
Unconstrained Optimization Overview

1

Notation
In what follows, we will work with vectors in Rn.

The vectors will be (usually) denoted by x ∈ Rn.

We often consider sequences of vectors, x0, x1, . . . , xk ,

The index k will usually indicate that xk is the k-the vector in a
sequence.

When we talk (relatively rarely) about components of vectors, we
use i as an index, i.e., xi will be the i-th component of x ∈ Rn.

We denote by ||x || the Euclidean norm of x .

We denote by ||x ||∞ the L∞ norm giving the maximum of
absolute values of components of x .

We ocasionally use the matrix morn ||A||, consistent with the
Euclidean norm, defined by

||A|| = sup
||x ||=1

||Ax || =
√
λ1

Here λ1 is the largest eigenvalue of A⊤A.
2

How to Recognize (Local) Minimum

How do we verify that x∗ ∈ Rn is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity
if one has a smaller value (impractical).

Assuming the smoothness of f , we may benefit from the “stable”
behavior of f around x∗.

3

How to Recognize (Local) Minimum

How do we verify that x∗ ∈ Rn is a minimizer of f ?

Technically, we should examine all points in the immediate vicinity
if one has a smaller value (impractical).

Assuming the smoothness of f , we may benefit from the “stable”
behavior of f around x∗.

3

Derivatives and Gradients

The gradient of f : Rn → R, denoted by ∇f (x), is a column vector
of first-order partial derivatives of the function concerning each
variable:

∇f (x) =
[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]⊤
,

Where each partial derivative is defined as the following limit:

∂f

∂xi
= lim

ε→0

f (x1, . . . , xi + ε, . . . , xn)− f (x1, . . . , xi , . . . , xn)

ε

4

Gradient

The gradient is a vector pointing in the direction of the most
significant function increase from the current point.

5

Gradient
Consider the following function of two variables:

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

∇f (x1, x2) =
[
3x21 + 2x22 − 20
4x1x2 − 3x22

]

6

Directional Derivatives vs Gradient
The rate of change in a direction p is quantified by a directional
derivative, defined as

∇pf (x) = lim
ε→0

f (x + εp)− f (x)

ε
.

We can find this derivative by projecting the gradient onto the
desired direction p using the dot product ∇pf (x) = (∇f (x))⊤p

(Here, we assume continuous partial derivatives.)
7

Geometry of Gradient
Consider the geometric interpretation of the dot product:

∇pf (x) = (∇f (x))⊤p = ||∇f || ||p|| cos θ
Here θ is the angle between ∇f and p.

The directional derivative is maximized by θ = 0, i.e. when ∇f
and p point in the same direction.

8

Geometry of Gradient
Consider the geometric interpretation of the dot product:

∇pf (x) = (∇f (x))⊤p = ||∇f || ||p|| cos θ
Here θ is the angle between ∇f and p.

The directional derivative is maximized by θ = 0, i.e. when ∇f
and p point in the same direction.

8

Hessian
Taking derivative twice, possibly w.r.t. different variables, gives the
Hessian of f

∇2f (x) = H(x) =

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Note that the Hessian is a function which takes x ∈ Rn and gives a
n × n-matrix of second derivatives of f .

We have

Hij =
∂2f

∂xi∂xj
.

If f has continuous second partial derivatives, then H is symmetric,
i.e., Hij = Hji .

9

Hessian
Taking derivative twice, possibly w.r.t. different variables, gives the
Hessian of f

∇2f (x) = H(x) =

∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 .

Note that the Hessian is a function which takes x ∈ Rn and gives a
n × n-matrix of second derivatives of f .

We have

Hij =
∂2f

∂xi∂xj
.

If f has continuous second partial derivatives, then H is symmetric,
i.e., Hij = Hji .

9

Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.

10

Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.

10

Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.

10

Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.

10

Geometry of Hessian
Let x be fixed and let g(t) = f (x + tp) and let hi (t) =

∂f
∂xi

(x + tp)
for t ∈ R.

What exactly are g ′(0) and g ′′(0)?

g ′(t) = f (x + tp)′ = [∇f (x + tp)]⊤p =
n∑

i=1

hi (t)pi

h′i (t) =

[
∇ ∂f

∂xi
(x + tp)

]⊤
p =

n∑
j=1

(
∂f

∂xi∂xj
(x + tp)

)
pj

= [H(x + tp)p]i

g ′′(t) =
n∑

i=1

h′i (t)pi =
n∑

i=1

[H(x + tp)p]ipi = p⊤H(x + tp)p

Thus,

g ′′(0) = p⊤H(x)p.

10

Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,

and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .

11

Principal Curvature Directions

Fix x and consider H = H(x). Consider unit eigenvectors v̂k of H:

Hv̂k = κk v̂k

For symmetric H, the unit eigenvectors form an orthonormal basis,
and there is a rotation matrix R such that

H = RDR−1 = RDR⊤

Here D is diagonal with
κ1, . . . , κn on the diagonal.

If κ1 ≥ · · · ≥ κn, the direction
of v̂1 is the maximum
curvature direction of f at x .

11

Consider f (x) = x⊤Hx where

H =

(
4/3 0
0 1

)
The eigenvalues are

κ1 = 4/3 κ2 = 1

Their corresponding eigenvectors
are (1, 0)⊤ and (0, 1)⊤.

Note that

f (x) = κ1x
2
1 + κ2x

2
2

Considering a direction vector p we get

g(t) = f (0 + tp) = t2
(
κ1p

2
1 + κ2p

2
2

)
which is a parabola with g ′′ = 2

(
κ1p

2
1 + κ2p

2
2

)
.

12

Consider f (x) = x⊤Hx where

H =

(
4/3 0
0 1

)
The eigenvalues are

κ1 = 4/3 κ2 = 1

Their corresponding eigenvectors
are (1, 0)⊤ and (0, 1)⊤.

Note that

f (x) = κ1x
2
1 + κ2x

2
2

Considering a direction vector p we get

g(t) = f (0 + tp) = t2
(
κ1p

2
1 + κ2p

2
2

)
which is a parabola with g ′′ = 2

(
κ1p

2
1 + κ2p

2
2

)
.

12

Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)

The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.

13

Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)
The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)

Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.

13

Consider f (x) = x⊤Hx where

H =

(
4/3 1/3
1/3 3/3

)
The eigenvalues are

κ1 =
1

6
(7+
√
5) κ2 =

1

6
(7−
√
5)

Their corresponding eigenvectors are

v̂1 =

(
1

2
(1 +

√
5), 1

)
v̂2 =

(
1

2
(1−

√
5), 1

)
Note that

H = (v̂1 v̂2)

(
κ1 0
0 κ2

)
(v̂1 v̂2)

⊤

Here (v̂1 v̂2) is a 2× 2 matrix whose columns are v̂1, v̂2.
13

Hessian Visualization Example
Consider

f (x1, x2) = x31 + 2x1x
2
2 − x32 − 20x1.

And it’s Hessian.

H (x1, x2) =

[
6x1 4x2
4x2 4x1 − 6x2

]
.

14

Taylor’s Theorem

Theorem 1 (Taylor)

Suppose that f : Rn → R is twice continuously differentiable and
that p ∈ Rn. Then, we have

f (x + p) = f (x) +∇f (x)Tp +
1

2
pTH(x)p + o(||p||2).

Here H = ∇2f is the Hessian of f .

15

First-Order Necessary Conditions

Theorem 2
If x∗ is a local minimizer and f is continuously differentiable in an
open neighborhood of x∗, then ∇f (x∗) = 0.

16

Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.

17

Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.

17

Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.

17

Second-Order Conditions
Note that ∇f (x∗) = 0 does not tell us whether x∗ is a minimizer,
maximizer, or a saddle point.

However, knowing the curvature in all directions from x∗ might tell
us what x∗ is, right?

All comes down to the definiteness of H := H(x∗).

▶ H is positive definite if p⊤Hp > 0 for all p
iff all eigenvalues of H are positive

▶ H is positive semi-definite if p⊤Hp ≥ 0 for all p
iff all eigenvalues of H are nonnegative

▶ H is negative semi-definite if p⊤Hp ≤ 0 for all p
iff all eigenvalues of H are nonpositive

▶ H is negative definite if p⊤Hp < 0 for all p
iff all eigenvalues of H are negative

▶ H is indefinite if it is not definite in the above sense
iff H has at least one positive and one negative eigenvalue.

17

Definiteness

18

Second-Order Necessary Condition

Theorem 3 (Second-Order Necessary Conditions)

If x∗ is a local minimizer of f and ∇2f is continuous in a
neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive
semidefinite.

Theorem 4 (Second-Order Sufficient Conditions)

Suppose that ∇2f is continuous in a neighborhood of x∗ and that
∇f (x∗) = 0 and ∇2f (x∗) is positive definite. Then x∗ is a strict
local minimizer of f .

19

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[√
7
2 −

3
2√

7
2 −

3
2

]
.

20

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]

From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[√
7
2 −

3
2√

7
2 −

3
2

]
.

20

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[√
7
2 −

3
2√

7
2 −

3
2

]
.

20

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

Consider the gradient equal to zero:

∇f =

[
∂f
∂x1
∂f
∂x2

]
=

[
2x31 + 6x21 + 3x1 − 2x2

2x2 − 2x1

]
=

[
0
0

]
From the second equation, we have that x2 = x1. Substituting this
into the first equation yields

x1
(
2x21 + 6x1 + 1

)
= 0.

The solution of this equation yields three points:

xA =

[
0
0

]
, xB =

[
−3

2 −
√
7
2

−3
2 −

√
7
2

]
, xC =

[√
7
2 −

3
2√

7
2 −

3
2

]
.

20

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

21

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

21

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

The Hessian, at the first point, is

H (xA) =

[
3 −2
−2 2

]
,

whose eigenvalues are κ1 ≈ 0.438 and κ2 ≈ 4.561. Because both
eigenvalues are positive, this point is a local minimum.

21

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the second point,

H (xB) =

[
3(3 +

√
7) −2

−2 2

]
.

The eigenvalues are κ1 ≈ 1.737 and κ2 ≈ 17.200, so this point is
another local minimum.

21

Example

Consider the following function of two variables:

f (x1, x2) = 0.5x41 + 2x31 + 1.5x21 + x22 − 2x1x2.

To classify xA, xB , xC , we need to compute the Hessian matrix:

H (x1, x2) =

 ∂2f
∂x21

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x22

 =

[
6x21 + 12x1 + 3 −2

−2 2

]
.

For the third point,

H (xC) =

[
9− 3

√
7 −2

−2 2

]
.

The eigenvalues for this Hessian are κ1 ≈ −0.523 and κ2 ≈ 3.586,
so this point is a saddle point.

21

Example

22

Proofs of Some Theorems
Optional

23

Taylor’s Theorem

To prove the theorems characterizing minima/maxima, we need
the following form of Taylor’s theorem:

Theorem 5 (Taylor)

Suppose that f : Rn → R is continuously differentiable and that
p ∈ Rn. Then we have that.

f (x + p) = f (x) +∇f (x + tp)Tp,

for some t ∈ (0, 1). Moreover, if f is twice continuously
differentiable, we have that

f (x + p) = f (x) +∇f (x)Tp +
1

2
pT∇2f (x + tp)p,

for some t ∈ (0, 1).

24

Proof of Theorem 2 (Optional)

We prove that if x∗ is a local minimizer and f is continuously
differentiable in an open neighborhood of x∗, then ∇f (x∗) = 0.

Suppose for contradiction that ∇f (x∗) ̸= 0. Define the vector
p = −∇f (x∗) and note that pT∇f (x∗) = −∥∇f (x∗)∥2 < 0.
Because ∇f is continuous near x∗, there is a scalar T > 0 such
that

pT∇f (x∗ + tp) < 0, for all t ∈ [0,T]

For any t̄ ∈ (0,T], we have by Taylor’s theorem that

f (x∗ + t̄p) = f (x∗) + t̄pT∇f (x∗ + tp) , for some t ∈ (0, t̄).

Therefore, f (x∗ + t̄p) < f (x∗) for all t̄ ∈ (0,T]. We have found a
direction leading away from x∗ along which f decreases, so x∗ is
not a local minimizer, and we have a contradiction.

25

Proof of Theorem 3 (Optional)

We prove that if x∗ is a local minimizer of f and ∇2f is
continuous in an open neighborhood of x∗, then ∇f (x∗) = 0 and
∇2f (x∗) is positive semidefinite.

We know that ∇f (x∗) = 0. For contradiction, assume that
∇2f (x∗) is not positive semidefinite.

Then we can choose a vector p such that pT∇2f (x∗) p < 0.

As ∇2f is continuous near x∗, pT∇2f (x∗ + tp) p < 0 for all
t ∈ [0,T] where T > 0.

By Taylor we have for all t̄ ∈ (0,T] and some t ∈ (0, t̄)

f (x∗ + t̄p) = f (x∗)+t̄pT∇f (x∗)+1

2
t̄2pT∇2f (x∗ + tp) p < f (x∗) .

Thus, x∗ is not a local minimizer.

26

Proof of Theorem 4 (Optional)

We prove the following: Suppose that ∇2f is continuous in an
open neighborhood of x∗ and that ∇f (x∗) = 0 and ∇2f (x∗) is
positive definite. Then x∗ is a strict local minimizer of f .

Because the Hessian is continuous and positive definite at x∗, we
can choose a radius r > 0 so that ∇2f (x) remains positive definite
for all x in the open ball D = {z | ∥z − x∗∥ < r}. Taking any
nonzero vector p with ∥p∥ < r , we have x∗ + p ∈ D and so

f (x∗ + p) = f (x∗) + pT∇f (x∗) + 1

2
pT∇2f (z)p

= f (x∗) +
1

2
pT∇2f (z)p,

where z = x∗ + tp for some t ∈ (0, 1). Since z ∈ D, we have
pT∇2f (z)p > 0, and therefore f (x∗ + p) > f (x∗), giving the
result.

27

Unconstrained Optimization
Algorithms

28

Search Algorithms

We consider algorithms that

▶ Start with an initial guess x0
▶ Generate a sequence of points x0, x1, . . .

▶ Stop when no progress can be made or when a minimizer
seems approximated with sufficient accuracy.

To compute xk+1 the algorithms use the information about f at
the previous iterates x0, x1, . . . , xk .

The monotone algorithms satisfy f (xk+1) < f (xk).

There are two overall strategies:

▶ Line search

▶ Trust region

29

Search Algorithms

We consider algorithms that

▶ Start with an initial guess x0
▶ Generate a sequence of points x0, x1, . . .

▶ Stop when no progress can be made or when a minimizer
seems approximated with sufficient accuracy.

To compute xk+1 the algorithms use the information about f at
the previous iterates x0, x1, . . . , xk .

The monotone algorithms satisfy f (xk+1) < f (xk).

There are two overall strategies:

▶ Line search

▶ Trust region

29

Search Algorithms

We consider algorithms that

▶ Start with an initial guess x0
▶ Generate a sequence of points x0, x1, . . .

▶ Stop when no progress can be made or when a minimizer
seems approximated with sufficient accuracy.

To compute xk+1 the algorithms use the information about f at
the previous iterates x0, x1, . . . , xk .

The monotone algorithms satisfy f (xk+1) < f (xk).

There are two overall strategies:

▶ Line search

▶ Trust region

29

Line Search Overview

To compute xk+1, a line search algorithm chooses

▶ direction pk
▶ step size αk

and computes

xk+1 = xk + αkpk

The vector pk should be a descent direction, i.e., a direction in
which f decreases locally.

αk is selected to approximately solve

min
α>0

f (xk + αpk)

However, typically, an exact solution is expensive and unnecessary.
Instead, line search algorithms inspect a limited number of trial
step lengths and find one that decreases f appropriately (see later).

30

Line Search Overview

To compute xk+1, a line search algorithm chooses

▶ direction pk
▶ step size αk

and computes

xk+1 = xk + αkpk

The vector pk should be a descent direction, i.e., a direction in
which f decreases locally.

αk is selected to approximately solve

min
α>0

f (xk + αpk)

However, typically, an exact solution is expensive and unnecessary.
Instead, line search algorithms inspect a limited number of trial
step lengths and find one that decreases f appropriately (see later).

30

Line Search Overview

To compute xk+1, a line search algorithm chooses

▶ direction pk
▶ step size αk

and computes

xk+1 = xk + αkpk

The vector pk should be a descent direction, i.e., a direction in
which f decreases locally.

αk is selected to approximately solve

min
α>0

f (xk + αpk)

However, typically, an exact solution is expensive and unnecessary.
Instead, line search algorithms inspect a limited number of trial
step lengths and find one that decreases f appropriately (see later).

30

A descent direction does not have to
be followed to the minimum.

31

Trust Region

To compute xk+1, a trust region algorithm chooses

▶ model function mk whose behavior near xk is similar to f

▶ a trust region R ⊆ Rn around xk . Usually R is the ball defined
by ||x − xk || ≤ ∆ where ∆ > 0 is trust region radius.

and finds xk+1 solving

min
x∈R

mk(x)

If the solution does not sufficiently decrease f , we shrink the trust
region and re-solve.

The model mk is usually derived from the Taylor’s theorem.

mk (xk + p) = fk + pT∇fk +
1

2
pTBkp

Where Bk approximates the Hessian of f at xk .

32

Trust Region

To compute xk+1, a trust region algorithm chooses

▶ model function mk whose behavior near xk is similar to f

▶ a trust region R ⊆ Rn around xk . Usually R is the ball defined
by ||x − xk || ≤ ∆ where ∆ > 0 is trust region radius.

and finds xk+1 solving

min
x∈R

mk(x)

If the solution does not sufficiently decrease f , we shrink the trust
region and re-solve.

The model mk is usually derived from the Taylor’s theorem.

mk (xk + p) = fk + pT∇fk +
1

2
pTBkp

Where Bk approximates the Hessian of f at xk .

32

Trust Region

To compute xk+1, a trust region algorithm chooses

▶ model function mk whose behavior near xk is similar to f

▶ a trust region R ⊆ Rn around xk . Usually R is the ball defined
by ||x − xk || ≤ ∆ where ∆ > 0 is trust region radius.

and finds xk+1 solving

min
x∈R

mk(x)

If the solution does not sufficiently decrease f , we shrink the trust
region and re-solve.

The model mk is usually derived from the Taylor’s theorem.

mk (xk + p) = fk + pT∇fk +
1

2
pTBkp

Where Bk approximates the Hessian of f at xk .

32

33

Line Search Methods

34

Line Search

For setting the step size, we consider

▶ Armijo condition and backtracking algorithm

▶ strong Wolfe conditions and bracketing & zooming

For setting the direction, we consider

▶ Gradient descent

▶ Newton’s method

▶ quasi-Newton methods (BFGS)

▶ (Conjugate gradients)

We start with the step size.

35

Line Search

For setting the step size, we consider

▶ Armijo condition and backtracking algorithm

▶ strong Wolfe conditions and bracketing & zooming

For setting the direction, we consider

▶ Gradient descent

▶ Newton’s method

▶ quasi-Newton methods (BFGS)

▶ (Conjugate gradients)

We start with the step size.

35

Step Size

Assume

xk+1 = xk + αkpk

Where pk is a descent direction

p⊤k ∇fk < 0

Define

ϕ(α) = f (xk + αpk)

We know that

ϕ′(α) = ∇f (xk + αpk)
⊤pk which means ϕ′(0) = ∇f ⊤k pk

Note that ϕ′(0) must be negative as pk is a descent direction.

36

Step Size

Assume

xk+1 = xk + αkpk

Where pk is a descent direction

p⊤k ∇fk < 0

Define

ϕ(α) = f (xk + αpk)

We know that

ϕ′(α) = ∇f (xk + αpk)
⊤pk which means ϕ′(0) = ∇f ⊤k pk

Note that ϕ′(0) must be negative as pk is a descent direction.

36

Step Size

Assume

xk+1 = xk + αkpk

Where pk is a descent direction

p⊤k ∇fk < 0

Define

ϕ(α) = f (xk + αpk)

We know that

ϕ′(α) = ∇f (xk + αpk)
⊤pk which means ϕ′(0) = ∇f ⊤k pk

Note that ϕ′(0) must be negative as pk is a descent direction.
36

Armijo Condition
The sufficient decrease condition (aka Armijo condition)

ϕ(α) ≤ ϕ(0) + α
(
µ1ϕ

′(0)
)

where µ1 is a constant such that 0 < µ1 ≤ 1

In practice, µ1 is several orders smaller than 1, typically µ1 = 10−4.
37

Backtracking Line Search Algorithm

Algorithm 1 Backtracking Line Search

Input: αinit > 0, 0 < µ1 < 1, 0 < ρ < 1
Output: α∗ satisfying sufficient decrease condition
1: α← αinit

2: while ϕ(α) > ϕ(0) + αµ1ϕ
′(0) do

3: α← ρα
4: end while

The parameter ρ is typically set to 0.5. It can also be a variable set
by a more sophisticated method (interpolation).

The αinit depends on the method for setting the descent direction
pk . For Newton and quasi-Newton, it is 1.0, but for other
methods, it might be different.

38

Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.

39

Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.

39

Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.

39

Issues with Backtracking

There are two scenarios where the method does not perform well:

▶ The guess for the initial step is far too large, and the step sizes
that satisfy sufficient decrease are smaller than the starting
step by several orders of magnitude. Depending on the value
of ρ, this scenario requires many backtracking evaluations.

▶ The guess for the initial step immediately satisfies sufficient
decrease. However, the function’s slope is still highly negative,
and we could have decreased the function value by much more
if we had taken a more significant step. In this case, our guess
for the initial step is far too small.

Even if our original step size is not too far from an acceptable one,
the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced
step based on a preselected ratio ρ.

39

Backtracking Example

f (x1, x2) =

0.1x61 − 1.5x41 + 5x21

+ 0.1x42 + 3x22 − 9x2 + 0.5x1x2

µ1 = 10−4 and ρ = 0.7.

40

Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.

41

Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.

41

Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.

41

Sufficient Curvature Condition
We want to prevent too short of steps and to “motivate” the
search to move closer to the minimum.

We introduce the sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

where µ1 < µ2 < 1 is a
constant.

Typical values of µ2 range from 0.1 to 0.9, depending on the
direction setting method.

As µ2 tends to 0, the condition enforces ϕ′(α) = 0, which would
yield an exact line search.

41

Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions

▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

42

Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions
▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

42

Strong Wolfe Conditions
Putting together Armijo and sufficient curvature conditions, we
obtain strong Wolfe conditions
▶ Sufficient decrease condition

ϕ(α) ≤ ϕ(0) + µ1αϕ
′(0)

▶ Sufficient curvature condition∣∣ϕ′(α)
∣∣ ≤ µ2

∣∣ϕ′(0)
∣∣

42

Satisfiability of Strong Wolfe Conditions

Theorem 6
Suppose f : Rn → R is continuously differentiable. Let pk be a
descent direction at xk , and assume that f is bounded below along
the ray {xk + αpk | α > 0}. Then, if 0 < µ1 < µ2 < 1, step length
intervals exist that satisfy the strong Wolfe conditions.

43

Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 7 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

44

Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 7 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

44

Convergence of Line Search
Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 7 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

44

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.

45

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.

45

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.

45

Line Search Algorithm

How can we find a step size that satisfies strong Wolfe conditions?

Use a bracketing and zoom algorithm, which proceeds in the
following two phases:

1. The bracketing phase finds an interval within which we are
certain to find a point that satisfies the strong Wolfe
conditions.

2. The zooming phase finds a point that satisfies the strong
Wolfe conditions within the interval provided by the
bracketing phase.

45

Algorithm 2 Bracketing

Input: α1 > 0 and αmax

1: Set α0 ← 0
2: i ← 1
3: repeat
4: Evaluate ϕ(αi)
5: if ϕ(αi) > ϕ(0)+αiµ1ϕ

′(0) or [ϕ(αi) ≥ ϕ(αi−1) and i > 1]
then

6: α∗ ← zoom(αi−1, αi) and stop
7: end if
8: Evaluate ϕ′(αi)
9: if |ϕ′(αi)| ≤ µ2|ϕ′(0)| then

10: set α∗ ← αi and stop
11: else if ϕ′(αi) ≥ 0 then
12: set α∗ ← zoom(αi , αi−1) and stop
13: end if
14: Choose αi+1 ∈ (αi , αmax)
15: i ← i + 1
16: until a condition is met

46

Explanation of Bracketing

Note that the sequence of trial steps αi is monotonically
increasing.

Note that zoom is called when one of the following conditions is
satisfied:

▶ αi violates the sufficient decrease condition (lines 5 and 6)

▶ ϕ(αi) ≥ ϕ(αi−1) (also lines 5 and 6)

▶ ϕ′(αi) ≥ 0 (lines 11 and 12)

The last step increases the αi . May use, e.g., a constant multiple.

47

Explanation of Bracketing

Note that the sequence of trial steps αi is monotonically
increasing.

Note that zoom is called when one of the following conditions is
satisfied:

▶ αi violates the sufficient decrease condition (lines 5 and 6)

▶ ϕ(αi) ≥ ϕ(αi−1) (also lines 5 and 6)

▶ ϕ′(αi) ≥ 0 (lines 11 and 12)

The last step increases the αi . May use, e.g., a constant multiple.

47

Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.

48

Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.

48

Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.

48

Zoom

The following algorithm keeps two step lengths: αlo and αhi

The following invariants are being preserved:

▶ The interval bounded by αlo and αhi always contains one or
more intervals satisfying the strong Wolfe conditions.
Note that we do not assume αlo ≤ αhi

▶ αlo is, among all step lengths generated so far and satisfying
the sufficient decrease condition, the one giving the smallest
value of ϕ,

▶ αhi is chosen so that ϕ′(αlo)(αhi − αlo) < 0.
That is, ϕ always slopes down from αlo to αhi.

48

1: function zoom(αlo, αhi)
2: repeat
3: Set α between αlo and αhi using interpolation

(bisection, quadratic, etc.)

4: Evaluate ϕ(α)
5: if ϕ(α) > ϕ(0) + αµ1ϕ

′(0) or ϕ(α) ≥ ϕ(αlo) then
6: αhi ← α
7: else
8: Evaluate ϕ′(α)
9: if |ϕ′(α)| ≤ µ2|ϕ′(0)| then

10: Set α∗ ← α and stop
11: end if
12: if ϕ′(α)(αhi − αlo) ≥ 0 then
13: αhi ← αlo

14: end if
15: αlo ← α
16: end if
17: until a condition is met
18: end function

49

Bracketing & Zooming Example
We use quadratic interpolation; the bracketing chooses
αi+1 = 2αi , and the sufficient curvature factor is µ2 = 0.9.

Bracketing is achieved in the first iteration by using a significant
initial step of αinit = 1.2 (left). Then, zooming finds an improved
point through interpolation.
The small initial step of αinit = 0.05 (right) does not satisfy the
strong Wolfe conditions, and the bracketing phase moves forward
toward a flatter part of the function.

50

Bracketing & Zooming Example
We use quadratic interpolation; the bracketing chooses
αi+1 = 2αi , and the sufficient curvature factor is µ2 = 0.9.

Bracketing is achieved in the first iteration by using a significant
initial step of αinit = 1.2 (left). Then, zooming finds an improved
point through interpolation.

The small initial step of αinit = 0.05 (right) does not satisfy the
strong Wolfe conditions, and the bracketing phase moves forward
toward a flatter part of the function.

50

Bracketing & Zooming Example
We use quadratic interpolation; the bracketing chooses
αi+1 = 2αi , and the sufficient curvature factor is µ2 = 0.9.

Bracketing is achieved in the first iteration by using a significant
initial step of αinit = 1.2 (left). Then, zooming finds an improved
point through interpolation.
The small initial step of αinit = 0.05 (right) does not satisfy the
strong Wolfe conditions, and the bracketing phase moves forward
toward a flatter part of the function.

50

Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html

Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html

Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html

Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html

Comments on Line Search

▶ The interpolation of the zoom phase that determines α should
be safeguarded to ensure that the new step length is not too
close to the endpoints of the interval.

▶ Practical line search algorithms also use the interpolating
polynomials’ properties to make educated guesses of where
the next step length should lie.

▶ A problem that can arise in the implementation is that as the
optimization algorithm approaches the solution, two
consecutive function values f (xk) and f (xk−1) may be
indistinguishable in finite-precision arithmetic.

▶ Some procedures also stop if the relative change in x is close
to machine accuracy or some user-specified threshold.

▶ The presented algorithm is implemented in
https://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.line_search.html

51

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html

Unconstrained Optimization
Algorithms

Descent Direction

First-Order Methods

52

Gradient Descent

Consider the gradient descent (aka
gradient descent) method where

xk+1 = xk+αkpk pk = −∇f (xk)

Unfortunately, the gradient does not possess much information
about the step size.

So usually, a normalized gradient is used to obtain the direction,
and then a line search is performed:

xk+1 = xk + αkpk pk = − ∇f (xk)
||∇f (xk)||

The line search is exact if αk minimizes f (xk + αkpk). Not
practical, we usually find αk satisfying the strong Wolfe conditions.

53

Gradient Descent

Consider the gradient descent (aka
gradient descent) method where

xk+1 = xk+αkpk pk = −∇f (xk)

Unfortunately, the gradient does not possess much information
about the step size.

So usually, a normalized gradient is used to obtain the direction,
and then a line search is performed:

xk+1 = xk + αkpk pk = − ∇f (xk)
||∇f (xk)||

The line search is exact if αk minimizes f (xk + αkpk). Not
practical, we usually find αk satisfying the strong Wolfe conditions.

53

Gradient Descent Algorithm with Line Search

Algorithm 3 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk)
∥∇f (xk)∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇f ⊤k ≈ αk−1p

⊤
k−1∇f ⊤k−1 ⇒ αinit = αk−1

αk−1p
⊤
k−1∇f ⊤k−1

∇p⊤k f ⊤k

54

Gradient Descent Algorithm with Line Search

Algorithm 4 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk)
∥∇f (xk)∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇f ⊤k ≈ αk−1p

⊤
k−1∇f ⊤k−1 ⇒ αinit = αk−1

αk−1p
⊤
k−1∇f ⊤k−1

∇p⊤k f ⊤k
54

Gradient Descent Algorithm with Line Search

Algorithm 5 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk)
∥∇f (xk)∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇f ⊤k ≈ αk−1p

⊤
k−1∇f ⊤k−1 ⇒ αinit = αk−1

αk−1p
⊤
k−1∇f ⊤k−1

∇p⊤k f ⊤k

55

Gradient Descent Algorithm with Line Search

Algorithm 6 Gradient Descent with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇f ∥∞ > ε do

3: pk ← − ∇f (xk)
∥∇f (xk)∥

4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + αkpk
7: k ← k + 1
8: end while

Here αinit can be estimated from the previous step size αk−1 by
demanding similar decrease in the objective:

αinitp
⊤
k ∇f ⊤k ≈ αk−1p

⊤
k−1∇f ⊤k−1 ⇒ αinit = αk−1

αk−1p
⊤
k−1∇f ⊤k−1

∇p⊤k f ⊤k
55

f (x1, x2) = x21 + βx22

Consider β = 1, 5, 15 and
exact line search

Note that pk+1 and pk are always orthogonal. 56

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

The gradient descent can be prolonged.
57

Global Convergence with Line Search
Recall the Zoutendijk’s theorem.

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 8 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

58

Global Convergence of Gradient Descent

Assume that each αk satisfies strong Wolfe conditions.

Note that the angle θk between pk = −∇fk and the negative
gradient −∇fk equals 0. Hence, cos θk = 1.

Thus, under the assumptions of Zoutendijk’s theorem, we obtain∑
k≥0

cos2 θk ∥∇fk∥2 =
∑
k≥0

∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

59

Global Convergence of Gradient Descent

Assume that each αk satisfies strong Wolfe conditions.

Note that the angle θk between pk = −∇fk and the negative
gradient −∇fk equals 0. Hence, cos θk = 1.

Thus, under the assumptions of Zoutendijk’s theorem, we obtain∑
k≥0

cos2 θk ∥∇fk∥2 =
∑
k≥0

∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

59

Global Convergence of Gradient Descent

Assume that each αk satisfies strong Wolfe conditions.

Note that the angle θk between pk = −∇fk and the negative
gradient −∇fk equals 0. Hence, cos θk = 1.

Thus, under the assumptions of Zoutendijk’s theorem, we obtain∑
k≥0

cos2 θk ∥∇fk∥2 =
∑
k≥0

∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

59

Local Linear Convergence of Gradient Descent

Theorem 9
Suppose that f : Rn → R is twice continuously differentiable, that
the line search is exact, and that the descent converges to x∗

where ∇f (x∗) = 0 and the Hessian matrix ∇2f (x∗) is positive
definite. Then

f (xk+1)− f (x∗) ≤
(
λn − λ1

λn + λ1

)2

[f (xk)− f (x∗)] ,

where λ1 ≤ · · · ≤ λn are the eigenvalues of ∇2f (x∗).

60

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7

61

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
61

Two Spring Problem - Gradient Descent

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.

62

Rosenbrock Function - Gradient Descent
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
63

Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).

64

Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).

64

Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).

64

Comments on Gradient Descent

▶ The method needs evaluation of ∇f at each xk . If f is not
differentiable at xk , subgradients can be considered (out of
the scope of this course).

▶ Slow, zig-zagging, provides insufficient information for line
search initialization.

▶ Susceptible to scaling of variables (see the paraboloid
example).

▶ THE basis for algorithms training neural networks - a huge
amount of specific adjustments are developed for working with
huge numbers of variables in neural networks (trillions of
weights).

64

Unconstrained Optimization
Algorithms

Descent Direction

Second-Order Methods

65

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0.

We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66

Newton’s Method
Consider an objective f : Rn → R.

Assume that f is twice differentiable.

Then, by the Taylor’s theorem,

f (xk + s) ≈ fk +∇f ⊤k s +
1

2
s⊤Hks

where we denote the Hessian ∇2f (xk) by Hk .

Define

q(s) = fk +∇f ⊤k s +
1

2
s⊤Hks

and minimize q w.r.t. s by setting ∇q(s) = 0. We obtain:

Hks = −∇fk

Denote by sk the solution, and set xk+1 = xk + sk .

66

Newton’s Method

Algorithm 7 Newton’s Method

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: pk ← −H−1

k ∇f (xk)
4: xk+1 ← xk + pk
5: k ← k + 1
6: end while

67

Newton’s Method - Example

Newton’s method finds the minimum of a quadratic function in a
single step.

Note that the Newton’s method is scale-invariant!

68

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

69

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

69

Convergence Issues

Also, the computation of the Hessian is costly.
70

Local Quadratic Convergence of Newton’s Method

Theorem 10
Assume f is defined and twice differentiable on a convex set N .
Assume that ∇f is L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

71

Local Quadratic Convergence of Newton’s Method

Theorem 10
Assume f is defined and twice differentiable on a convex set N .
Assume that ∇f is L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

71

Local Quadratic Convergence of Newton’s Method

Theorem 10
Assume f is defined and twice differentiable on a convex set N .
Assume that ∇f is L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

71

Local Quadratic Convergence of Newton’s Method

Theorem 10
Assume f is defined and twice differentiable on a convex set N .
Assume that ∇f is L-smooth on N .
Let x∗ be a minimizer of f (x) in N and assume that ∇2f (x∗) is
positive definite.
If ∥x0 − x∗∥ is sufficiently small, then {xk} converges quadratically
to x∗.

Note that the theorem implicitly assumes that ∇2f (xk) is
nonsingular for every k.

As the theorem is concerned only with xk approaching x∗, the
continuity of ∇2f (xk) and positive definiteness of ∇2f (x∗) imply
that ∇2f (xk) is positive definite for all sufficiently large k .

However, what happens if we start far away from a minimizer?

71

Newton’s Method with Line Search

Algorithm 8 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: pk ← −H−1

k ∇f (xk)
4: Set αinit for line search
5: αk ← linesearch(pk , αinit)
6: xk+1 ← xk + pk
7: k ← k + 1
8: end while

72

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
73

Two Spring Problem - Newton’s Method

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 32 iterations of gradient descent.

74

Rosenbrock Function - Newton’s Method
Rosenbrock: f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

Gradient descent, line search, stop. cond. ||∇f ||∞ ≤ 10−6.
Compare this with 10,662 iterations of gradient descent.

75

Global Convergence with Line Search
Recall the Zoutendijk’s theorem.

Denote by θk the angle between pk and −∇fk , i.e., satisfying

cos θk =
−∇f Tk pk
∥∇fk∥ ∥pk∥

Recall that f is L-smooth on a set N for some L > 0 if

∥∇f (x)−∇f (x̃)∥ ≤ L∥x − x̃∥, for all x , x̃ ∈ N

Theorem 11 (Zoutendijk)

Consider xk+1 = xk + αkpk , where pk is a descent direction and
αk satisfies the strong Wolfe conditions. Suppose that f is
bounded below in Rn and that f is continuously differentiable in an
open set N containing the level set {x : f (x) ≤ f (x0)}. Assume
also that f is L-smooth on N . Then∑

k≥0

cos2 θk ∥∇fk∥2 <∞.

76

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or (nearly) singular?

77

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or (nearly) singular?

77

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or (nearly) singular?

77

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or (nearly) singular?

77

Global Convergence of Newton’s Method
Assume that all αk satisfy strong Wolfe conditions.

Assume that the Hessians Hk are positive definite with a uniformly
bounded condition number:

||Hk ||
∣∣∣∣H−1

k

∣∣∣∣ ≤ M for all k

Then θk between pk = −H−1
k ∇fk and −∇fk and satisfies

cos θk ≥ 1/M

Thus, under the assumptions of Zoutendijk’s theorem, we obtain

1

M2

∑
k≥0

∥∇fk∥2 ≤
∑
k≥0

cos2 θk ∥∇fk∥2 <∞

which implies that limk→∞ ||∇fk || = 0.

What if Hk is not positive definite or (nearly) singular?
77

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?

78

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?

78

Eigenvalue Modification
Consider Hk = ∇2f (xk) and consider its diagonal form:

Hk = QDQT

Where D contains the eigenvalues of Hk on the diagonal, i.e.,
D = diag(λ1, . . . , λn) and Q is an orthogonal matrix.

Observe that

▶ Hk is not positive definite iff λi ≤ 0 for some i

▶ ||Hk || grows with max{λ1, . . . , λn} going to infinity.

▶
∣∣∣∣H−1

k

∣∣∣∣ grows with min{λ1, . . . , λn} going to 0
(i.e., the matrix becomes close to a singular matrix)

We want to prevent all three cases, i.e., make sure that for some
reasonably large δ > 0 we have λi ≥ δ but not too large.

Two questions are in order:

▶ What is a reasonably large δ?

▶ How to modify Hk so the minimum is large enough?
78

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

79

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

79

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8?

Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

79

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

79

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.

79

Sufficiently Large Eigenvalues
Consider an example:

∇f (xk) = (1,−3, 2) and ∇2f (xk) = diag(10, 3,−1)

Now, the diagonalization is trivial:

∇2f (xk) = Q diag(10, 3,−1) Q⊤ Q = I is the identity matrix

What if we consider a minimum modification replacing the
negative eigenvalue with a small number, say δ = 10−8? Obtain

Bk = Q diag(10, 3, 10−8) Q⊤ = diag(10, 3, 10−8)

If used in Newton’s method, we obtain the following direction:

pk = −B−1
k ∇f (xk) = (1/10,−1,−(2 · 108))

Thus, a very long vector almost parallel to the third dimension.

Even though f decreases along pk , it is far from the minimum of
the quadratic approximation of f .
Note that the original Newton’s direction is

−diag(1/10, 1/3,−1)(1,−3, 2)⊤ = (−1/10, 1, 2) which is completely different.
79

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modifying the Eigenvalues
Other strategies for eigenvalue modification can be devised.

The criteria are rather loose. The resulting matrix Bk should be
▶ positive definite,
▶ of bounded norm (for all k),
▶ not too close to being singular.

(i.e., the eigenvalues should be sufficiently large)

Strategies for eigenvalue modification include flipping negative
eigenvalues to positive values, substituting negative eigenvalues
with small positive ones, etc.

There is no consensus on the best method for the modification.

The implementation is based on computing Bk = Hk +∆Hk for an
appropriate modification matrix ∆Hk .
What is ∆Hk in our example?

Various methods for computing ∆Hk have been devised in
literature. Typically, it is based on some computationally cheaper
decomposition than spectral decomposition (e.g., Cholesky).

80

Modified Newton’s Method

Algorithm 9 Newton’s Method with Line Search

Input: x0 starting point, ε > 0
Output: x∗ approximation to a stationary point
1: k ← 0
2: while ∥∇fk∥∞ > ε do
3: Hk ← ∇2f (xk)
4: if Hk is not sufficiently positive definite then
5: Hk ← Hk +∆Hk so that Hk is sufficiently pos. definite
6: end if
7: Solve Hkpk = −∇f (xk) for pk
8: Set xk+1 = xk + αkpk , here αk sat. the Wolfe cond.
9: k ← k + 1

10: end while

81

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.

▶ O(n3) arithmetic operations to solve the linear system for the
direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Comments on Newton’s Method
▶ Newton’s method is scale invariant.

▶ Quadratic convergence in a close vicinity of a strict minimizer.

▶ Without modification, it may converge to an arbitrary
stationary point (maximum, saddle point).

▶ Computationally expensive:
▶ O(n2) second derivatives in the Hessian, each may be hard to

compute.
Automated derivation methods help but still need store O(n2)

results.
▶ O(n3) arithmetic operations to solve the linear system for the

direction pk .
May be mitigated by more efficient methods in case of sparse

Hessians.

In a sense, Newton’s method is an impractical “ideal” with which
other methods are compared.

The efficiency issues (and the necessity of second-order derivatives)
will be mitigated by using quasi-Newton methods.

82

Quasi-Newton Methods

83

Quasi-Newton Methods
Recall that Newton’s method step pk in xk+1 = xk + pk comes
from minimization of

q(p) = fk +∇f ⊤k p +
1

2
p⊤Hkp

w.r.t. p by setting q′(p) = 0 and solving

−Hkp = −∇fk

So Newton’s method needs the second derivative (Hessian) that is
computationally hard to obtain.

Gradient descent needs only the first derivatives but converges
slowly.

Can we find a compromise?

Quasi-Newton methods use first derivatives to approximate
the Hessian Hk in Newton’s method with a matrix H̃k .

84

BFGS

Denote by H̃k the approximate of the Hessian Hk = ∇2f (xk).

Suppose we just obtained the new point xk+1 after a line search
starting from xk in the direction pk .

We can write the new quadratic approximation of f at xk+1 based
on an updated Hessian approximation as follows:

q (p) = fk+1 +∇f ⊤k+1p +
1

2
p⊤H̃k+1p.

Assume that fk+1 and ∇fk+1 are given, but we do not have the
new approximate Hessian yet. Taking the gradient of this
quadratic concerning p, we obtain

∇q (p) = ∇fk+1 + H̃k+1p

Now we demand that the gradient ∇q of q w.r.t. p matches
the gradient of f at xk+1 and at xk .

85

q (p) = fk+1 +∇f ⊤k+1p +
1

2
p⊤H̃k+1p

∇q (p) = ∇fk+1 + H̃k+1p

The gradient of the quadratic matching ∇f at xk and xk+1:

Note that ∇q (0) = ∇fk+1 (just set p = 0 above).

86

q (p) = fk+1 +∇f ⊤k+1p +
1

2
p⊤H̃k+1p

∇q (p) = ∇fk+1 + H̃k+1p

The gradient of the quadratic matching ∇f at xk and xk+1:

Note that ∇q (0) = ∇fk+1 (just set p = 0 above).

Just impose ∇q (−αkpk) = ∇fk+1 − αkH̃k+1pk = ∇fk
86

q (p) = fk+1 +∇f ⊤k+1p +
1

2
p⊤H̃k+1p

∇q (p) = ∇fk+1 + H̃k+1p

Just impose ∇q (−αkpk) = ∇fk+1 − αkH̃k+1pk = ∇fk
Now, apparently, we have

∇fk+1 − αkH̃k+1pk = ∇fk ⇒
αkH̃k+1pk = ∇fk+1 −∇fk .

To simplify the notation, we define the step as

sk = xk+1 − xk = αkpk ,

and the difference in the gradient as

yk = ∇fk+1 −∇fk .

Using this notation, we get the secant condition

H̃k+1sk = yk

86

Now, we can obtain an approximate Hessian H̃k+1 by solving the
secant condition H̃k+1sk = yk .

Ideally, we want to

▶ have H̃k+1 symmetric positive definite
To have a nice model for minimization around xk+1.

▶ obtain H̃k+1 from H̃k by

H̃k+1 = H̃k + something

To have a nice iterative algorithm.

Even if we demand symmetric positive definite solutions to
the secant condition, there are infinitely many.

Note that the information about the solution is somehow present
in sk and yk , so it is natural to compose the solution using these
vectors.

We strive to choose H̃k+1 ”close” to H̃k .

87

Symmetric Rank One Update
Consider uk =

(
yk − H̃ksk

)
H̃k+1 = H̃k +

uu⊤

u⊤sk

Now, the secant condition is satisfied:

H̃k+1sk = H̃ksk +
uu⊤sk
u⊤sk

= H̃ksk + uk = yk

Note that the updated matrix uu⊤

u⊤sk
is of rank one and is a unique

symmetric rank one matrix which makes H̃k+1 satisfy the secant
condition.

To obtain a quasi-Newton method, it suffices to initialize H̃0,
typically to the identity I , and use H̃k instead of the Hessian
Hk = ∇2fk in Newton’s method.

Even though H̃k is a symmetric positive definite, the updated
matrix H̃k+1 does not have to be a symmetric positive definite.

88

Rank One Update

Algorithm 10 Rank 1 update v1

k ← 0
αinit ← 1
Ṽ0 ← I (or Ṽ0 ← 1/∥∇f ∥ · I)
while ∥∇fk∥∞ > ε do

s ← xk − xk−1

y ← ∇fk −∇fk−1

H̃k = H̃k−1 +
uu⊤

u⊤sk

Solve for pk in H̃−1
k pk = −∇fk

α← linesearch(pk , αinit)
xk+1 ← xk + αpk
k ← k + 1

end while

89

Symmetric Rank Two Update
Consider

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤
s⊤k H̃ksk

+
yky

⊤
k

y⊤k sk

Once again, verifying H̃k+1sk = yk is not difficult.

Lemma 1
If H̃k is symmetric positive definite, then H̃k+1 is positive definite
iff y⊤k sk > 0.
y⊤
k sk > 0 is called curvature condition

Now, it is not difficult to prove that if proper line search is
performed, satisfying the strong Wolfe conditions, the curvature
condition y⊤k sk > 0 will always be satisfied.

Thus, starting with a symmetric positive definite H̃0 (e.g., a scalar
multiple of I), every H̃k is symmetric positive definite and satisfies
the secant condition.

90

BFGS

Algorithm 11 BFGS v1

k ← 0
αinit ← 1
Ṽ0 ← I (or Ṽ0 ← 1/∥∇f ∥ · I)
while ∥∇fk∥∞ > τ do

s ← xk − xk−1

y ← ∇fk −∇fk−1

H̃k ← H̃k−1 −
(H̃k−1sk)(H̃k−1sk)

⊤

s⊤k H̃k−1sk
+

yky
⊤
k

y⊤
k sk

Solve for pk in H̃−1
k pk = −∇fk

α← linesearch(pk , αinit)
xk+1 ← xk + αpk
k ← k + 1

end while

Note that we still have to solve a linear system for pk .

91

Sherman–Morrison–Woodbury Formula
Ideally, we would like to compute H̃−1

k iteratively along the
optimization, i.e.,

H̃−1
k+1 = H̃−1

k + something

To get such a ”something” we use the following
Sherman–Morrison–Woodbury (SMW) formula:(

A+ UV T
)−1

= A−1 − A−1U
(
I + V TU

)−1
V TA−1

where
U = [u1, u2, . . . , uk] V = [v1, v2, . . . , vk]

SMW can be written as(
A+

k∑
i=1

uiv
T
i

)−1

= A−1 − A−1UC−1V TA−1

where
Cij = δij + vTi uj i , j = 1, 2, . . . , k

92

Rank 1 – Iterative Inverse Hessian Approximation

Applying SMW to the rank one update

H̃k+1 = H̃k +

(
yk − H̃ksk

)(
yk − H̃ksk

)⊤
(
yk − H̃ksk

)⊤
sk

yields

H̃−1
k+1 = H̃−1

k +

(
sk − H̃−1

k yk

)(
sk − H̃−1

k yk

)⊤
(
sk − H̃−1

k yk

)⊤
yk

Yes, only y and s swapped places.

This allows us to avoid solving for pk in every iteration.

93

Rank One Update V2

Algorithm 12 Rank 1 update v1

k ← 0
αinit ← 1
Ṽ0 ← I (or Ṽ0 ← 1/∥∇f ∥ · I)
while ∥∇fk∥∞ > τ do

s ← xk − xk−1

y ← ∇fk −∇fk−1

H̃−1
k ← H̃−1

k−1 +
(sk−H̃−1

k−1yk)(sk−H̃−1
k−1yk)

⊤

(sk−H̃−1
k−1yk)

⊤
yk

pk ← −H̃−1
k ∇fk

α← linesearch(pk , αinit)
xk+1 ← xk + αpk
k ← k + 1

end while

94

BFGS

Applying SMW to the BFGS Hessian update

H̃k+1 = H̃k −

(
H̃ksk

)(
H̃ksk

)⊤
s⊤k H̃ksk

+
yky

⊤
k

y⊤k sk

yields

H−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

We avoid solving the linear system for pk .

95

BFGS V2

Algorithm 13 BFGS v2

k ← 0
αinit ← 1
Ṽ0 ← I (or Ṽ0 ← 1/∥∇f ∥ · I)
while ∥∇fk∥∞ > τ do

s ← xk − xk−1

y ← ∇fk −∇fk−1

H−1
k ←

(
I − sky

⊤
k

s⊤k yk

)
H−1
k−1

(
I − yk s

⊤
k

s⊤k yk

)
+

sk s
⊤
k

s⊤k yk

pk ← −H̃−1
k ∇fk

α← linesearch(pk , αinit)
xk+1 ← xk + αpk
k ← k + 1

end while

96

Another View on BFGS (Optional)

We search for H̃−1
k+1 where H̃k+1 satisfies H̃k+1sk = yk . Simply,

search for a solution Ṽk+1 for Ṽk+1yk = sk .

The idea is to use Ṽk+1 close to Ṽk (in some sense):

min
Ṽ

∥∥∥Ṽ − Ṽk

∥∥∥
subject to Ṽ = Ṽ⊤, Ṽ yk = sk

Here the norm is weighted Frobenius norm:

∥A∥ ≡
∥∥∥W 1/2AW 1/2

∥∥∥
F
,

where ∥ · ∥F is defined by ∥C∥2F =
∑n

i=1

∑n
j=1 c

2
ij . The weight W

can be chosen as any matrix satisfying the relation Wyk = sk .

BFGS is obtained with W = Ḡ−1
k where Ḡk is the average Hessian

defined by Ḡk =
[∫ 1

0 ∇
2f (xk + ταkpk) dτ

]
Solving this gives precisely the BFGS formula for H̃−1

k+1.
97

Quasi-Newton Methods Convergence

98

Quasi-Newton Methods Rate of Convergence

99

Quasi-Newton Methods - Practical Issues

100

Quasi-Newton Methods - Comments

101

Limited-Memory BFGS (L-BFGS)

When the number of design variables is extensive, working with the
whole Hessian inverse approximation matrix might not be practical.

This motivates limited-memory quasi-Newton methods,

In addition, these methods also improve the computational
efficiency of medium-sized problems (hundreds or thousands of
design variables) with minimal sacrifice in accuracy.

102

L-BFGS
Recall that we compute iteratively the approximation to the inverse
Hessian by

H−1
k+1 =

(
I −

sky
⊤
k

s⊤k yk

)
H−1
k

(
I −

yks
⊤
k

s⊤k yk

)
+

sks
⊤
k

s⊤k yk

However, eventually, we are interested in

pk = H−1
k ∇f

Note that given the sequences s1, . . . , sk and y1, . . . , yk and H−1
0

we can recursively compute H−1
k+1 for every k .

What if we limit the sequences in memory to just m last elements:

sk−m+1, sk−m+2, . . . , sk yk−m+1, yk−m+2, . . . , yk

In practice, m between 5 and 20 is usually sufficient. We also
initialize the recurrence with the last iterate:

103

L-BFGS
Let us rewrite the BFGS update formula as follows:

H̃−1
k+1 = V T

k H̃−1
k Vk + ρksks

⊤
k

where

ρk = s⊤k yk and Vk = I − ρksky
⊤
k

sk = xk+1 − xk and yk = ∇fk+1 −∇fk
By substitution we obtain

H̃−1
k =

(
V T
k−1 · · ·V T

k−m

)
H̃0
k (Vk−m · · ·Vk−1)

+ ρk−m

(
V T
k−1 · · ·V T

k−m+1

)
sk−ms

T
k−m (Vk−m+1 · · ·Vk−1)

+ ρk−m+1

(
V T
k−1 · · ·V T

k−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

+ · · ·
+ ρk−1sk−1s

T
k−1

104

L-BFGS Algorithm

Algorithm 14 L-BFGS two-loop recursion

Input: : sk−1, . . . , sk−m and yk−1, . . . , yk−m

Output: : pk the search direction −H̃−1
k ∇fk

1: q ← ∇fk
2: for i = k − 1, k − 2, . . . , k −m do
3: αi ← ρi s

T
i q

4: q ← q − αiyi
5: end for
6: r ← H0

kq
7: for i = k −m, k −m + 1, . . . , k − 1 do
8: β ← ρiy

T
i r

9: r ← r + si (αi − β)
10: end for
11: stop with result H̃−1

k ∇fk = r

105

L-BFGS Algorithm

Algorithm 15 L-BFGS

1: Choose starting point x0, integer m > 0
2: k ← 0
3: repeat

4: Choose H0
k e.g.

s⊤k−1yk−1

y⊤
k−1yk−1

5: Compute pk ← −Hk∇fk using the previous algorithm
6: Compute xk+1 ← xk + αkpk , where αk is chosen to satisfy

the strong Wolfe conditions
7: if k > m then
8: Discard the vector pair {sk−m, yk−m} from storage
9: end if

10: Compute and save sk ← xk+1 − xk , yk ← ∇fk+1 −∇fk
11: k ← k + 1
12: until convergence

106

f (x1, x2) = (1− x1)
2 + (1− x2)

2 +
1

2

(
2x2 − x21

)2
Stopping: ||∇f ||∞ ≤ 10−6.

In L-BFGS the memory length m was 5. The results are similar.
107

f (x1, x2) =
1

2
k1

(√
(ℓ1 + x1)

2 + x22 − ℓ1

)2

+
1

2
k2

(√
(ℓ2 − x1)

2 + x22 − ℓ2

)2

−mgx2

Here ℓ1 = 12, ℓ2 = 8, k1 = 1, k2 = 10,mg = 7
108

109

Rosenbrock: f (x1, x2) = (1− x1)
2 + 100

(
x2 − x21

)2

110

Rosenbrock:
f (x1, x2) = (1− x1)

2 + 100
(
x2 − x21

)2

111

Computational Complexity

Algorithm Computational Complexity
Steepest Descent O(n2) per iteration
Conjugate Gradients O(n) per iteration
Newton’s Method O(n3) to compute Hessian and solve system
BFGS O(n2) to update Hessian approximation

Table: Summary of the computational complexity for each optimization
algorithm.

▶ Steepest Descent: Simple but often slow, requiring many
iterations.

▶ Conjugate Gradients: Efficient for large sparse systems, fewer
iterations.

▶ Newton’s Method: Fast convergence but expensive per
iteration.

▶ BFGS: Quasi-Newton, no Hessian needed, good speed and
iteration count balance.

112

Constrained Optimization

113

Constrained Optimization Problem

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gj(x) ≤ 0 j = 1, . . . , ng

hl(x) = 0 l = 1, . . . , nh

x∗ is now a constrained minimizer if

f (x∗) ≤ f (x) for all x ∈ F

where F is the feasibility region

F = {x | gi (x) ≤ 0, hj(x) = 0, j = 1, . . . , nx , l = 1, . . . , nh}

Thus, to find a constrained minimizer, we have to inspect
unconstrained minima of f inside of F and points along the
boundary of F .

114

COP - Example

minimize
x1,x2

f (x1, x2) = x21 − 1
2x1 − x2 − 2

subject to g1 (x1, x2) = x21 − 4x1 + x2 + 1 ≤ 0
g2 (x1, x2) =

1
2x

2
1 + x22 − x1 − 4 ≤ 0

115

Equality Constraints

Let us restrict our problem only to the equality constraints:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Assume that f and hj have continuous second derivatives.

Now, we try to imitate the theory from the unconstrained case and
characterize minima using gradients.

This time, we have to consider the gradient of f and hj .

116

Half-Space of Decrease

Consider the first-order Taylor approximation of f at x

f (x + p) ≈ f (x) +∇f (x)⊤p

Note that if x∗ is an unconstrained minimum of f , then

f (x∗ + p) ≥ f (x∗)

for all p small enough.

Together with the Taylor approximation, we obtain

f (x∗) +∇f (x∗)⊤p ≥ f (x∗)

and hence

∇f (x∗) ≥ 0

117

The hyperplane defined by ∇f ⊤p = 0 contains directions p of zero
variation in f .

In the unconstrained case, x∗ is minimum only if ∇f (x∗) = 0
because otherwise there would be a direction p satisfying
∇f (x∗)p < 0, a decrease direction.

118

Decrease Direction in COP

In COP, p is a decrease direction in x ∈ F not only if ∇f (x)p < 0,
it also needs to be a feasible direction!
I.e., point into the feasible region.

How do we characterize feasible directions?

Consider Taylor approximation of hj for all j :

hj(x + p) ≈ hj(x) +∇hj(x)⊤p

Assuming x ∈ F , we have hj(x) = 0 for all j and thus

hj(x + p) ≈ ∇hj(x)⊤p

As p is a feasible direction iff hj(x + p) = 0, we obtain that p is
a feasible direction iff

∇hj(x)⊤p = 0 for all j

119

Feasible Points and Directions

Here, the only feasible direction at x is p = 0.

120

Feasible Points and Directions

Here the feasible directions at x∗ point along the red line, i.e.,

∇h1(x∗)p = 0 ∇h2(x∗)p = 0

121

Constrained Minima
Consider a direction p. Observe that

▶ If hj(x)
⊤p ̸= 0, then moving a short step in the direction p

violates the constraint hj(x) = 0.

▶ If hj(x)
⊤p = 0 for all j and

▶ ∇f (x)p > 0, then moving a short step in the direction p
increases f and stays in F .

▶ ∇f (x)p < 0, then moving a short step in the direction p
decreases f and stays in F .

▶ ∇f (x)p = 0, then moving a short step in the direction p does
not change f and stays F .

To be a minimizer, x must be feasible and every direction
satisfying hj(x)

⊤p = 0 for all j must also satisfy ∇f (x)p ≥ 0.

Note that if p is a feasible direction, then −p is also. So finally,

If x∗ is a constrained minimizer, then

∇f (x∗)p = 0 for all p such that ∇hj(x∗)⊤p = 0 for all j

122

Lagrange Multipliers

Left: f increases along p. Right: f does not change along p.

Observe that at an optimum, ∇f lies in the space spanned by the
gradients of constraint functions.

There are Lagrange multipliers λ1, λ2 satisfying

∇f (x∗) = λ1∇h1 + λ2∇h2

123

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x)p = 0 for all p such that ∇hj(x)⊤p = 0 for all j

But then, from the geometry of the problem, we obtain

Theorem 12
Consider the COP with only equality constraints and f and all hj
twice continuously differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular,
which means that ∇hj(x∗) are linearly independent.
Then there are λ1, . . . , λnh ∈ R satisfying

∇f (x∗) =
nh∑
j=1

λj∇hj(x∗)

The coefficients λ1, . . . , λnh are called Lagrange multipliers.
124

Lagrangian Function
Try to transform the constrained problem into an unconstrained
one by moving the constraints hj(x) = 0 into the objective.

Consider Lagrangian function L : Rn × Rnh → R defined by

L(x , λ) = f (x)+h(x)⊤λ here h(x) = (h1(x), . . . , hnh(x))
⊤

Note that

∇xL = ∇f (x) +
nh∑
j=1

∇hj(x)⊤λj

∇λL = h(x)

Now putting ∇L(x) = 0, we obtain precisely the above properties
of the constrained minimizer:

h(x) = 0 and ∇f (x) =
nh∑
j=1

−λj∇hj(x)⊤

However, we cannot use the unconstrained optimization methods here because

searching for a minimizer in x asks for a maximizer in λ.
125

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to h (x1, x2) =
1
4x

2
1 + x22 − 1 = 0

The Lagrangian function

L (x1, x2, λ) = x1 + 2x2 + λ

(
1

4
x21 + x22 − 1

)
Differentiating this to get the first-order optimality conditions,

∂L
∂x1

= 1 +
1

2
λx1 = 0

∂L
∂x2

= 2 + 2λx2 = 0

∂L
∂λ

=
1

4
x21 + x22 − 1 = 0.

Solving these three equations for the three unknowns (x1, x2, λ),
we obtain two possible solutions:

xA = (x1, x2) = (−
√
2,−
√
2/2), λA =

√
2

xB = (x1, x2) = (
√
2,
√
2/2), λA = −

√
2

126

127

Second-Order Sufficient Conditions
As in the unconstrained case, the first-order conditions characterize
any ”stable” point (minimum, maximum, saddle).

Consider Lagrangian Hessian:

HL(x , λ) = Hf (x) +

nh∑
j=1

λjHhj (x)

Here Hf is the Hessian of f , and each Hhj is the Hessian of hj .

The second-order sufficient conditions are as follows: Assume x∗ is
regular and feasible. Also, assume that there is λ s.t.

∇f (x∗) =
nh∑
j=1

−λj∇hj(x∗)⊤

and that

p⊤HL(x
∗, λ)p > 0 for all p satisfying ∇hj(x∗)⊤p = 0 for all j .

Then, x∗ is a constrained minimizer of f .
128

Inequality Constraints

Recall that the constrained optimization problem is

minimize f (x)
by varying x
subject to gi (x) ≤ 0 i = 1, . . . , ng

hj(x) = 0 j = 1, . . . , nh

We say that a constraint gi (x) ≤ 0 is active for x∗ if gi (x
∗) = 0,

otherwise it is inactive for x∗.

As before, if x∗ is optimum, any small step in a feasible direction p
must not decrease f , i.e.,

∇f (x∗)⊤p ≥ 0

How do we identify feasible directions for inequality constraints?

129

Feasible Directions
For inactive constraints, arbitrary direction p is feasible.

For active constraints gi (x) = 0 we have

gi (x + p) ≈ gi (x) +∇gi (x)⊤p ≤ 0, i = 1, . . . , ng

and p is feasible iff ∇gi (x)⊤p ≤ 0 for all active constr. gi (x) = 0.

130

Lagrange Multipliers
When can f (not) be decreased in a feasible direction?

Left: f decreases in the blue cone. Right: f does not decrease in
any feasible direction.

At an optimum there are Lagrange multipliers σ1, σ2 ≥ 0 :

−∇f = σ1∇g1 + σ2∇g2
131

Lagrange Multipliers
We know that if x∗ is a constrained minimizer, then.

∇f (x)p = 0 for all p feasible

Using Farkas’ lemma, one can prove the following

Theorem 13
Consider the COP with f and all gi , hj twice continuously
differentiable.
Assume that x∗ is a constrained minimizer and that x∗ is regular
which means that ∇gi (x∗),∇hj(x∗) are linearly independent.
Then there are Lagrange multipliers λ1, . . . , λnh ∈ R and
σ1, . . . , σng ∈ R satisfying

∇f (x∗) =
nh∑
j=1

λj∇hj(x∗) +
nh∑
i=1

σi∇gi (x∗) where σi ≥ 0

132

Lagrangian Function
Note that inequality gi (x) ≤ 0 can be equivalently expressed using
a slack variable si by

g(x) + s2i = 0

The Lagrangian function then generalizes from equality to
inequality COP as follows.

L(x , λ, σ, s) = f (x) + h(x)⊤λ+ (g(x) + s ⊙ s)⊤σ

Here, h(x) = (h1(x), . . . , hnh(x))
⊤, g(x) = (g1(x), . . . , gng (x))

⊤,
s = (s1, . . . , sng), and ⊙ is the component-wise multiplication.

Now compute the stable point of L by considering

∇xL = 0

∇λL = 0

∇σL = 0

∇sL = 0

(see the whiteboard)
133

KKT
If x∗ is a constrained minimizer and that x∗ is regular. Then there
are λ, σ, s satisfying

∂f

∂xℓ
(x) +

nh∑
j=1

λj
∂hj
∂xℓ

+

ng∑
j=1

σj
∂gj
∂xℓ

= 0 ℓ = 1, . . . , n

hj = 0 j = 1, . . . , nh

gi + s2i = 0 i = 1, . . . , ng

2σi si = 0 i = 1, . . . , ng

σi ≥ 0

So, solving the above system allows us to identify potential
constrained minimizers.

To decide whether x∗ solving KKT is a minimizer, check whether

p⊤HL(x , λ)p > 0

For all feasible directions p (similarly to the equality case).
134

Example

minimize
x1,x2

f (x1, x2) = x1 + 2x2

subject to g (x1, x2) =
1
4x

2
1 + x22 − 1 ≤ 0.

The Lagrangian function for this problem is

L (x1, x2, σ, s) = x1 + 2x2 + σ

(
1

4
x21 + x22 − 1 + s2

)

135

Example

∂L
∂x1

= 1 +
1

2
σx1 = 0

∂L
∂x2

= 2 + 2σx2 = 0

∂L
∂σ

=
1

4
x21 + x22 − 1 = 0

∂L
∂s

= 2σs = 0.

Setting σ = 0 does not yield any solution. Setting s = 0 and σ ̸= 0
we obtain

xA =

 x1
x2
σ

 =

 −
√
2

−
√
2/2√
2

 , xB =

 x1
x2
σ

 =

√
2√

2/2

−
√
2

Now, σ must be non-negative, so only xA is the solution. There is
no feasible descent direction at xA. We already know that the
Hessian Lagrangian is positive definite, so this is a minimizer.

136

Penalty methods

The idea: Transform a constrained problem into an unconstrained
one by adding a penalty to the objective function when constraints
are violated or close to being violated.

Assuming an objective function f , the penalized objective is of the
form

f̂ (x) = f (x) + µπ(x)

Here, µ is a fixed constant determining how strong the penalty
should be, and π is the penalty function.

Now we may apply the unconstrained optimization methods (e.g.,
L-BFGS) to f̂ and obtain an approximation of a minimizer of f .

There are two types

▶ exterior - penalizing infeasible x

▶ interior - penalizing x close to being infeasible

137

Exterior Penalty Methods

Consider equality-constrained problems:

minimize f (x)
by varying x
subject to hj(x) = 0 j = 1, . . . , nh

Consider quadratic penalty:

f̂ (x ;µ) = f (x) +
µ

2

nh∑
j=1

hj(x)
2

If f is continuously differentiable, f̂ is as well (w.r.t. x).

138

Quadratic Penalty

The true solution would be recovered for µ =∞.

However, large µ means large condition number of the Hessian of f̂
Intuitively, curvature of f̂ changes rapidly with the direction.

Need to choose µ carefully, iteratively.
139

Quadratic Penalty
The problems

▶ Small µ may result in so weak penalty that f unbounded
below results in f̂ unbounded as well

▶ As µ =∞ is impossible, the solution is always slightly
infeasible

▶ Growing “curvature” of f̂ as µ grows making the Hessian of f̂
almost singular

140

Quadratic Penalty for Inequality Constraints

f̂ (x ;µ) = f (x) +
µh

2

nh∑
j=1

hj(x)
2 +

µg

2

ng∑
i=1

max (0, gi (x))
2

Minimizer approached from the infeasible side.
141

Example

f̂ (x ;µ) = x1 + 2x2 +
µ

2
max

(
0,

1

4
x21 + x22 − 1

)2

142

Augmented Lagrangian
Instead of minimizing f , we search for an optimal point of the
Lagrangian.

Similarly, instead of minimizing f̂ we may augment the Lagrangian
L with penalty and optimize the augmented Lagrangian

L̂(x ;λ, µ) = f (x) +

nh∑
i=1

λihi (x) +
µ

2

nh∑
i=1

hi (x)
2

Note the relationship between optimality conditions for L and L̂

∇x L̂(x ;λ, µ) = ∇f (x) +
nh∑
i=1

(λi + µhi (x))∇hi = 0

∇xL (x∗, λ∗) = ∇f (x∗) +
nh∑
i=1

λ∗
i∇hi (x∗) = 0.

Comparing these two conditions suggests an approximation:

λ∗
j ≈ λj + µhj .

143

Augmented Lagrangian Penalty Method

Inputs:

▶ x0: Starting point

▶ λ0 = 0: Initial Lagrange multiplier

▶ µ0 > 0: Initial penalty parameter

▶ ρ > 1: Penalty increase factor

Outputs:

▶ x∗: Optimal point

▶ f (x∗): Corresponding function value

Algorithm:
k = 0 not converged xk+1 ← x minimizing f (x ;λk , µk)

λk+1 = λk + µkh(xk) µk+1 = ρµk k = k + 1

144

Comparison of Quadratic and Lagrangian Penalty

Compare

hj ≈
1

µ

(
λ∗
j − λj

)
.

with the corresponding approximation of hj in the quadratic
penalty method is

hj ≈
λ∗
j

µ

Thus, the quadratic penalty relies solely on increasing µ.

However, the augmented Lagrangian also controls the numerator
via estimating λj .

If λj is close to λ∗
j , we may obtain a close solution for modest

values of µ.

Several variants of the Lagrangian penalty exist for inequality
constraints; see Nocedal & Wright.

145

Interior Penalty Methods

Always seek to maintain feasibility as opposed to the exterior
methods.

Instead of adding a penalty only when constraints are violated; add
a penalty as the constraint is approached from the feasible region.

Desirable if the objective function is ill-defined outside the feasible
region.

The interior methods are also referred to as barrier methods
because the penalty function acts as a barrier preventing iterates
from leaving the feasible region.

146

Barrier Methods
Minimize the augmented objective function.

f̂ (x ;µ) = f (x) + µπ(x)

Here π is a penalty function.

Inverse barrier

π(x) =

ng∑
i=1

− 1

gi (x)

Logarithmic barries

π(x) =

ng∑
i=1

− ln(−gi (x))

Algorithms based on these penalties must be prevented from
evaluating infeasible points.

147

Barrier methods

Solve a sequence of unconstrained problems for f̂ with µ→ 0.

Every unconstrained optimization must start at an initial point
feasible for the constrained problem.

The line search must check for feasibility and backtrack from steps
to infeasible points.

148

Example

f̂ (x ;µ) = x1 + 2x2 − µ ln

(
−1

4
x21 − x22 + 1

)

As for exterior methods, the Hessian becomes increasingly
ill-conditioned as µ→ 0.

Various modifications exist that alleviate the above problem.

These methods lead to a class of modern interior point methods.
149

Summary of Penalty Methods

... not too efficient but simple

150

Quadratic Programming
The quadratic optimization problem with equality constraints is to

minimize 1
2x

⊤Qx + qtx
by varying x
subject to Ax + b = 0

Here
▶ Q is a n × n symmetric matrix. For simplicity assume positive

definite.
▶ A is a m × n matrix. Assume full rank.

151

Quadratic Programming

How to solve the quadratic program?

Consider the Lagrangian function

L(x , λ) =
1

2
x⊤Qx + q⊤x + λ⊤(Ax + b)

and its partial derivatives:

∇xL(x) = Qx + q + A⊤λ = 0

∇λL(x) = Ax + b = 0

As Q is positive definite, we know that a solution to the above
system is a minimizer.

So in order to solve the quadratic program, it suffices to solve the
system of linear equations.

152

Inequality Constraints

The situation is much more complicated as some constraints can
be active (i.e., equality) and some inactive (i.e., locally irrelevant).

There are methods based on the concept of active set which keeps
track of active constraints that iteratively search for solutions.

We shall see an analogy in linear programming, now won’t go any
further.

153

Sequential Quadratic Programming

154

