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Linear Optimization Problem

minimize f (x)
by varying x ∈ Rn

subject to gi (x) ≤ 0 i = 1, . . . , ng
hj(x) = 0 j = 1, . . . , nh

We assume that

▶ f is linear, i.e.,

f (x) = c⊤x here c ∈ Rn

▶ each gi is linear,

▶ each hj is linear.

For convenience, in what follows, we also allow constraints of the
form gi (x) ≥ 0.
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Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.
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Example

The lines define the boundaries of the feasible region

−2x1 + x2 = 2

−x1 + x2 = 3

x1 = 3

x1 = 0

x2 = 0
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Standard Form
The standard form linear program

minimize c⊤x
subject to Ax = b

x ≥ 0

Here
▶ x = (x1, . . . , xn)

⊤ ∈ Rn

▶ c = (c1, . . . , cn)
⊤ ∈ Rn

▶ A is an m × n matrix of elements aij where m < n and
rank(A) = m
That is, all rows of A are linearly independent.

▶ b = (b1, . . . , bm)
⊤ ≥ 0

b ≥ 0 means bi ≥ 0 for all i .

Every linear optimization problem can be transformed into a
standard linear program such that there is a one-to-one
correspondence between solutions of the constraints preserving
values of the objective.
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Transformation to Standard Form

1. For every variable xi introduce new variables x ′i , x
′′
i , replace every

occurrence of xi with x ′i − x ′′i , and introduce constraints x ′i , x
′′
i ≥ 0.

Note that if a constraint is in the form xi + ζ ≥ 0 we may simply replace

xi with x ′
i − ζ and introduce x ′

i ≥ 0.

2. Transform every gi (x) ≤ 0 to gi (x) + si = 0, si ≥ 0. Here si are new
variables (slack variables).

3. Move all constant terms to the right side of the constraints.

Now we have constraints of the form Ax = b, x ≥ 0.

4. Remove linearly dependent equations from Ax = b.

This step does not alter the set of solutions.

5. If m ≥ n, the constraints either have a unique or no solution.
Neither of the cases is interesting for optimization. Hence, m < n.

6. Multiplying equations with bi < 0 by −1 gives b ≥ 0
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Transformation Example

maximize z = −5x1 − 3x2
subject to 3x1 − 5x2 − 5 ≤ 0

−4x1 − 9x2 + 4 ≤ 0
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Transformation Example

maximize z = −5x1 − 3x2
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′
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Check if all equations are linearly independent.

Multiply the last one with −1:
maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x ′2 + 5x ′′2 + s1 = 5
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Transformation Example

maximize z = −5x ′1 + 5x ′′1 − 3x ′2 + 3x ′′2
subject to 3x ′1 − 3x ′′1 − 5x ′2 + 5x ′′2 + s1 = 5

4x ′1 − 4x ′′1 + 9x ′2 − 9x ′′2 − s2 = 4
x ′1, x

′′
1 , x

′
2, x

′′
2 , s1, s2 ≥ 0

In the standard form:

A =

(
3 −3 −5 5 1 0
4 −4 9 −9 0 −1

)
x = (x1, x2, x3, x4, x5, x6)

⊤

Note that we have renamed the variables.

b = (5, 4)⊤

Ax = b where x ≥ 0

c = (−5, 5,−3, 3)⊤
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Example

minimize z = −x1 − 2x2
subject to −2x1 + x2 − 2 ≤ 0

−x1 + x2 − 3 ≤ 0
x1 − 3 ≤ 0
x1, x2 ≥ 0.
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Example

Transform to

minimize z = −x1 − 2x2
subject to −2x1 + x2 + s1 = 2

−x1 + x2 + s2 = 3
x1 + s3 = 3

x1, x2, s1, s2, s3 ≥ 0
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Example

The standard form:

A =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b

c = (−1,−2, 0, 0, 0)⊤
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Assumptions

Consider a linear programming problem in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

In what follows, we will use the following shorthand: Given two
column vectors x , x ′, we write [x , x ′] to denote the vector resulting
from stacking x on top of x ′.
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Solutions

There are (typically) infinitely many solutions to the constraints.

Are there some distinguished ones? How do you find minimizers?

Here, the blue lines are contours of −x1 − x2.
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Basic Solutions
Assume that the matrix A has full row rank (w.l.o.g).

Let B be a set of m indices of columns of A for a linearly
independent set. Such a B is called a basis.

Denote by N the set of indices of columns not in B.

Given x ∈ Rn, we let
▶ xB ∈ Rm consist of components of x with indices in B
▶ xN ∈ Rn−m consist of components of x with indices in N

Abusing notation, we denote by B and N the submatrices of A
consisting of columns with indices in B and N, resp.

Definition
Consider x ∈ Rn and a basis B, and consider the decomposition of
x into xB ∈ Rm and xN ∈ Rn−m.
Then x is a basic solution w.r.t. the basis B if Ax = b and xN = 0.
Components of xB are basic variables.
A basic solution x is feasible if x ≥ 0.
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Example (Whiteboard)

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)
x = (x1, x2, x3, x4)

⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

For now let us ignore the objective function and play with the
polyhedron defined by the above inequalities.
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−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0
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−2x1 + x2 + x3 = 2
−x1 + x2 + x4 = 3

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

A = (u1 u2 u3 u4 u5) =

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1



x = (x1, x2, x3, x4, x5)
⊤

b = (2, 3, 3)⊤

Ax = b where x ≥ 0
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b?
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x3, x4, x5} with

B = (u3 u4 u5) =

1 0 0
0 1 0
0 0 1


What is xB satisfying BxB = b? xB = (x3, x4, x5)

⊤ = (2, 3, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 0, 2, 3, 3)⊤ = xa Feasible!
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b?
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A = (u1 u2 u3 u4 u5)

=

−2 1 1 0 0
−1 1 0 1 0
1 0 0 0 1


x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x2, x3, x5} with

B = (a2 a3 a5) =

1 1 0
1 0 0
0 0 1


What is xB satisfying BxB = b? xB = (x2, x3, x5)

⊤ = (3,−1, 3)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (0, 3,−1, 0, 3)⊤ = xf Not feasible!
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b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =
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−1 1 0
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=

−2 1 1 0 0
−1 1 0 1 0
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
x = (x1, x2, x3, x4, x5)

⊤

Ax = b where x ≥ 0

b = (2, 3, 3)⊤

Consider a basis {x1, x2, x3} with

B = (u1 u2 u3) =

−2 1 1
−1 1 0
1 0 0


What is xB satisfying BxB = b? xB = (x1, x2, x3)

⊤ = (3, 6, 2)⊤.

The corresponding basic solution is

x = (x1, x2, x3, x4, x5)
⊤ = (3, 6, 2, 0, 0)⊤ = xd Feasible!
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Existence of Basic Feasible Solutions

Theorem 1 (Fundamental Theorem of LP)

Consider a linear program in standard form.

1. If a feasible solution exists, then a basic feasible solution
exists.

2. If an optimal feasible solution exists, then an optimal basic
feasible solution exists.

Note that the theorem reduces solving a linear programming
problem to searching for basic feasible solutions.

There are finitely many of them, which implies decidability.

However, the enumeration of all basic feasible solutions would be
impractical; the number of basic feasible solutions is potentially(

n

m

)
=

n!

m!(n −m)!

For n = 100 and m = 10, we get 535, 983, 370, 403, 809, 682, 970.
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Extreme Points
Note that the set Θ of points x satisfying Ax = b, x ≥ 0 is convex
polyhedron.
By definition, a convex hull of a finite set of points.

A point x ∈ Θ is an extreme point of Θ if there are no two points
x ′ and x ′′ in Θ such that x = αx ′ + (1− α)x ′′ for some α ∈ (0, 1).

Theorem 2
Let Θ be the convex set consisting of all feasible solutions that is,
all x ∈ Rn satisfying:

Ax = b, x ≥ 0,

where A ∈ Rm×n,m < n, rank(A) = m.
Then, x is an extreme point of Θ if and only if x is a basic feasible
solution to Ax = b, x ≥ 0.

Thus, as a corollary, we obtain that to find an optimal solution to
the linear optimization problem, we need to consider only extreme
points of the feasibility region.
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Optimal Solutions

Here, the blue lines are contours of −x1 − x2. The minimizer is xd .
17



Degenerate Basic Solutions
A basic solution x = [xB , xN ] ∈ Rn is degenerate if at least one
component of xB is 0.

Two different bases can correspond to the same point. To see this,
consider the constraints defined by

Ax =

 2 1 0 0
3 0 1 0
4 0 0 1




x1
x2
x3
x4

 =

 6
13
12

 = b.

There are two bases

{x1, x2, x3} giving

B =

 2 1 0
3 0 1
4 0 0


{x1, x3, x4} giving

B ′ =

 2 0 0
3 1 0
4 0 1


Each gives the same degenerate basic solution x = (3, 0, 4, 0)⊤.
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Simplex Algorithm
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Intuition

The algorithm proceeds as follows:

▶ Start in a vertex of the polyhedron defined by the constraints.

▶ Move to each of the neighboring vertices and check whether it
is better from the point of view of the objective.

▶ If yes, move to such a neighbor (there may be more than one
better than the current one; choose one of them).

▶ If there is no better neighbor, the algorithm stops.

▶ (It may happen that the polyhedron is unbounded if the
algorithm finds out that the objective may be infinitely
improved.)

Now, how do you move from one vertex to another one
algebraically?

First, we consider LP problems where each basic solution is
non-degenerate.
Later we drop this assumption.
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Changing Basis (Non-Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · · xmum = b

For a non-degenerate case, we have xj > 0 for all j = 1, . . . ,m.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · · xmum
= x1u1 + · · · xmum − αui + αui

= x1u1 + · · · xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α > 0 such that xj − αyj ≥ 0 for all j .
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b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m} > 0

There would be a unique j ∈ {1, . . . ,m} such that xj − αyj = 0.
The uniqueness follows from non-degeneracy because otherwise, we would

move to a basis giving a degenerate solution.

Note that such j can be computed using:

j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
We say that we pivot about (j , i).
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Algorithm 1 Simplex - Non-degenerate

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B(y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j = argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute xj→i

11: end for
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A = (u1 u2 u3 u4)

=

(
1 2 1 0
2 1 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (4, 4)⊤

c = (−1,−1, 0, 0)⊤

minimize c⊤x subject to Ax = b where x ≥ 0

Consider a basis

B = (a3 a4) =

(
1 0
0 1

)
The basic solution is x = (x1, x2, x3, x4)

⊤ = (0, 0, 4, 4)⊤
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Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Start with the basis {x3, x4} giving B =

(
1 0
0 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 0, 4, 4).

Consider x1 as a candidate to the basis, i.e., consider the first column u1
of A expressed in the basis B:

u1 = (1, 2)⊤ = B (1, 2)⊤ thus y = (y3, y4) = (1, 2)

Now x4/y4 = 4/2 < 4/1 = x3/y3, pivot about (4, 1) and α = x4/y4 = 2.

x4→1 = (α, 0, (x3 − αy3), (x4 − αy4)) = (2, 0, 2, 0)

As a result we get the basis {x1, x3} and the basic solution (2, 0, 2, 0).

Similarly, we may also put x2 into the basis instead of x3 and obtain the
basis {x2, x4} and the basic solution (0, 2, 0, 2).

We have c⊤ (x4→1 − x) = −2 < 0

So let us move to the basis {x1, x3}.
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(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

26



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

26



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

26



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.

26



Non-Degenerate Example

c = (−1,−1, 0, 0) A = (u1 u2 u3 u4) =

(
1 2 1 0
2 1 0 1

)
b =

(
4
4

)
Consider the basis {x1, x3} giving B =

(
1 1
2 0

)
and the basic solution

x = (x1, x2, x3, x4) = (2, 0, 2, 0).

Consider x2 as a candidate for the basis, i.e., consider the second column
u2 of A expressed in the basis B:

u2 = (2, 1)⊤ = B (1/2, 3/2)⊤ thus y = (y1, y3) = (1/2, 3/2)

Now α = x3/y3 = 4/3 < 2/(1/2) = 4 = x1/y1, pivot about (3, 2)

x3→2 = ((x1 − αy1), α, (x3 − αy3), 0) = (4/3, 4/3, 0, 0)

c⊤ (x3→2 − x) = c(−2/3, 4/3)⊤ = −2/3 < 0

We have reached a minimizer. All changes would lead to a higher
objective value.
We may exchange x1 with x4, but this would give us the initial basis with a

higher objective value.
26



Non-Degenerate Case Convergence

Theorem 3
Suppose that the simplex method is applied to a linear program
and that every basic variable is strictly positive at every iteration.
Then, in a finite number of iterations, the method either
terminates at an optimal basic feasible solution or determines that
the problem is unbounded.

However, what happens if we meet a degenerate solution?

So, let us drop the non-degeneracy assumption.
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Changing Basis (Degenerate Case)
Consider a basis B and write A = (B N) = (u1 . . . um um+1 . . . un)
where B = (u1 . . . um) and N = (um+1 . . . un).
Note that each ui is a column vector of dimension m.

Consider a basic feasible solution x = [xB xN ] where xN = 0. Then

x1u1 + · · ·+ xmum = b

For a degenerate case, we have xj ≥ 0 for all j ∈ {1, . . . ,m}, and
may have xi = 0 for some j ∈ {1, . . . ,m}.

Now as B is a basis, we have that for each i ∈ {m+1, . . . , n} there
are coefficients y1, . . . , ym such that y1u1 + · · ·+ ymum = ui . Then

b = x1u1 + · · ·+ xmum

= x1u1 + · · ·+ xmum − αui + αui

= x1u1 + · · ·+ xmum − α(y1u1 + · · ·+ ymum) + αui

= (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

Now consider maximum α ≥ 0 such that xj − αyj ≥ 0 for all j .
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b = (x1 − αy1)u1 + · · ·+ (xm − αym)um + αui

If all yj ≤ 0, the problem is unbounded because one component
grows indefinitely and others do not decrease with α→∞.

Otherwise, we put

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Otherwise, there exists j ∈ {1, . . . ,m} such that xj − αyj = 0.
j DOES NOT have to be unique in a degenerate case.

Note that such j can be computed using:

j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

Obtain a basis Bj→i = B ∖ {j} ∪ {i} and a basic feasible solution

xj→i = (x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

Here x ′k = xk − αyk for each k ∈ {1, . . . , j − 1, j + 1, . . . ,m}.
Note that if α = 0, the solution does not change. The basis, however, changes.

We say that we pivot about (j , i).
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Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4)
⊤ = (0, 1, 0, 0)⊤ with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 1

x2→4 = (0, (x2 − αy2), (x3 − αy3), α)
⊤ = (0, 0, 1, 1)⊤

Note that c⊤x2→4 = 0.

Thus no effect on the objective value!
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x3→1 = (α, (x2 − αy2), (x3 − αy3), 0)
⊤ = (0, 1, 0, 0)⊤

No change in the basic solution, and thus c⊤x3→1 = c⊤x = 0.

Thus no effect on the objective value either!

Which variable should go to the basis?!
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Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

32



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

32



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.

32



Reduced Cost
Given a basis B, we denote by cB the vector of components of c
that correspond to the variables of B.

One can prove that for every i ∈ {m + 1, . . . , n} we have

c⊤xj→i − c⊤x = (ci − c⊤B y)α

Here y = (y1, . . . , ym)
⊤ where By = ui .

For non-degenerate case, we have α > 0 and thus

c⊤xj→i < c⊤x iff ci − c⊤B y < 0

For the degenerate case, we may have α = 0 and ci − cBy < 0.

Define the reduced cost by

ri = ci − c⊤B y

Intuitively, ci is the cost of xi in the new basis and c⊤B y in the old one.
32



Derivation of Reduced Cost

c⊤xj→i = c⊤(x ′1, . . . , x
′
j−1, 0, x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

= c⊤(x ′1, . . . , x
′
j−1, x

′
j , x

′
j+1, . . . , x

′
m, 0, . . . , 0, α, 0, . . . , 0)

⊤

= c1x
′
1 + · · ·+ cmx

′
m + ciα

= c1(x1 − αy1) + · · · cm(xm − αym) + ciα

= (c1x1 + · · ·+ cmxm)− (c1y1 + · · ·+ cmym − ci )α

= c⊤x − (−ci + cBy)α

Here we use the fact that x ′k = xk − αyk for each
k ∈ {1, . . . , j − 1, j + 1, . . . ,m} and that xj − αyj = 0.

Then clearly

c⊤xj→i − c⊤x = (ci − cBy)α

α = min{xk/yk | yk > 0 ∧ k = 1, . . . ,m}
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Degenerate Example

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)
Start with the basis {x2, x3} giving B =

(
1 1
1 0

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with cx = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · 1 + 0 · (−1)) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).
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Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (1,−1)⊤ thus y = (y2, y3) = (1,−1)

The reduced cost is:

r4 = c4 − (c2y2 + c3y3) = 0− (0 · 1 + 0 · (−1)) = 0

Consider x1 as a candidate for the basis:

u1 = (1,−1)⊤ = B(−1, 2)⊤ thus y = (y2, y3) = (−1, 2)

The reduced cost is

r1 = c1 − (c2y2 + c3y3) = −1− (0 · (−1) + 0 · 2) = −1 < 0

So we should put x1 into the basis (the reduced cost gets smaller).
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Algorithm 2 Simplex

1: Choose a starting basis B = (u1 . . . um) (here A = (B N))
2: repeat
3: Compute the basic solution x for the basis B
4: for i ∈ {m + 1, . . . , n} do
5: Solve B (y1, . . . , ym)

⊤ = ui
6: if yk ≤ 0 for all k ∈ {1, . . . ,m} then
7: Stop, unbounded problem.
8: end if
9: Select j ∈ argmin{xk/yk | yk > 0 ∧ k = 1, . . . ,m}

10: Compute ri = ci − c⊤B y where y = (y1, . . . , ym)
⊤

11: end for
12: if ri ≥ 0 for all i ∈ {m + 1, . . . , n} then
13: Stop, we have an optimal solution.
14: end if
15: Select i ∈ {m + 1, . . . , n} such that ri < 0
16: B ← Bj→i

17: until convergence
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Degenerate Example (Cont.)

c = (−1, 0, 0, 0)⊤ A = (u1 u2 u3 u4) =

(
1 1 1 0
−1 1 0 1

)
b =

(
1
1

)

After following the reduced cost from the basis {x2, x3}, we end up in the

basis {x1, x2} giving B =

(
1 1
−1 1

)
and the basic solution

x = (x1, x2, x3, x4) = (0, 1, 0, 0) with c⊤x = 0.

Consider x4 as a candidate for the basis:

u4 = (0, 1)⊤ = B (−1/2, 1/2)⊤ thus y = (y1, y2) = (−1/2, 1/2)

Pivot about (2, 4), that is x2 exchanges with x4 and α = x2/y2 = 2

x2→4 = ((x1 − αy1), (x2 − αy2), 0, α) = (1, 0, 0, 2)

This is the minimizer!

Does this always work? Unfortunately, NO!
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Degenerate Case - Looping

Consider the following linear program:

minimize z = −3
4x1 + 150x2 − 1

50x3 + 6x4
subject to 1

4x1 − 60x2 − 1
25x3 + 9x4 + x5 = 0

1
2x1 − 90x2 − 1

50x3 + 3x4 + x6 = 0
x3 + x7 = 1
x1, x2, x3, x4, x5, x6, x7 ≥ 0

Executing the simplex method on this program starting with the
basis {x5, x6, x7} and always choosing i minimizing the reduced
cost at line 15, eventually ends up back in the basis {x5, x6, x7}.
In other words, even though the reduced cost is always negative, the overall

effect on the objective is 0.
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Convergence of Simplex Method

A solution is to use Bland’s rule:

▶ Select the smallest index j at line 9.

▶ Select the smallest index i at line 15.

Theorem 4
If the simplex method is implemented using Bland’s rule to select
the entering and leaving variables, then the simplex method is
guaranteed to terminate.
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Simplex Convergence Summary

In a non-degenerate case:

▶ There is always a unique j to be selected at line 9.

▶ The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in
a non-degenerate case.

In a degenerate case:

▶ We may have several j from which to select at line 9.

▶ Even though the reduced cost is negative, the basic solution
may remain the same.

The simplex algorithm may cycle!

Using Bland’s rule, the simplex method always converges to a
minimizer or detects an unbounded LP.

39



Simplex Convergence Summary

In a non-degenerate case:

▶ There is always a unique j to be selected at line 9.

▶ The objective of the basic solution decreases with each step.

Thus, we have a deterministic algorithm that always terminates in
a non-degenerate case.

In a degenerate case:

▶ We may have several j from which to select at line 9.

▶ Even though the reduced cost is negative, the basic solution
may remain the same.

The simplex algorithm may cycle!

Using Bland’s rule, the simplex method always converges to a
minimizer or detects an unbounded LP.

39



Two-Phase Simplex Algorithm

A Simplex algorithm is initialized with a basic feasible solution.

How do we obtain such a solution? Given a standard form LP

minimize c⊤x
subject to Ax = b

x ≥ 0

We construct an artificial LP problem.

minimize y1 + y2 + · · ·+ ym

subject to (A Im)

(
x
y

)
= b(

x
y

)
≥ 0

Here y = (y1, . . . , ym)
⊤ is a vector of artificial variables, Im is the

identity matrix of dimensions m ×m.
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Two-Phase Simplex Algorithm
Solve the artificial LP problem:

minimize y1 + y2 + · · ·+ ym

subject to [A Im]

(
x
y

)
= b(

x
y

)
≥ 0

Proposition 1

The original LP problem has a basic feasible solution iff the
associated artificial LP problem has an optimal feasible solution
with the objective function 0.

If we solve the artificial problem with y = 0, we obtain x such that
Ax = b, x ≥ 0 is a basic feasible solution for the original problem.

If there is no such a solution to the artificial problem, there is no basic

feasible solution, and hence no feasible solution, to the original problem.
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Linear Programming
Properties

42



LP Complexity
Iterations of the simplex algorithm can be implemented to
compute the first step using O(m2n) arithmetic operations and
each next step O(mn).

There are as many as
(n
m

)
basic solutions (many of them likely

infeasible). How large are these numbers?

The number of iterations may be proportional to
(n
m

)
that is

EXPTIME.
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Linear Programming Complexity

Complexity of the simplex algorithm:

▶ In the worst case, the time complexity of the simplex algorithm
is exponential. This holds for any deterministic pivoting rule.
For details, see ”How good is the simplex algorithm?” by Klee, Victor,

and Minty, George J. Inequalities 1972.

▶ There is a theory that shows that examples with exponential
complexity are rare. More precisely (but still very imprecisely)
▶ Consider small random perturbations of the coefficients in the

LP (use Gaussian noise with a small variance)
▶ Then, the expected computation time for the resulting

instances of LP is polynomial.

For details, see ”Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time” by Daniel A. Spielman and

Shang-Hua Teng in JACM 2004.

Is there a deterministic polynomial time algorithm for solving LP?
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Linear Programming Complexity

We assume that all coefficients are encoded in binary (more
precisely, as fractions of two integers encoded in binary).

Theorem 5 (Khachiyan, Doklady Akademii Nauk SSSR, 1979)

There is an algorithm that, for any linear program, computes an
optimal solution in polynomial time.

The algorithm uses so-called ellipsoid method.

In practice, the Khachiyan’s is not used.

There is also a polynomial time algorithm (by Karmarkar) that has
lower complexity upper bounds than the Khachiyan’s and
sometimes works even better than the simplex.
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Linear Programming in Practice

Heavily used tools for solving practical problems.

Several advanced linear programming solvers (usually parts of
larger optimization packages) implement various heuristics for
solving large-scale problems, such as sensitivity analysis.

See an overview of tools here:
http://en.wikipedia.org/wiki/Linear programming#Solvers and scripting .28programming.29 languages

For example, the well-known Gurobi solver uses the simplex
algorithm to solve LP problems.
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Linear Programming - Tableaus
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Tableau

Consider a linear program in the standard form:

minimize c⊤x
subject to Ax = b

x ≥ 0

We have considered the simplex algorithm, which searches for the
minimum by moving around the vertices of the feasible region.

The algorithm is relatively straightforward but, in its original form,
not so suitable for computations by hand.

Tableaus provide all information about the current state of the
simplex algorithm and can be used to streamline the process.
Keep in mind that we are not developing a new algorithm. Tableau just

provides another view of the same simplex algorithm as presented before.
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Tableau (Matrix Form)
Consider LP with a matrix A and vectors b, c . Assume A = (B N)
where B consists of basic columns and N of the non-basic ones.

Consider the following matrix ( the initial tableau):(
A b
c⊤ 0

)
=

(
B N b
c⊤B c⊤N 0

)
Apply elementary row operations so that the matrix B is turned
into Im (preserving the last row for now). That is, multiply with(

B−1 0
0 1

)
The result is(

B−1 0
0 1

)(
B N b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
c⊤B c⊤N 0

)
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Tableau (Matrix Form)
We have(

Im B−1N B−1b
c⊤B c⊤N 0

)

We apply row operations to the last row to eliminate the c⊤B . This
corresponds to multiplying the matrix with(

Im 0
−c⊤B 1

)
We obtain(

Im 0
−c⊤B 1

)(
Im B−1N B−1b
c⊤B c⊤N 0

)
=

(
Im B−1N B−1b
0 c⊤N − c⊤B B−1N −c⊤B B−1b

)
This is the canonical form tableau for the basis B.
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This is the canonical form tableau for the basis B.
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Tableau (Components)
Let A = (u1 . . . , un), the basis {x1, . . . , xm}, B = (u1 . . . , um).

Assume uk = (u1k , . . . , unk). Then the initial tableau is

(
B N b
c⊤B c⊤N 0

)
=


u11 · · · u1m u1(m+1) · · · u1n b1
...

. . .
...

...
. . .

...
...

um1 · · · umm um(m+1) · · · umn bm
c1 · · · cm cm+1 · · · cn 0



Now transform all columns of the upper part of the matrix (except
the last row) to the basis B:

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

and obtain uk = y1ku1+ · · ·+ ymkum for k = m+1, . . . , n and thus
1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0


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Tableau (Components)


1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
c1 · · · cm cm+1 · · · cn 0



Use row operations to eliminate c1, . . . , cm. This is equivalent to
multiplying the above matrix with

(
Im 0
−c⊤B 1

)
=


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
−c1 · · · −cm 1


from the left. We obtain ...
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Tableau (Components)
... the canonical form for the basis {x1, . . . , xm}:

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
0 · · · 0 c ′m+1 · · · c ′n −z



Here, (b′1, . . . , b
′
m)

⊤ = B−1b is the vector b transformed to the
basis B, and for k = m + 1, . . . , n we have

c ′k = ck − (y1kc1 + · · ·+ ymkcm)

the reduced cost for the k-th column (non-basic). Also, note that
the basic solution is x = (b′1, . . . , b

′
m, 0, . . . , 0), and hence

−z = (−c1)b′1 + · · ·+ (−cm)b′m
is the negative of the value of the objective for the basic solution
corresponding to the basis {x1, . . . , xm}.
Recall that, by definition, the basic solution x satisfies xm+1 = · · · = xn = 0.
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Tableau Simplex
Assume that for a basis B we have obtained the canonical tableau:

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m
0 · · · 0 c ′m+1 · · · c ′n −z


The simplex algorithm then proceeds as follows:

1. Choose i ∈ {m + 1, . . . , n} such that c ′i < 0.

2. Choose j ∈ {1, . . . ,m} minimizing b′j/yji over all j satisfying
yji > 0.
Note that b′

j = xj for the basic solution x w.r.t. B.

3. Move the i-the column into the basis and the j-th column out
of the basis.

4. Use elementary row operations to transform the tableau into
the canonical form for the new basis.

5. Repeat until b′1, . . . , b
′
m ≥ 0,
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Example

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤
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Example

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

Add slack variables x3, x4:

x1 + x2 + x3 = 2
x1 + x4 = 1

x1, x2, x3, x4 ≥ 0

A = (u1 u2 u3 u4) =

(
1 1 1 0
1 0 0 1

)

x = (x1, x2, x3, x4)
⊤

b = (2, 1)⊤

Ax = b where x ≥ 0

c = (−3,−2, 0, 0)⊤

Tableau for the basis {x3, x4}: x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0


is already in the canonical form.

Note that the last row of the tableau corresponds to writing the objective as

−z + c⊤x = 0 where z is a new variable and x is the basic solution for {x3, x4}.
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Start with the basis {x3, x4} and consider the canonical form: x3 y31 y32 1 0 b1
x4 y41 y42 0 1 b2
−z c1 c2 c3 c4 0

 =

 x3 1 1 1 0 2
x4 1 0 0 1 1

−z −3 −2 0 0 0



Choose x1 to enter the basis (x1 has the reduced cost −3 and x2
has the reduced costs −2).Now b1/y31 = 2/1 > 1/1 = b2/y41.
Thus, remove x4 from the basis.We move to the basis {x1, x3} and
transform the tableau into the canonical form for this basis: x1 1 y12 0 y14 b′1

x3 0 y32 1 y34 b′2
−z c ′1 c ′2 c ′3 c ′4 3

 =

 x1 1 0 0 1 1
x3 0 1 1 −1 1

−z 0 −2 0 3 3


Here, the reduced cost of x2 is −2, and of x4 is 3. Thus, x2 enters
the basis.Now x3 leaves the basis because y12 = 0 but y32 > 0.We
move to the basis {x1, x2} and transform the tableau into the
canonical form: x1 1 0 0 1 1

x2 0 1 1 −1 1

−z 0 0 2 1 5


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Integer Linear Programming

57



Integer Linear Programming

ILP = LP + variables constrained to integer values
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Integer Linear Programming

We consider several variants of integer programming:

▶ 0-1 integer linear programming

▶ Mixed 0-1 integer linear programming

▶ Integer linear programming

▶ Mixed integer linear programming

We consider the basic branch and bound algorithm.

We also consider a cutting-plane method for integer programming.

Integer linear programming is a huge subject; we shall only scratch
its surface slightly.
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0-1 Integer Linear Programming

Let us start with a special case where variables are constrained to
values from {0, 1}.

0-1 integer linear program (0-1 ILP) is

minimize c⊤x
subject to Ax ≤ b

xi ∈ {0, 1}
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0-1 Integer Linear Programming

Consider the following example:

minimize c⊤x
subject to a⊤x ≤ b

x ≥ 0
xi ∈ {0, 1}

Here c , a ∈ Rn and b ∈ R.

Do you recognize the problem?

It is the 0-1 knapsack problem.

Theorem 6
Finding x ∈ {0, 1}n satisfying the constraints of a given 0-1 integer
linear program is NP-complete.

It is one of Karp’s 21 NP-complete problems.
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0-1 Mixed Integer Linear Programming
0-1 mixed integer linear program (0-1 MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ {0, 1} for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of binary variables.

The problem is NP-hard; the simplex algorithm cannot be used
directly.

The problem can be solved by searching for possible values 0 and 1
in the binary variables and solving the linear programs with binary
variables fixed to concrete values.

An exhaustive search through all possible binary assignments would
be infeasible for many variables.

Usually, a sequential search that fixes only some of the binary
variables and leaves the rest unrestricted to 0 or 1 is used.
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Notation

In what follows, LP relaxation is the linear program obtained from
0-1 MILP by removing the constraints xi ∈ {0, 1} for xi ∈ D and
adding constraints xi ≥ 0 and x ≤ 1 for all xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the 0-1 MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the 0-1 MILP constraints. Initialize with f ∗ =∞.

Keep a pool of 0-1 MILP problems P initialized with P = {P}
where P is the original 0-1 MILP to be solved.
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Algorithm 3 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x of the LP relaxation of P
5: if c⊤x < f ∗ then
6: if xi ∈ {0, 1} for all xi ∈ D then
7: x∗ ← x
8: f ∗ ← c⊤x
9: else

10: Choose xi ∈ D such that xi ̸∈ {0, 1}
11: Generate LP P0 by adding xi = 0 to P
12: Generate LP P1 by adding xi = 1 to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅
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Strategies

There are many possible strategies for choosing the problem to be
solved next:

▶ DFS, BFS, etc.

▶ heuristics using solutions to the relaxations

There are heuristics for choosing the variable to be bounded:

▶ Simplest one: Choose xi which maximizes min{xi , 1− xi}
▶ Look ahead to the relaxations of the possible subdivisions

The solutions to the LP relaxations can be reused. Some methods
(dual simplex) exploit that we are just adding a single constraint
xi = 0 or xi = 1.

The procedure may be stopped when we find a solution x , which
gives a small enough value of the objective.
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(Mixed) Integer Programming
Integer linear program (ILP) is

minimize c⊤x
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

Mixed integer linear program (MILP) is

minimize c⊤x
subject to Ax = b

x ≥ 0
xi ∈ Z for xi ∈ D

Here D ⊆ {x1, . . . , xn} is a set of integer variables.

We may use a similar branch and bound approach as for the binary
variables. The problem is that now, each integer variable has an
infinite domain.
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Notation

In what follows, LP relaxation is the linear program obtained from
MILP by removing the constraints xi ∈ Z for xi ∈ D.

Assume a global variable x∗, keeping the best solution satisfying
the MILP constraints. Initialized with the undefined symbol ⊥.

Assume a global variable f ∗, keeping the value of the best solution
satisfying the MILP constraints. Initialize with f ∗ =∞.

Keep a pool of MILP problems P initialized with P = {P} where
P is the original MILP to be solved.

In what follows, we temporarily cease to abuse notation and use x̄
to denote the vector of values of the vector of variables x . Then x̄i
will denote the concrete value of the variable xi .
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Algorithm 4 Branch and Bound (Non-Deterministic)
1: repeat
2: Choose P ∈ P
3: if LP relaxation of P is feasible then
4: Find a solution x̄ of the LP relaxation of P
5: if c⊤x̄ < f ∗ then
6: if x̄i ∈ Z for all xi ∈ D then
7: x∗ ← x̄
8: f ∗ ← c⊤x̄
9: else

10: Choose xi ∈ D such that x̄i ̸∈ Z
11: Generate LP P− by adding xi ≤ ⌊x̄i⌋ to P
12: Generate LP P+ by adding xi ≥ ⌈x̄i⌉ to P
13: Add P0 and P1 to P.
14: end if
15: end if
16: end if
17: P ← P ∖ {P}
18: until P = ∅

68



Example
Consider the following MILP P:

minimize −x1 − 2x2 − 3x3 − 1.5x4
subject to x1 + x2 + 2x3 + 2x4 ≤ 10

7x1 + 8x2 + 5x3 + x4 = 31.5
x1, x2, x3, x4 ≥ 0

and assume D = {x1, x2, x3}. That is, x1, x2, x3 ∈ Z.

The algorithm starts with P = {P} and x∗ = ⊥ and f ∗ =∞.

The solution to the LP relaxation of P is:

x = [0, 1.1818, 4.4091, 0], the objective value is − 15.59

Let us choose x3. So, consider two programs:

▶ P− where we add x3 ≤ 4 to P

▶ P+ where we add x3 ≥ 5 to P

Now P = {P−,P+}.
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Consider first P+.

P+ is P with the added constraint x3 ≥ 5. The LP relaxation of
P+ is infeasible. We get P = {P−}.

P− is P with the additional constraint x3 ≤ 4.

The LP relaxation of P− solves to

x̄ = [0, 1.4, 4, 0.3], the objective value is − 15.25

We still have f ∗ =∞ so we split P− by constraining x2:
▶ P−− is obtained from P− by adding x2 ≤ 1
▶ P−+ is obtained from P− by adding x2 ≥ 2

and we continue with P = {P−−,P−+}.

Adding one more constraint x3 ≥ 3 to P−+ would yield a MILP
solution (0, 2, 3, 0.5) to the LP relaxation with the objective value
equal to −13.75.

The algorithm assigns f ∗ = −13.75 and x∗ = (0, 2, 3, 0.5).

The remaining search always leads either to an infeasible relaxation
or to a relaxation with an objective value worse than f ∗.
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The final solution: x∗ = (0, 2, 3, 0.5) and f ∗ = −13.75.
71



Cutting Planes

72



Removing Non-Integer Solutions

The basic branch and bound method generates two new problems
in every step.

Another strategy might be to successively cut out non-integer
optimal solutions and preserve the integer ones until an integer
optimal solution is computed by the LP relaxation

We consider a concrete method for obtaining such cuts from the
ILP constraints called Gomory cuts.
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Gomory Cuts

Consider an ILP and transform it into a MILP by adding slack
variables:

minimize c⊤x
subject to Ax = b

x ≥ 0
x ∈ Z for x ∈ D

Here, D contains the original (i.e., non-slack) variables of the ILP.

We demand the integer solution only for the original D variables.

However, one can prove that if all constants in the ILP are integer,
then there is an optimal solution where all variables (including the
slacks) are integer-valued.
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Gomory Cuts

Let A = (u1 . . . , un), the basis {x1, . . . , xn}, B = (u1 . . . , um).

Consider the canonical tableau for B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


The −z row is omitted as it is unnecessary for the discussion.

uk = B(y1k , . . . , ymk)
⊤ for k = 1, . . . , n and b′ = B−1b

Consider a basic solution x = (b′1, . . . , b
′
m, 0, . . . , 0).

If all b′1, . . . , b
′
m are integers, then also x solves the ILP.

Otherwise, assume that b′i is not an integer.
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Gomory Cuts
From the tableau, we know that every feasible solution x satisfies:

xi + yi(m+1)xm+1 + · · ·+ yinxn = b′i

Then, x also satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ b′i

Moreover, any integer feasible solution x satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ ⌊b′i⌋

But, subtracting the inequalities, integer feasible solutions x satisfy:

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

But note that the basic feasible solution x = (b′1, . . . , b
′
m, 0, . . . , 0)

does not satisfy the last inequality because b′i > ⌊b′i⌋ and
xm+1 = · · · = xn = 0.
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Moreover, any integer feasible solution x satisfies:

xi + ⌊yi(m+1)⌋xm+1 + · · ·+ ⌊yin⌋xn ≤ ⌊b′i⌋

But, subtracting the inequalities, integer feasible solutions x satisfy:

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

But note that the basic feasible solution x = (b′1, . . . , b
′
m, 0, . . . , 0)

does not satisfy the last inequality because b′i > ⌊b′i⌋ and
xm+1 = · · · = xn = 0.
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Gomory Cuts Method
Assume that we have solved the LP and reached a basis of B.
Assume that the basic solution x w.r.t. B is non-integer.

Consider the canonical tableau for the basis B:

A′ =

1 · · · 0 y1(m+1) · · · y1n b′1
...

. . .
...

...
. . .

...
...

0 · · · 1 ym(m+1) · · · ymn b′m


Choose a non-integer component xi = b′i of the basic feasible
solution w.r.t. B and consider the constraint

(yi(m+1) − ⌊yi(m+1)⌋)xm+1 + · · ·+ (yin − ⌊yin⌋)xn ≥ b′i − ⌊b′i⌋

Transform the above inequality into equality by introducing a new
variable xn+1 and obtain the following constraint (Gomory cut)

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

Add the Gomory cut and the constraint xn+1 ≥ 0 to the program.

Repeat until an integer solution is reached.
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Example

Consider ILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 ≤ 12

3x1 + 11x2 ≤ 66
x1, x2 ≥ 0
x1, x2 ∈ Z

Adding slack variables x3, x4 we obtain the following MILP:

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z
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We have

minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

An optimal basic solution to the LP relaxation is(
11

2
,
9

2
, 0, 0

)⊤

and the canonical tableau w.r.t. the basis {x1, x2} isx1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Let us introduce the Gomory cut corresponding to the variable x1.
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x1 x2 x3 x4 b′

1 0 11
36

1
36

11
2

0 1 − 1
12

1
12

9
2


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 1 and m = 2 turns into(
11

36
− 0

)
x3 +

(
1

36
− 0

)
x4 − x5 =

1

2
(=

11

2
− 5)

We add this constraint to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Solving the LP relaxation yields(
5,

51

11
,
18

11
, 0, 0

)⊤

The canonical tableau for the solution is
x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Introduce the Gomory cut for x2.
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
x1 x2 x3 x4 x5 b′

1 0 0 0 1 5

0 1 0 1
11 − 3

11
51
11

0 0 1 1
11 −36

11
18
11


Then

(yi(m+1)−⌊yi(m+1)⌋)xm+1+· · ·+(yin−⌊yin⌋)xn−xn+1 = b′i−⌊b′i⌋

with i = 2 and m = 3 turns into(
1

11
− 0

)
x4 +

(
− 3

11
+

11

11

)
x5 − x6 =

7

11
(=

51

11
− 44

11
)

We add this to our MILP.
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minimize −3x1 − 4x2
subject to 3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66
11
36x3 +

1
36x4 − x5 =

1
2

1
11x4 +

8
11x5 − x6 =

7
11

x1, x2, x3, x4 ≥ 0
x1, x2 ∈ Z

Once more the solution of the above is non-integer. However,
introducing another Gomory cut (and a variable x7) would yield a
solution:

(5, 4, 1, 7, 0, 0, 0)⊤

Which gives the point (x1, x2) = (5, 4) corresponding to the
graphical solution.

84



Cutting Planes Technique

The method based on Gomory cuts was one of the first solutions
to the integer linear programming problem with proven
convergence (in the 1950s).

The convergence rate is unsatisfactory in practice; many more
methods have been devised based on algebraic principles
(combinations of inequalities and rounding), geometry, etc.

Cutting planes are also used in other non-linear, non-smooth
optimization methods.

Most importantly, cutting plane techniques are combined with
branch and bound methods. The constraints are introduced before
branching to eliminate some solutions before the split.

The resulting method is called branch and cut.
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Summary of Integer Linear Programming

We have considered:

▶ Linear Programming (LP)
Linear objective and constraints.

▶ 0-1 Integer Linear Programming (0-1 ILP)
Linear objective and constraints. All variables restricted to {0, 1}.

▶ 0-1 Mixed Integer Programming (0-1 MILP)
Linear objective and constraints. Some variables restricted to {0, 1}.

▶ Integer Linear Programming (ILP)
Linear objective and constraints. All variables restricted to Z.

▶ Mixed Integer Linear Programming (MILP)
Linear objective and constraints. Some variables restricted to Z.
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Summary of Integer Linear Programming
Complexity:

▶ Even the 0-1 Integer Linear Programming is NP-hard.

Linear programming is in P-time.

Algorithms:

▶ Branch and Bound

▶ 0-1 MILP: Search through possible assignments of 0 and 1 to
some discrete variables while solving the LP relaxations
Branching with the choice of 0/1 values of variables, bounding with

a solution found so far.
▶ MILP: Solve LP relaxation, use non-integer values of the

solution to introduce constraints, removing such values from
the solution.

▶ Cutting planes

▶ Sequentially cut out portions of the LP relaxation feasible
space by introducing cuts based on solutions of LP relaxations.

▶ Does not branch but is usually combined with branch and
bound (branch and cut).
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Gradient-Free Optimization

88



Gradient-Free Methods
So far, we have explored problems where the objective f and the
constraint functions hj , gi are known and (at least) differentiable.

What if the functions are just black boxes that can be evaluated
but nothing else?

What if the evaluation itself is costly?

Example: GPU parameters fine-tunning:
▶ Tens of parameters.
▶ The objective is to execute GPU software as efficiently as

possible (tested by execution of a benchmark software suite)
▶ Evaluation of the objective function = Execution of a

benchmark software suite
▶ How do we optimize the parameters?

Nothing is (possibly) differentiable here. Small changes in the parameters may

give wildly different results.

There are many methods for such optimization. Most of them, of
course, are without any convergence and efficiency guarantees.
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Gradient-Free Methods Zoo

For more details see ”Engineering Design Optimization” by
Joaquim R. R. A. Martins and Andrew Ning
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Evolutionary
“Evolutionary algorithms are inspired by processes that occur in nature or

society. There is a plethora of evolutionary algorithms in the literature, thanks

to the fertile imagination of the research community and a never-ending supply

of phenomena for inspiration.”

ant colony optimization, bee colony algorithm, fish swarm, artificial flora

optimization algorithm, bacterial foraging optimization, bat algorithm, big

bang–big crunch algorithm, biogeography-based optimization, bird mating

optimizer, cat swarm, cockroach swarm, cuckoo search, design by shopping

paradigm, dolphin echolocation algorithm, elephant herding optimization, firefly

algorithm, flower pollination algorithm, fruit fly optimization algorithm, galactic

swarm optimization, gray wolf optimizer, grenade explosion method, harmony

search algorithm, hummingbird optimization algorithm, hybrid glowworm

swarm optimization algorithm, imperialist competitive algorithm, intelligent

water drops, invasive weed optimization, mine bomb algorithm, monarch
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Two Methods

To appreciate the gradient-free approaches, we shall (rather
arbitrarily) concentrate on two methods:

▶ Nelder-Mead

▶ Particle Swarm Optimization

Both methods are somehow biologically motivated.

We consider the unconstrained optimization. That is, assume an
objective function f : Rn → R.
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Nelder-Mead
The Nelder-Mead algorithm is based on a simplex defined by a set
of n + 1 points in Rn:

X =
{
x (0), x (1), . . . , x (n)

}
⊆ Rn

In two dimensions, the simplex is a triangle, and in three dimensions, it

becomes a tetrahedron

A minimizer is approximated by a simplex node with a minimum
value of f . The simplex changes in every step.
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Nelder-Mead
Initially, n + 1 nodes of the simplex need to be chosen: Typically,
equal-length of edges and x (0) will be our starting point x0.

x (i) = x (0) + s(i),

where s(i) is a vector whose components j are defined by

s
(i)
j =

{
L

n
√
2
(
√
n + 1− 1) + L√

2
, if j = i

L
n
√
2
(
√
n + 1− 1), if j ̸= i .

Here, L is the length of each side.

Nelder-Mead method proceeds by modifying the simplex so that
the values of f in the vertices (hopefully) decrease.
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Nelder-Mead
The Nelder-Mead algorithm performs five main operations on the
simplex to create a new one: reflection, expansion, outside
contraction, inside contraction, and shrinking.

Except for shrinking, each operation generates a new point,

x = xc + α
(
xc − x (n)

)
,

Here α ∈ R and xc is the centroid of all the points except for the
worst one, that is, assuming x (n) maximizes f among the nodes

xc =
1

n

n−1∑
i=0

x (i)

This generates a new point along the line that connects the worst
point, x (n), and the centroid of the remaining points, xc .

This direction can be seen as a possible descent direction.
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Nelder-Mead Algorithm

1. Start with a simplex x (0), . . . , x (n)

Assume an order of these points:

f (x (0)) ≤ . . . ≤ f (x (n))

2. Calculate the centroid

xc =
1

n

n−1∑
i=0

x (i)

96



Nelder-Mead Algorithm (Reflection)

3. Reflection of x (n) over the centroid:

xr = xc + α
(
xc − x (n)

)
for α > 0

If f (x (0)) ≤ f (xr ) < f (x (n−1)), then

Replace x (n) with xr

Go to 1.

Now going further we know that either f (xr ) < f (x (0)), or f (xr ) ≥ f (x (n−1))

α = 1
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Nelder-Mead Algorithm (Expansion)

4. Expansion

If f (xr ) < f (x (0)), then

Compute

xe = xc + γ
(
xc − x (n)

)
for γ > 1

If f (xe) < f (xr ), then

Replace x (n) with xe .

Else, replace x (n) with xr .

Go to 1. γ = 2

Now going further we know that f (xr ) ≥ f (x (n−1))
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Nelder-Mead (Contraction)
5. Contraction

If f (xr ) < f (x (n)), then compute outside contraction

xoc = xc + ρ (xr − xc) for 0 < ρ ≤ 0.5

If f (xoc) < f (xr ), then

Replace x (n) with xoc

Go to 1.

If f (xr ) ≥ f (x (n)), then compute inside contraction

xic = xc + ρ
(
x (n) − xc

)
for 0 < ρ ≤ 0.5

If f (xic) < f (x (n)), then

Replace x (n) with xic

Go to 1.

ρ = 0.5

ρ = 0.5
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Nelder-Mead (Shrink)

6. Shrink

Replace all points x (k) for k > 0 with

x (k) = x (k) + σ(x (k) − x (0)) for 0 < σ < 1

Go to 1.

σ = 0.5
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Nelder-Mead

The above procedure is repeated until convergence. This may be
decided, e.g., based on the size of the simplex:

∆x =
n−1∑
i=0

∥∥∥x (i) − x (n)
∥∥∥ < ϵ

Standard values for constants are:

▶ Reflection α = 1

▶ Expansion γ = 2

▶ Contraction ρ = 0.5

▶ Shrink σ = 0.5
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Nelder-Mead Example
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Particle Swarm Optimization

▶ The “swarm” in PSO is a set of points (agents or particles)
that move in space, looking for the best solution.

▶ Each particle moves according to its velocity.

▶ This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

▶ Each particle remembers the point where it found its best
result so far, and it exchanges the information with the swarm.

104



Particle Swarm Optimization

▶ The “swarm” in PSO is a set of points (agents or particles)
that move in space, looking for the best solution.

▶ Each particle moves according to its velocity.

▶ This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

▶ Each particle remembers the point where it found its best
result so far, and it exchanges the information with the swarm.

104



Particle Swarm Optimization

▶ The “swarm” in PSO is a set of points (agents or particles)
that move in space, looking for the best solution.

▶ Each particle moves according to its velocity.

▶ This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

▶ Each particle remembers the point where it found its best
result so far, and it exchanges the information with the swarm.

104



Particle Swarm Optimization

▶ The “swarm” in PSO is a set of points (agents or particles)
that move in space, looking for the best solution.

▶ Each particle moves according to its velocity.

▶ This velocity changes according to the past objective function
values of that particle and the current objective values of the
rest of the particles.

▶ Each particle remembers the point where it found its best
result so far, and it exchanges the information with the swarm.

104



PSO
The position of particle i for iteration k +1 is updated according to

x
(i)
k+1 = x

(i)
k + v

(i)
k+1∆t,

Where ∆t is a constant artificial time step. The velocity for each
particle is updated as follows:

v
(i)
k+1 = αv

(i)
k + β

x
(i)
best − x

(i)
k

∆t
+ γ

xbest − x
(i)
k

∆t

▶ The first term is momentum.

α is usually set from the interval [0.8, 1.2], higher α motivates

exploration, smaller α convergence towards (a local) minimizer.

▶ x
(i)
best is the first minimum objective point visited by the i-th particle.

β is usually set randomly from [0, βmax]. βmax is usually selected from the

interval [0, 2], closer to 2.

▶ xbest is a minimum objective point visited by any particle.

γ is also usually set randomly from the interval [0, γmax]. γmax is usually

selected from the interval [0, 2], closer to 2.
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v
(i)
k+1 = αv

(i)
k + β

x
(i)
best − x

(i)
k

∆t
+ γ

xbest − x
(i)
k

∆t
.

Eliminate ∆t by multiplying with ∆t:

∆x
(i)
k+1 = α∆x

(i)
k + β

(
x
(i)
best − x

(i)
k

)
+ γ

(
xbest − x

(i)
k

)
Then, update the particle position for the next iteration:

x
(i)
k+1 = x

(i)
k +∆x

(i)
k+1.
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PSO

▶ Initialization is usually done randomly.

▶ The particles should stay in a bounded region. When a
particle wants to leave the region, reorient the velocity or
reset the position of the particle.

▶ It is also helpful to impose a maximum velocity. Otherwise,
updates completely unrelated to the previous positions might
be made.

▶ The velocity may be decreased gradually to exchange
exploitation with exploration.
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Example

K = 0
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Example

K = 1
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Example

K = 3
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Example

K = 5
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Example

K = 12
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Example

K = 17
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Jones Function

f (x1, x2) = x41 + x42 − 4x31 − 3x32 + 2x21 + 2x1x2

Global minimum: f (x∗) = −13.5320 at x∗ = (2.6732,−0.6759).
Local minima: f (x) = −9.7770 at x = (−0.4495, 2.2928)

f (x) = −9.0312 at x = (2.4239, 1.9219)

Make it discontinuous by adding 4 ⌈sin (πx1) sin (πx2)⌉
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Nelder-Mead: 179 evaluations were needed to reach the minimum
(with restarts due to local minima).
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Particle Swarm Optimization: 760 evaluations found the global
minimum without restarts.
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Quasi-Newton with restarts: 96 evaluations needed. Converged in
two out of six random restarts.
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FINALE!
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Summary
We have considered the following methods:
▶ Unconstrained & Differentiable Objective

▶ Line Search with step size determined by Wolfe conditions and
direction determined by

▶ Gradient Descent
▶ Newton’s Method (2nd derivatives needed)
▶ Quasi-Newton: SR-1, BFGS

▶ Constrained & Differentiable Objective
▶ Penalty Methods

▶ Exterior (quadratic penalty)
▶ Interior/Barrier (inverse and logarithmic barriers)

▶ Lagrangian used in Sequential Quadratic Programming
▶ Linear Objective and Constraints

▶ Simplex Method (including degenerate case and tableaus)
▶ Branch & Bound
▶ Gomory Cuts

▶ Unconstrained & Non-Differentiable (just a few examples)
▶ Nelder-Mead
▶ Particle Swarm Optimization

114



Summary
We have considered the following methods:
▶ Unconstrained & Differentiable Objective

▶ Line Search with step size determined by Wolfe conditions and
direction determined by

▶ Gradient Descent
▶ Newton’s Method (2nd derivatives needed)
▶ Quasi-Newton: SR-1, BFGS

▶ Constrained & Differentiable Objective
▶ Penalty Methods

▶ Exterior (quadratic penalty)
▶ Interior/Barrier (inverse and logarithmic barriers)

▶ Lagrangian used in Sequential Quadratic Programming

▶ Linear Objective and Constraints
▶ Simplex Method (including degenerate case and tableaus)
▶ Branch & Bound
▶ Gomory Cuts

▶ Unconstrained & Non-Differentiable (just a few examples)
▶ Nelder-Mead
▶ Particle Swarm Optimization

114



Summary
We have considered the following methods:
▶ Unconstrained & Differentiable Objective

▶ Line Search with step size determined by Wolfe conditions and
direction determined by

▶ Gradient Descent
▶ Newton’s Method (2nd derivatives needed)
▶ Quasi-Newton: SR-1, BFGS

▶ Constrained & Differentiable Objective
▶ Penalty Methods

▶ Exterior (quadratic penalty)
▶ Interior/Barrier (inverse and logarithmic barriers)

▶ Lagrangian used in Sequential Quadratic Programming
▶ Linear Objective and Constraints

▶ Simplex Method (including degenerate case and tableaus)
▶ Branch & Bound
▶ Gomory Cuts

▶ Unconstrained & Non-Differentiable (just a few examples)
▶ Nelder-Mead
▶ Particle Swarm Optimization

114



Summary
We have considered the following methods:
▶ Unconstrained & Differentiable Objective

▶ Line Search with step size determined by Wolfe conditions and
direction determined by

▶ Gradient Descent
▶ Newton’s Method (2nd derivatives needed)
▶ Quasi-Newton: SR-1, BFGS

▶ Constrained & Differentiable Objective
▶ Penalty Methods

▶ Exterior (quadratic penalty)
▶ Interior/Barrier (inverse and logarithmic barriers)

▶ Lagrangian used in Sequential Quadratic Programming
▶ Linear Objective and Constraints

▶ Simplex Method (including degenerate case and tableaus)
▶ Branch & Bound
▶ Gomory Cuts

▶ Unconstrained & Non-Differentiable (just a few examples)
▶ Nelder-Mead
▶ Particle Swarm Optimization

114



Most Notable Omissions
▶ Conjugate Gradient Methods

Unfortunately, I had to choose between quasi-Newton and CG.

▶ Trust Region Methods
▶ Combinatorial, Multiobjective, Stochastic, Bayesian (etc.)

Optimization
Completely different areas with different methods.

▶ Infinitely many non-differentiable optimization methods
motivated by arbitrary phenomena from:
▶ biology
▶ chemistry
▶ physics
▶ economics
▶ politics
▶ mathematics
▶ agriculture
▶ pop-culture
▶ Scientology
▶ astrology
▶ ... ... ...
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