MLP - Notation

- X set of input neurons
- Y set of output neurons
- Z set of all neurons (tedy $X, Y \subseteq Z$)
- individual neurons are denoted by indices, e.g., i, j.
- ξ_{j} is the inner potential of the neuron j when the computation is finished.
- y_{j} is the output value of the neuron j when the computation is finished.
(we formally assume $y_{0}=1$)
- $w_{j i}$ is the weight of the arc from the neuron i to the neuron j.
- j_{\leftarrow} is the set of all neurons from which there are edges to j (i.e. j_{\leftarrow} is the layer directly below j)
- j^{\rightarrow} is the set of all neurons with edges from j. (i.e. $j \rightarrow$ is the layer directly above j)

MLP - Learning

- Given a set D of training examples:

$$
D=\left\{\left(\vec{x}_{k}, \vec{d}_{k}\right) \quad \mid \quad k=1, \ldots, p\right\}
$$

Here $\vec{x}_{k} \in \mathbb{R}^{|X|}$ and $\vec{d}_{k} \in \mathbb{R}^{|Y|}$. We write $d_{k j}$ to denote the value in \vec{d}_{k} corresponding to the output neuron j.

- Error Function: $E(\vec{w})$ where \vec{w} is a vector of all weights in the network. The choice of E depends on the solved task (classification vs regression etc.).

Example (Squared error):

$$
E(\vec{w})=\sum_{k=1}^{p} E_{k}(\vec{w})
$$

where

$$
E_{k}(\vec{w})=\frac{1}{2} \sum_{j \in Y}\left(y_{j}[\vec{w}]\left(\vec{x}_{k}\right)-d_{k j}\right)^{2}
$$

MLP - Notation

- Inner potential of a neuron j :

$$
\xi_{j}=\sum_{i \in j_{\leftarrow}} w_{j i} y_{i}
$$

- A value of a non-input neuron $j \in Z \backslash X$ when the computation is finished is

$$
y_{j}=\sigma_{j}\left(\xi_{j}\right)
$$

Here σ_{j} is an activation function of the neuron j.
(y_{j} is determined by weights \vec{w} and a given input \vec{x}, so it's sometimes written as $y_{j}[\vec{w}](\vec{x})$)

- Fixing weights of all neurons, the network computes a function $F[\vec{w}]: \mathbb{R}^{|X|} \rightarrow \mathbb{R}^{|Y|}$ as follows: Assign values of a given vector $\vec{x} \in \mathbb{R}^{|X|}$ to the input neurons, evaluate the network, then $F[\vec{w}](\vec{x})$ is the vector of values of the output neurons.

Here, we implicitly assume a fixed ordering on input and output vectors.

MLP - Batch Gradient Descent

The algorithm computes a sequence of weights $\vec{w}^{(0)}, \vec{w}^{(1)}, \ldots$.

- weights $\vec{w}^{(0)}$ are initialized randomly close to 0
- in the step $t+1$ (here $t=0,1,2 \ldots$) is $\vec{w}^{(t+1)}$ computed as follows:

$$
w_{j i}^{(t+1)}=w_{j i}^{(t)}+\Delta w_{j i}^{(t)}
$$

where

$$
\Delta w_{j i}^{(t)}=-\varepsilon(t) \cdot \frac{\partial E}{\partial w_{j i}}\left(\vec{w}^{(t)}\right)
$$

is the weight change $w_{j i}$ and $0<\varepsilon(t) \leq 1$ is the learning rate in the step $t+1$.

Note that $\frac{\partial E}{\partial w_{i}}\left(\vec{w}^{(t)}\right)$ is a component of ∇E, i.e., the weight change in the step $t+1$ can be written as follows: $\vec{w}^{(t+1)}=\vec{w}^{(t)}-\varepsilon(t) \cdot \nabla E\left(\vec{w}^{(t)}\right)$.

