inequality constraints; see Nocedal \& Wright.

Interior Penalty Methods

Always seek to maintain feasibility as opposed to the exterior methods.

Instead of adding a penalty only when constraints are violated; add a penalty as the constraint is approached from the feasible region.
Desirable if the objective function is ill-defined outside the feasible region.

The interior methods are also referred to as barrier methods because the penalty function acts as a barrier preventing iterates from leaving the feasible region.

Barrier Methods

Minimize the augmented objective function.

$$
\hat{f}(x ; \mu)=f(x)+\mu \pi(x)
$$

Here π is a penalty function.

Inverse barrier

$$
\pi(x)=\sum_{i=1}^{n_{g}}-\frac{1}{g_{i}(x)}
$$

Logarithmic barries

$$
\pi(x)=\sum_{i=1}^{n_{g}}-\ln \left(-g_{i}(x)\right)
$$

Algorithms based on these penalties must be prevented from evaluating infeasible points.

Barrier methods

Solve a sequence of unconstrained problems for \hat{f} with $\mu \rightarrow 0$.
Every unconstrained optimization must start at an initial point feasible for the constrained problem.

The line search must check for feasibility and backtrack from steps to infeasible points.

Example

$$
\hat{f}(x ; \mu)=x_{1}+2 x_{2}-\mu \ln \left(-\frac{1}{4} x_{1}^{2}-x_{2}^{2}+1\right)
$$

As for exterior methods, the Hessian becomes increasingly ill-conditioned as $\mu \rightarrow 0$.

Various modifications exist that alleviate the above problem.
These methods lead to a class of modern interior point methods.

Summary of Penalty Methods

... not too efficient but simple

Quadratic Programming

The quadratic optimization problem with equality constraints is to

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} x^{\top} Q x+q^{t} x \\
\text { by varying } & x \\
\text { subject to } & A x+b=0
\end{aligned}
$$

Here

- Q is a $n \times n$ symmetric matrix. For simplicity assume positive definite.
- A is a $m \times n$ matrix. Assume full rank.

Quadratic Programming

How to solve the quadratic program?
Consider the Lagrangian function

$$
L(x, \lambda)=\frac{1}{2} x^{\top} Q x+q^{\top} x+\lambda^{\top}(A x+b)
$$

and its partial derivatives:

$$
\begin{aligned}
& \nabla_{x} L(x)=Q x+q+A^{\top} \lambda=0 \\
& \nabla_{\lambda} L(x)=A x+b=0
\end{aligned}
$$

As Q is positive definite, we know that a solution to the above system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the system of linear equations.

Inequality Constraints

The situation is much more complicated as some constraints can be active (i.e., equality) and some inactive (i.e., locally irrelevant).

There are methods based on the concept of active set which keeps track of active constraints that iteratively search for solutions.

We shall see an analogy in linear programming, now won't go any further.

Sequential Quadratic Programming

