
PV021: Neural networks

Tomáš Brázdil

1

Course organization
Course materials:
▶ Main: The lecture
▶ Neural Networks and Deep Learning by Michael Nielsen
http://neuralnetworksanddeeplearning.com/

(Extremely well-written online textbook (a little outdated))

▶ Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron
Courville
http://www.deeplearningbook.org/

("Classical" overview of the theory of neural networks (a little outdated))

▶ Probabilistic Machine Learning: An Introduction by Kevin Murphy
https://probml.github.io/pml-book/book1.html
(Greatly advanced ML textbook with (almost) up-to-date basic neural
networks.)

▶ Infinitely many online tutorials on everything (to build intuition)

Suggested: deeplearning.ai courses by Andrew Ng
2

http://neuralnetworksanddeeplearning.com/
http://www.deeplearningbook.org/

Course organization

Evaluation:

▶ Project (Dr. Tomáš Foltýnek)

▶ implementation of a selected model + analysis of given data
▶ implementation C/C++/Java/Rust without the use of any

specialized libraries for data analysis and machine
learning

▶ need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

▶ Oral exam

▶ I may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.

3

Course organization

Evaluation:

▶ Project (Dr. Tomáš Foltýnek)

▶ implementation of a selected model + analysis of given data
▶ implementation C/C++/Java/Rust without the use of any

specialized libraries for data analysis and machine
learning

▶ need to get over a given accuracy threshold (a gentle one,
just to eliminate non-functional implementations)

▶ Oral exam

▶ I may ask about anything from the lecture! You will get
a detailed manual specifying the mandatory knowledge.

3

FAQ

Q: Why can we not use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

FAQ

Q: Why can we not use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

FAQ

Q: Why can we not use specialized libraries in projects?

A: In order to "touch" the low level implementation details of the
algorithms. You should not even use libraries for linear algebra
and numerical methods so that you will be confronted with
rounding errors and numerical instabilities.

Q: Why should you attend this course when there are infinitely
many great reasources elsewhere?

A: There are at least two reasons:

▶ You may discuss issues with me, my colleagues and other
students.

▶ I will make you truly learn fundamentals by heart.

4

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Notable features of the course

▶ Use of mathematical notation and reasoning (mandatory for
the exam)

▶ Sometimes goes deeper into statistical underpinnings of neural
networks learning

▶ The project demands a complete working solution which must
satisfy a prescribed performance specification

An unusual exam system! You can repeat the oral exam as many
times as needed (only the best grade goes into IS).

An example of an instruction email (from another course with the
same system):

It is typically not sufficient to devote a single
afternoon to the preparation for the exam.
You have to know _everything_ (which means every
single thing) starting with the slide 42
and ending with the slide 245 with notable exceptions
of slides: 121 - 123, 137 - 140, 165, 167.
Proofs presented on the whiteboard are also mandatory.

5

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)

▶ spam filter
▶ learns to recognize spam from a database of "labeled"

emails
▶ consequently can distinguish spam from ham

▶ handwritten text reader
▶ learns from a database of handwritten

letters (or text) labeled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much, much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labeled"
emails

▶ consequently can distinguish spam from ham

▶ handwritten text reader
▶ learns from a database of handwritten

letters (or text) labeled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much, much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labeled"
emails

▶ consequently can distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labeled by their correct
meaning

▶ consequently is able to recognize text

▶ · · ·
▶ and lots of much, much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labeled"
emails

▶ consequently can distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labeled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much, much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general
▶ Machine learning = construction of systems that learn their

functionality from data
(... and thus do not need to be programmed.)
▶ spam filter

▶ learns to recognize spam from a database of "labeled"
emails

▶ consequently can distinguish spam from ham
▶ handwritten text reader

▶ learns from a database of handwritten
letters (or text) labeled by their correct
meaning

▶ consequently is able to recognize text
▶ · · ·
▶ and lots of much, much more sophisticated applications ...

▶ Basic attributes of learning algorithms:
▶ representation: ability to capture the inner structure of

training data
▶ generalization: ability to work properly on new data

6

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:
▶ decision trees
▶ support vector machines
▶ hidden Markov models
▶ Bayes networks and other graphical models
▶ neural networks
▶ · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

7

Machine learning in general

Machine learning algorithms typically construct mathematical
models of given data. The models may be subsequently
applied to fresh data.

There are many types of models:
▶ decision trees
▶ support vector machines
▶ hidden Markov models
▶ Bayes networks and other graphical models
▶ neural networks
▶ · · ·

Neural networks, based on models of a (human) brain, form
a natural basis for learning algorithms!

7

Artificial neural networks
▶ Artificial neuron is a rough mathematical approximation

of a biological neuron.
▶ (Aritificial) neural network (NN) consists of a number of

interconnected artificial neurons. "Behavior" of the network
is encoded in connections between neurons.

σ
ξ

x1 x2 xn

y

Zdroj obrázku: http://tulane.edu/sse/cmb/people/schrader/
8

http://tulane.edu/sse/cmb/people/schrader/

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
▶ simplified mathematical models help to identify important

mechanisms
▶ How the brain receives information?
▶ How the information is stored?
▶ How the brain develops?
▶ · · ·

▶ neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

9

Why artificial neural networks?

Modelling of biological neural networks (computational
neuroscience).
▶ simplified mathematical models help to identify important

mechanisms
▶ How the brain receives information?
▶ How the information is stored?
▶ How the brain develops?
▶ · · ·

▶ neuroscience is strongly multidisciplinary; precise
mathematical descriptions help in communication among
experts and in design of new experiments.

I will not spend much time on this area!

9

Why artificial neural networks?

Neural networks in machine learning.
▶ Typically primitive models, far from their biological

counterparts (but often inspired by biology).

▶ Strongly oriented towards concrete application domains:
▶ decision making and control - autonomous vehicles,

manufacturing processes, control of natural resources
▶ games - backgammon, poker, GO, Starcraft, ...
▶ finance - stock prices, risk analysis
▶ medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, CT, WSI ...)
▶ text and speech processing - machine translation, text

generation, speech recognition
▶ other signal processing - filtering, radar tracking, noise

reduction
▶ art - music and painting generation, deepfakes
▶ · · ·

I will concentrate on this area!

10

Why artificial neural networks?

Neural networks in machine learning.
▶ Typically primitive models, far from their biological

counterparts (but often inspired by biology).
▶ Strongly oriented towards concrete application domains:

▶ decision making and control - autonomous vehicles,
manufacturing processes, control of natural resources

▶ games - backgammon, poker, GO, Starcraft, ...
▶ finance - stock prices, risk analysis
▶ medicine - diagnosis, signal processing (EKG, EEG, ...), image

processing (MRI, CT, WSI ...)
▶ text and speech processing - machine translation, text

generation, speech recognition
▶ other signal processing - filtering, radar tracking, noise

reduction
▶ art - music and painting generation, deepfakes
▶ · · ·

I will concentrate on this area!
10

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction

▶ Learning
▶ a kid learns to recognize a rabbit after seeing several

rabbits
▶ Generalization

▶ a kid is able to recognize a new rabbit after seeing several
(old) rabbits

▶ Robustness
▶ a blurred photo of a rabbit may still be classified as an

image of a rabbit
▶ Graceful degradation

▶ Experiments have shown that damaged neural network is
still able to work quite well

▶ Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits

▶ Robustness
▶ a blurred photo of a rabbit may still be classified as an

image of a rabbit
▶ Graceful degradation

▶ Experiments have shown that damaged neural network is
still able to work quite well

▶ Damaged network may re-adapt, remaining neurons may
take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones

11

Important features of neural networks

▶ Massive parallelism
▶ many slow (and "dumb") computational elements work in

parallel on several levels of abstraction
▶ Learning

▶ a kid learns to recognize a rabbit after seeing several
rabbits

▶ Generalization
▶ a kid is able to recognize a new rabbit after seeing several

(old) rabbits
▶ Robustness

▶ a blurred photo of a rabbit may still be classified as an
image of a rabbit

▶ Graceful degradation
▶ Experiments have shown that damaged neural network is

still able to work quite well
▶ Damaged network may re-adapt, remaining neurons may

take on functionality of the damaged ones
11

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

The aim of the course

▶ We will concentrate on
▶ basic techniques and principles of neural networks,
▶ fundamental models of neural networks and their

applications.
▶ You should learn

▶ basic models
(multilayer perceptron, convolutional networks, recurrent networks,
transformers, autoencoders and generative adversarial networks)

▶ Simple applications of these models
(image processing, a little bit of text processing)

▶ Basic learning algorithms
(gradient descent with backpropagation)

▶ Basic practical training techniques
(data preparation, setting various hyper-parameters, control of
learning, improving generalization)

▶ Basic information about current implementations
(TensorFlow-Keras, Pytorch)

12

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).

▶ Information is futher transfered via peripheral nervous
system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

▶ Human neural network consists of approximately 1011 (100
billion on the short scale) neurons; a single cubic
centimeter of a human brain contains almost 50 million
neurons.

▶ Each neuron is connected with approx. 104 neurons.
▶ Neurons themselves are very complex systems.

Rough description of nervous system:
▶ External stimulus is received by sensory receptors (e.g.

eye cells).
▶ Information is futher transfered via peripheral nervous

system (PNS) to the central nervous systems (CNS) where
it is processed (integrated), and subseqently, an output
signal is produced.

▶ Afterwards, the output signal is transfered via PNS to
effectors (e.g. muscle cells).

13

Biological neural network

Zdroj: N. Campbell and J. Reece; Biology, 7th Edition; ISBN: 080537146X
14

Summation

15

Biological and Mathematical neurons

16

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs

▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights

▶ ξ is an inner potential;
almost always ξ =

∑n
i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (without bias)

σ
ξ

x1 x2 xn

y

w1 w2

· · ·

wn

▶ x1, . . . , xn ∈ R are inputs
▶ w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ =
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ h ;

0 ξ < h.

where h ∈ R is a threshold.

17

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs

▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights

▶ ξ is an inner potential;
almost always ξ = w0 +

∑n
i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

(The threshold h has been substituted
with the new input x0 = 1 and the weight
w0 = −h.)

18

Neuron and linear separation

ξ = 0

ξ > 0

ξ > 0

ξ < 0

ξ < 0

▶ inner potential

ξ = w0 +

n∑
i=1

wixi

determines a separation
hyperplane in
the n-dimensional input space
▶ in 2d line
▶ in 3d plane
▶ · · ·

19

Neuron geometry

20

Neuron and linear separation

σ σ(
∑

wixi)

x1 xn

· · ·

1/0 by A/B

w1 wn

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

21

Neuron and linear separation

σ

x1 xn

· · ·

x0 = 1

1/0 pro A/B

w1 wn

w0

n = 8 · 8, i.e. the number of pixels in the images. Inputs are
binary vectors of dimension n (black pixel ≈ 1, white pixel ≈ 0).

22

Neuron and linear separation

w̄0 +
∑n

i=1 w̄ixi = 0
w0 +

∑n
i=1 wixi = 0

A

A

A A

B

B

B

▶ Red line classifies incorrectly
▶ Green line classifies correctly

(may be a result of
a correction by a learning
algorithm)

23

Neuron and linear separation (XOR)

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

x1

x2

▶ No line separates ones from
zeros.

24

Neural networks

Neural network consists of formal neurons interconnected in
such a way that the output of one neuron is an input of several
other neurons.

In order to describe a particular type of neural networks we
need to specify:
▶ Architecture

How the neurons are connected.

▶ Activity
How the network transforms inputs to outputs.

▶ Learning
How the weights are changed during training.

25

Architecture

Network architecture is given as a digraph whose nodes are
neurons and edges are connections.

We distinguish several categories of
neurons:
▶ Output neurons
▶ Hidden neurons
▶ Input neurons

(In general, a neuron may be both input and
output; a neuron is hidden if it is neither input,
nor output.)

26

Architecture – Cycles

▶ A network is cyclic (recurrent) if its architecture contains a
directed cycle.

▶ Otherwise it is acyclic (feed-forward)

27

Architecture – Cycles

▶ A network is cyclic (recurrent) if its architecture contains a
directed cycle.

▶ Otherwise it is acyclic (feed-forward)

27

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

28

Activity

Consider a network with n neurons, k input and ℓ output.

▶ State of a network is a vector of output values of all
neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.

29

Activity

Consider a network with n neurons, k input and ℓ output.
▶ State of a network is a vector of output values of all

neurons.
(States of a network with n neurons are vectors of Rn)

▶ State-space of a network is a set of all states.

▶ Network input is a vector of k real numbers, i.e.
an element of Rk .

▶ Network input space is a set of all network inputs.
(sometimes we restrict ourselves to a proper subset of Rk)

▶ Initial state
Input neurons set to values from the network input
(each component of the network input corresponds to an input
neuron)

Values of the remaining neurons set to 0.
29

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:

1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.

30

Activity – computation of a network
▶ Computation (typically) proceeds in discrete steps.

In every step the following happens:
1. A set of neurons is selected according to some rule.
2. The selected neurons change their states according to their

inputs (they are simply evaluated).
(If a neuron does not have any inputs, its value remains constant.)

A computation is finite on a network input x⃗ if the state
changes only finitely many times (i.e. there is a moment in
time after which the state of the network never changes).
We also say that the network stops on x⃗.

▶ Network output is a vector of values of all output neurons
in the network (i.e., an element of Rℓ).
Note that the network output keeps changing throughout
the computation!

MLP uses the following selection rule:

In the i-th step evaluate all neurons in the i-th layer.
30

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – semantics of a network

Definition
Consider a network with n neurons, k input, ℓ output.
Let A ⊆ Rk and B ⊆ Rℓ. Suppose that the network stops on
every input of A.
Then we say that the network computes a function F : A → B if
for every network input x⃗ the vector F(x⃗) ∈ B is the output of
the network after the computation on x⃗ stops.

Example 1

This network computes a function
from R2 to R.

31

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

In order to specify activity of the network, we need to specify
how the inner potentials ξ are computed and what are
the activation functions σ.

We assume (unless otherwise specified) that

ξ = w0 +

n∑
i=1

wi · xi

here x⃗ = (x1, . . . , xn) are inputs of the neuron and
w⃗ = (w1, . . . ,wn) are weights.

There are special types of neural networks where the inner
potential is computed differently, e.g., as a "distance" of
an input from the weight vector:

ξ =
∣∣∣∣∣∣x⃗ − w⃗

∣∣∣∣∣∣
here ||·|| is a vector norm, typically Euclidean.

32

Activity – inner potential and activation functions

There are many activation functions, typical examples:
▶ Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

▶ Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

▶ ReLU

σ(ξ) = max(ξ,0)

33

Activity – inner potential and activation functions

There are many activation functions, typical examples:
▶ Unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ (Logistic) sigmoid

σ(ξ) =
1

1 + e−λ·ξ
here λ ∈ R is a steepness parameter.

▶ Hyperbolic tangens

σ(ξ) =
1 − e−ξ

1 + e−ξ

▶ ReLU

σ(ξ) = max(ξ,0)

33

Activity – XOR

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – XOR

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

▶ Activation function is a unit
step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

▶ The network computes
XOR(x1, x2)

x1 x2 y
1 1 0
1 0 1
0 1 1
0 0 0

34

Activity – MLP and linear separation

0
(0,0)

1

(0,1)

1
(0,1)

0

(1,1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

▶ The line P1 is given by
−1 + 2x1 + 2x2 = 0

▶ The line P2 is given by
3 − 2x1 − 2x2 = 0

35

Activity – example

x1
1

σ

0
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ0 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ1 1

σ

0
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

1
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Activity – example

x1
1

σ

0
1

σ1 1

σ

1
1

1

2

−5

1

−2

11

−2

−1

The activation function is
the unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

The input is equal to 1

36

Learning

Consider a network with n neurons, k input and ℓ output.

▶ Configuration of a network is a vector of all values of
weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning

Consider a network with n neurons, k input and ℓ output.
▶ Configuration of a network is a vector of all values of

weights.
(Configurations of a network with m connections are elements of Rm)

▶ Weight-space of a network is a set of all configurations.

▶ initial configuration
weights can be initialized randomly or using some sophisticated
algorithm

37

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Learning algorithms

Learning rule for weight adaptation.
(the goal is to find a configuration in which the network computes
a desired function)

▶ Supervised learning
▶ The desired function is described using training examples

that are pairs of the form (input, output).
▶ Learning algorithm searches for a configuration which

"corresponds" to the training examples, typically by
minimizing an error function.

▶ Unsupervised learning
▶ The training set contains only inputs.
▶ The goal is to determine distribution of the inputs

(clustering, deep belief networks, etc.)

38

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Supervised learning – illustration

A

A

A A

B

B

B

▶ classification in the plane using
a single neuron

▶ training examples are of the form
(point, value) where the value is
either 1, or 0 depending on whether
the point is either A , or B

▶ the algorithm considers examples
one after another

▶ whenever an incorrectly classified
point is considered, the learning
algorithm turns the line in
the direction of the point

39

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks

▶ generalization and robustness
▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Summary – Advantages of neural networks

▶ Massive parallelism
▶ neurons can be evaluated in parallel

▶ Learning
▶ many sophisticated learning algorithms used to "program"

neural networks
▶ generalization and robustness

▶ information is encoded in a distributed manner in weights
▶ "close" inputs typicaly get similar values

▶ Graceful degradation
▶ damage typically causes only a decrease in precision of

results

40

Expressive power of neural networks

41

Formal neuron (with bias)

σ
ξ

x1 x2 xn

x0 = 1

bias

threshold
y

w1 w2

· · ·

wn

w0 = −h

▶ x0 = 1, x1, . . . , xn ∈ R are inputs
▶ w0,w1, . . . ,wn ∈ R are weights
▶ ξ is an inner potential;

almost always ξ = w0 +
∑n

i=1 wixi

▶ y is an output given by y = σ(ξ)
where σ is an activation
function;
e.g. a unit step function

σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

42

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

43

Boolean functions

Activation function: unit step function σ(ξ) =

1 ξ ≥ 0 ;

0 ξ < 0.

σ

x1 x2 xn

x0 = 1

y = AND(x1, . . . , xn)

1 1
· · ·

1

−n
σ

x1 x2 xn

x0 = 1

y = OR(x1, . . . , xn)

1 1
· · ·

1

−1

σ

x1

x0 = 1

y = NOT(x1)

−1

0

43

Boolean functions

Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.
▶ Given a vector v⃗ = (v1, . . . , vn) ∈ {0,1}n, consider a neuron

Nv⃗ whose output is 1 iff the input is v⃗:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0 w0 = −
∑n

i=1 vi

wi =

1 vi = 1
−1 vi = 0

▶ Now let us connect all outputs of all neurons Nv⃗ satisfying
F(v⃗) = 1 using a neuron implementing OR. □

44

Boolean functions

Theorem
Let σ be the unit step function. Two layer MLPs, where each
neuron has σ as the activation function, are able to compute all
functions of the form F : {0,1}n → {0,1}.

Proof.
▶ Given a vector v⃗ = (v1, . . . , vn) ∈ {0,1}n, consider a neuron

Nv⃗ whose output is 1 iff the input is v⃗:

σ

y

x1 xi xn

x0 = 1

w1 wi
· · ·· · ·

wn

w0 w0 = −
∑n

i=1 vi

wi =

1 vi = 1
−1 vi = 0

▶ Now let us connect all outputs of all neurons Nv⃗ satisfying
F(v⃗) = 1 using a neuron implementing OR. □

44

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).

▶ The first (hidden) layer divides the input
space into half-spaces.

▶ The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.

▶ The second layer may e.g. make
intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.
▶ The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation

x1 x2

y
▶ Consider a three layer network; each neuron

has the unit step activation function.

▶ The network divides the input space in two
subspaces according to the output (0 or 1).
▶ The first (hidden) layer divides the input

space into half-spaces.
▶ The second layer may e.g. make

intersections of the half-spaces⇒ convex
sets.

▶ The third layer may e.g. make unions of some
convex sets.

45

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .

▶ Cover A with hypercubes (in 2D squares, in
3D cubes, ...)

▶ Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)

▶ Each hypercube K can be separated using
a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
▶ Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Non-linear separation – illustration

x1 xk

· · ·

· · ·

· · ·

y ▶ Consider three layer networks; each neuron
has the unit step activation function.

▶ Three layer nets are capable of
"approximating" any "reasonable" subset A of
the input space Rk .
▶ Cover A with hypercubes (in 2D squares, in

3D cubes, ...)
▶ Each hypercube K can be separated using

a two layer network NK
(i.e. a function computed by NK gives 1 for
points in K and 0 for the rest).

▶ Finally, connect outputs of the nets NK
satisfying K ∩ A , ∅ using a neuron
implementing OR.

46

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks.

47

Power of ReLU

x

· · ·

y Consider a two layer network
▶ with a single input and single output;
▶ hidden neurons with the ReLU activation:
σ(ξ) = max(ξ,0);

▶ the output neuron with identity activation:
σ(ξ) = ξ (linear model)

For every continuous function f : [0,1]→ [0,1] and ε > 0 there
is a network of the above type computing a function
F : [0,1]→ R such that |f(x) − F(x)| ≤ ε for all x ∈ [0,1].

For every open subset A ⊆ [0,1] there is a network of the
above type such that for "most" x ∈ [0,1] we have that x ∈ A iff
the network’s output is > 0 for the input x.
Just consider a continuous function f where f(x) is the minimum difference
between x and a point on the boundary of A . Then uniformly approximate f
using the networks. 47

48

48

48

48

48

48

48

Non-linear separation - sigmoid

Theorem (Cybenko 1989 - informal version)
Let σ be a continuous function which is sigmoidal, i.e. satisfies

σ(x) =

1 for x → +∞

0 for x → −∞

For every "reasonable" set A ⊆ [0,1]n, there is a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following:
For "most" vectors v⃗ ∈ [0,1]n we have that v⃗ ∈ A iff the network
output is > 0 for the input v⃗.
For mathematically oriented:
▶ "reasonable" means Lebesgue measurable
▶ "most" means that the set of incorrectly classified vectors has

the Lebesgue measure smaller than a given ε > 0

49

Non-linear separation - practical illustration

▶ ALVINN drives a car

▶ The net has 30×32 = 960 inputs
(the input space is thus R960)

▶ Input values correspond to
shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)

▶ Input values correspond to
shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)
▶ Input values correspond to

shades of gray of pixels.

▶ Output neurons "classify" images
of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Non-linear separation - practical illustration

▶ ALVINN drives a car
▶ The net has 30×32 = 960 inputs

(the input space is thus R960)
▶ Input values correspond to

shades of gray of pixels.
▶ Output neurons "classify" images

of the road based on their
"curvature".

Image source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html
50

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Function approximation - two-layer networks

Theorem (Cybenko 1989)
Let σ be a continuous function which is sigmoidal, i.e., is
increasing and satisfies

σ(x) =

1 for x → +∞

0 for x → −∞

For every continuous function f : [0,1]n → [0,1] and every ε > 0
there is a function F : [0,1]n → [0,1] computed by a two layer
network where each hidden neuron has the activation function
σ (output neurons are linear), that satisfies the following

|f(v⃗) − F(v⃗)| < ε for every v⃗ ∈ [0,1]n.

51

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);

▶ one input neuron and one output neuron (the network
computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).

52

Neural networks and computability
▶ Consider recurrent networks (i.e., containing cycles)

▶ with real weights (in general);
▶ one input neuron and one output neuron (the network

computes a function F : A → R where A ⊆ R contains all
inputs on which the network stops);

▶ parallel activity rule (output values of all neurons are
recomputed in every step);

▶ activation function

σ(ξ) =


1 ξ ≥ 1 ;

ξ 0 ≤ ξ ≤ 1 ;

0 ξ < 0.

▶ We encode words ω ∈ {0,1}+ into numbers as follows:

δ(ω) =
|ω|∑
i=1

ω(i)
2i

+
1

2|ω|+1

E.g. ω = 11001 gives δ(ω) = 1
2 + 1

22 + 1
25 + 1

26

(= 0.110011 in binary form).
52

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful

▶ For every language L ⊆ {0,1}+ there is a recurrent network
with less than 1000 nerons which recognizes L .

53

Neural networks and computability

A network recognizes a language L ⊆ {0,1}+ if it computes a
function F : A → R (A ⊆ R) such that

ω ∈ L iff δ(ω) ∈ A and F(δ(ω)) > 0.

▶ Recurrent networks with rational weights are equivalent to
Turing machines
▶ For every recursively enumerable language L ⊆ {0,1}+

there is a recurrent network with rational weights and less
than 1000 neurons, which recognizes L .

▶ The halting problem is undecidable for networks with at
least 25 neurons and rational weights.

▶ There is "universal" network (equivalent of the universal
Turing machine)

▶ Recurrent networks are super-Turing powerful
▶ For every language L ⊆ {0,1}+ there is a recurrent network

with less than 1000 nerons which recognizes L .

53

Summary of theoretical results

▶ Neural networks are very strong from the point of view of
theory:
▶ All Boolean functions can be expressed using two-layer

networks.
▶ Two-layer networks may approximate any continuous

function.
▶ Recurrent networks are at least as strong as Turing

machines.

▶ These results are purely theoretical!
▶ "Theoretical" networks are extremely huge.
▶ It is very difficult to handcraft them even for simplest

problems.

▶ From practical point of view, the most important
advantages of neural networks are: learning,
generalization, robustness.

54

Summary of theoretical results

▶ Neural networks are very strong from the point of view of
theory:
▶ All Boolean functions can be expressed using two-layer

networks.
▶ Two-layer networks may approximate any continuous

function.
▶ Recurrent networks are at least as strong as Turing

machines.
▶ These results are purely theoretical!

▶ "Theoretical" networks are extremely huge.
▶ It is very difficult to handcraft them even for simplest

problems.

▶ From practical point of view, the most important
advantages of neural networks are: learning,
generalization, robustness.

54

Neural networks vs classical computers

Neural networks "Classical" computers

Data implicitly in weights explicitly

Computation naturally parallel sequential, localized

Robustness robust w.r.t. input corruption
& damage

changing one bit may
completely crash the
computation

Precision imprecise, network recalls a
training example "similar" to
the input

(typically) precise

Programming learning manual

55

History & implementations

56

History of neurocomputers

▶ 1951: SNARC (Minski et al)
▶ the first implementation of neural network
▶ a rat strives to exit a maze
▶ 40 artificial neurons (300 vacuum tubes, engines, etc.)

57

History of neurocomputers

▶ 1957: Mark I Perceptron (Rosenblatt et al) - the first
successful network for image recognition

▶ single layer network
▶ image represented by 20 × 20 photocells
▶ intensity of pixels was treated as the input to a perceptron

(basically the formal neuron), which recognized figures
▶ weights were implemented using potentiometers, each set

by its own engine
▶ it was possible to arbitrarily reconnect inputs to neurons to

demonstrate adaptability

58

History of neurocomputers
▶ 1960: ADALINE (Widrow & Hof)

▶ single layer neural network
▶ weights stored in a newly invented electronic component

memistor, which remembers history of electric current in
the form of resistance.

▶ Widrow founded a company Memistor Corporation, which
sold implementations of neural networks.

▶ 1960-66: several companies concerned with neural
networks were founded.

59

History of neurocomputers

▶ 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

▶ 1983-end of 90s: revival of neural networks
▶ many attempts at hardware implementations

▶ application specific chips (ASIC)
▶ programmable hardware (FPGA)

▶ hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

▶ end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

▶ 2006-now: The boom of neural networks!
▶ deep networks – often better than any other method
▶ GPU implementations
▶ ... specialized hw implementations (Google’s TPU)

60

History of neurocomputers

▶ 1967-82: dead still after publication of a book by Minski &
Papert (published 1969, title Perceptrons)

▶ 1983-end of 90s: revival of neural networks
▶ many attempts at hardware implementations

▶ application specific chips (ASIC)
▶ programmable hardware (FPGA)

▶ hw implementations typically not better than "software"
implementations on universal computers (problems with
weight storage, size, speed, cost of production etc.)

▶ end of 90s-cca 2005: NN suppressed by other machine
learning methods (support vector machines (SVM))

▶ 2006-now: The boom of neural networks!
▶ deep networks – often better than any other method
▶ GPU implementations
▶ ... specialized hw implementations (Google’s TPU)

60

Some highlights

▶ Breakthrough in image recognition.
Accuracy of image recognition improved by an order of magnitude in 5
years.

▶ Breakthrough in game playing.
Superhuman results in Go and Chess almost without any human
intervention. Master level in Starcraft, poker, etc.

▶ Breakthrough in machine translation.
Switching to deep learning produced a 60% increase in translation
accuracy compared to the phrase-based approach previously used in
Google Translate (in human evaluation)

▶ Breakthrough in speech processing.
▶ Breakthrough in text generation.

GPT-4 generates pretty realistic articles, short plays (for a theatre) have
been successfully generated, etc.

61

Example

This slide was automatically generated byaskig GPT-4 "Give
me a beamer slide with complexity of Steepest descent,
Neton’s method and BFGS".

62

Example Source

63

History in waves ...

Figure: The figure shows two of the three historical waves of artificial
neural nets research, as measured by the frequency of the phrases
"cybernetics" and "connectionism" or "neural networks" according to
Google Books (the third wave is too recent to appear).

64

Current hardware – What do we face?

Increasing dataset size ...

... weakly-supervised pre-training using hashtags from
the Instagram uses 3.6 ∗ 109 images.
Revisiting Weakly Supervised Pre-Training of Visual Perception Models. Singh et al.

https://arxiv.org/pdf/2201.08371.pdf, 2022

65

GPT-3 Training Dataset

45 TB text data from multiple sources

Source: Kindra Cooper. OpenAI GPT-3: Everything You Need to Know. Springboard. 2023

66

Current hardware – What do we face?

... and thus increasing size of neural networks ...

2. ADALINE

4. Early back-propagation network (Rumelhart et al., 1986b)

8. Image recognition: LeNet-5 (LeCun et al., 1998b)

10. Dimensionality reduction: Deep belief network (Hinton et al., 2006)
... here the third "wave" of neural networks started

15. Digit recognition: GPU-accelerated multilayer perceptron (Ciresan et al., 2010)

18. Image recognition (AlexNet): Multi-GPU convolutional network (Krizhevsky et al., 2012)

20. Image recognition: GoogLeNet (Szegedy et al., 2014a)

67

GPT-4’s Scale: GPT-4 has 1.8 trillion parameters across 120 layers, which is
over 10 times larger than GPT-3.

68

Current hardware – What do we face?

... as a reward we get this ...

Figure: Since deep networks reached the scale necessary to
compete in the ImageNetLarge Scale Visual Recognition Challenge,
they have consistently won the competition every year, and yielded
lower and lower error rates each time. Data from Russakovsky et al.
(2014b) and He et al. (2015).

69

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

70

Current hardware

In 2012, Google trained a large network of 1.7
billion weights and 9 layers

The task was image recognition (10 million
youtube video frames)

The hw comprised a 1000 computer network
(16 000 cores), computation took three days.

In 2014, similar task performed on Commodity
Off-The-Shelf High Performance Computing
(COTS HPC) technology: a cluster of GPU
servers with Infiniband interconnects and MPI.

Able to train 1 billion parameter networks on
just 3 machines in a couple of days.
Able to scale to 11 billion weights (approx. 6.5
times larger than the Google model) on 16
GPUs. 70

Current hardware – NVIDIA DGX Station

▶ 8x GPU (Nvidia A100 80GB
Tensor Core)

▶ 5 petaFLOPS

▶ System memory: 2 TB

▶ Network: 200 Gb/s InfiniBand

71

Deep learning in clouds
Big companies offer cloud services for deep learning:
▶ Amazon Web Services
▶ Google Cloud
▶ Deep Cognition
▶ ...

Advantages:
▶ Do not have to care (too much) about technical problems.
▶ Do not have to buy and optimize highend hw/sw, networks etc.
▶ Scaling & virtually limitless storage.

Disadvatages:
▶ Do not have full control.
▶ Performance can vary, connectivity problems.
▶ Have to pay for services.
▶ Privacy issues.

72

Current software
▶ TensorFlow (Google)

▶ open source software library for numerical computation
using data flow graphs

▶ allows implementation of most current neural networks
▶ allows computation on multiple devices (CPUs, GPUs, ...)
▶ Python API
▶ Keras: a part of TensorFlow that allows easy description of

most modern neural networks
▶ PyTorch (Facebook)

▶ similar to TensorFlow
▶ object oriented
▶ ... majority of new models in research papers implemented

in PyTorch
https://www.cioinsight.com/big-data/pytorch-vs-tensorflow/

▶ Theano (dead):
▶ The "academic" grand-daddy of deep-learning frameworks,

written in Python. Strongly inspired TensorFlow (some
people developing Theano moved on to develop
TensorFlow).

▶ There are others: Caffe, Deeplearning4j, ... 73

Current software – Keras

74

Current software – Keras functional API

75

Current software – TensorFlow

76

Current software – TensorFlow

77

Current software – PyTorch

78

Other software implementations

Most "mathematical" software packages contain some support
of neural networks:
▶ MATLAB
▶ R
▶ STATISTICA
▶ Weka
▶ ...

The implementations are typically not on par with the previously
mentioned dedicated deep-learning libraries.

79

MLP training – theory

80

Architecture – Multilayer Perceptron (MLP)

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g., a three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by the numbers of
neurons in individual layers (e.g.,
2-4-3-2)

81

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops

▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)

▶ wji is the weight of the connection from i to j
(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – architecture

Notation:
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e., wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

82

MLP – activity

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

83

MLP – activity

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)

▶ State of non-input neuron j ∈ Z \ X after the computation
stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

83

MLP – activity

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

83

MLP – activity

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable)
▶ State of non-input neuron j ∈ Z \ X after the computation

stops:

yj = σj(ξj)

(yj depends on the configuration w⃗ and the input x⃗, so we sometimes
write yj(w⃗, x⃗))

▶ The network computes a function R|X | do R|Y |. Layer-wise computation:
First, all input neurons are assigned values of the input. In the ℓ-th step,
all neurons of the ℓ-th layer are evaluated.

83

MLP – learning
▶ Given a training dataset T of the form{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input x⃗k (the vector d⃗k can be written as

(
dkj

)
j∈Y

).

▶ Error function:

E(w⃗) =

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
j∈Y

(
yj(w⃗, x⃗k) − dkj

)2

This is just an example of an error function; we shall see other error
functions later.

84

MLP – learning
▶ Given a training dataset T of the form{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input x⃗k (the vector d⃗k can be written as

(
dkj

)
j∈Y

).

▶ Error function:

E(w⃗) =

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
j∈Y

(
yj(w⃗, x⃗k) − dkj

)2

This is just an example of an error function; we shall see other error
functions later. 84

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as w⃗(t+1) = w⃗(t)

− ε(t) · ∇E(w⃗(t)).
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-

adam-f898b102325c

85

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as w⃗(t+1) = w⃗(t)

− ε(t) · ∇E(w⃗(t)).
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-

adam-f898b102325c

85

MLP – learning algorithm

Batch algorithm (gradient descent):

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂E
∂wji

(w⃗(t))

is a weight update of wji in step t + 1 and 0 < ε(t) ≤ 1 is
a learning rate in step t + 1.

Note that ∂E
∂wji

(w⃗(t)) is a component of the gradient ∇E, i.e. the weight update
can be written as w⃗(t+1) = w⃗(t)

− ε(t) · ∇E(w⃗(t)).
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-

adam-f898b102325c
85

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

86

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

86

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).

86

MLP – error function gradient

For every wji we have

∂E
∂wji

=

p∑
k=1

∂Ek

∂wji

where for every k = 1, . . . ,p holds

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

and for every j ∈ Z ∖ X we get

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

(Here all yj are in fact yj(w⃗, x⃗k)).
86

Derivation of backprop.

Consider k = 1, . . . ,p and a weight wji . By the chain rule:

∂Ek

∂wji
=

∂Ek

∂yj
·
∂yj

∂wji
=
∂Ek

∂yj
·
∂yj

∂ξj
·
∂ξj

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

since

∂yj

∂ξj
=
∂(σj(ξj))

∂ξj
= σ′j (ξj)

∂ξj

∂wji
=
∂
(∑

r∈j← wjryr
)

∂wji
= yi

87

Derivation of backprop.

Consider k = 1, . . . ,p and a weight wji . By the chain rule:

∂Ek

∂wji
=
∂Ek

∂yj
·
∂yj

∂wji
=

∂Ek

∂yj
·
∂yj

∂ξj
·
∂ξj

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

since

∂yj

∂ξj
=
∂(σj(ξj))

∂ξj
= σ′j (ξj)

∂ξj

∂wji
=
∂
(∑

r∈j← wjryr
)

∂wji
= yi

87

Derivation of backprop.

Consider k = 1, . . . ,p and a weight wji . By the chain rule:

∂Ek

∂wji
=
∂Ek

∂yj
·
∂yj

∂wji
=
∂Ek

∂yj
·
∂yj

∂ξj
·
∂ξj

∂wji
=

∂Ek

∂yj
· σ′j (ξj) · yi

since

∂yj

∂ξj
=
∂(σj(ξj))

∂ξj
= σ′j (ξj)

∂ξj

∂wji
=
∂
(∑

r∈j← wjryr
)

∂wji
= yi

87

Derivation of backprop.

Consider k = 1, . . . ,p and a weight wji . By the chain rule:

∂Ek

∂wji
=
∂Ek

∂yj
·
∂yj

∂wji
=
∂Ek

∂yj
·
∂yj

∂ξj
·
∂ξj

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

since

∂yj

∂ξj
=
∂(σj(ξj))

∂ξj
= σ′j (ξj)

∂ξj

∂wji
=
∂
(∑

r∈j← wjryr
)

∂wji
= yi

87

Derivation of backdrop. (cont.)

For j ∈ Y :
∂Ek

∂yj
=
∂
(

1
2
∑

r∈Y (yr − dkr)
2
)

∂yj
= yj − dkj

... and another application of the chain rule:

For j < Y :
∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂ξr
·
∂ξr

∂yj

=
∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

since
∂yr

∂ξr
=
∂(σr(ξr))

∂ξr
= σ′r(ξr)

∂ξr

∂yj
=
∂
(∑

s∈r← wrsys
)

∂yj
= wrj

□

88

Derivation of backdrop. (cont.)

For j ∈ Y :
∂Ek

∂yj
=
∂
(

1
2
∑

r∈Y (yr − dkr)
2
)

∂yj
= yj − dkj

... and another application of the chain rule:

For j < Y :
∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂ξr
·
∂ξr

∂yj

=
∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

since
∂yr

∂ξr
=
∂(σr(ξr))

∂ξr
= σ′r(ξr)

∂ξr

∂yj
=
∂
(∑

s∈r← wrsys
)

∂yj
= wrj

□

88

Derivation of backdrop. (cont.)

For j ∈ Y :
∂Ek

∂yj
=
∂
(

1
2
∑

r∈Y (yr − dkr)
2
)

∂yj
= yj − dkj

... and another application of the chain rule:

For j < Y :
∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂ξr
·
∂ξr

∂yj

=
∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

since
∂yr

∂ξr
=
∂(σr(ξr))

∂ξr
= σ′r(ξr)

∂ξr

∂yj
=
∂
(∑

s∈r← wrsys
)

∂yj
= wrj

□

88

Derivation of backdrop. (cont.)

For j ∈ Y :
∂Ek

∂yj
=
∂
(

1
2
∑

r∈Y (yr − dkr)
2
)

∂yj
= yj − dkj

... and another application of the chain rule:

For j < Y :
∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂ξr
·
∂ξr

∂yj

=

∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

since
∂yr

∂ξr
=
∂(σr(ξr))

∂ξr
= σ′r(ξr)

∂ξr

∂yj
=
∂
(∑

s∈r← wrsys
)

∂yj
= wrj

□

88

Derivation of backdrop. (cont.)

For j ∈ Y :
∂Ek

∂yj
=
∂
(

1
2
∑

r∈Y (yr − dkr)
2
)

∂yj
= yj − dkj

... and another application of the chain rule:

For j < Y :
∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂yj
=

∑
r∈j→

∂Ek

∂yr
·
∂yr

∂ξr
·
∂ξr

∂yj

=
∑
r∈j→

∂Ek

∂yr
· σ′r (ξr) · wrj

since
∂yr

∂ξr
=
∂(σr(ξr))

∂ξr
= σ′r(ξr)

∂ξr

∂yj
=
∂
(∑

s∈r← wrsys
)

∂yj
= wrj

□ 88

MLP – error function gradient (history)

▶ If yj = σj(ξj) =
1

1+e−ξj
for all j ∈ Z , then

σ′j (ξj) = yj(1 − yj)

and thus for all j ∈ Z ∖ X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· yr(1 − yr) · wrj for j ∈ Z ∖ (Y ∪ X)

89

MLP – error function gradient (history)

▶ If yj = σj(ξj) =
1

1+e−ξj
for all j ∈ Z , then

σ′j (ξj) = yj(1 − yj)

and thus for all j ∈ Z ∖ X :

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· yr(1 − yr) · wrj for j ∈ Z ∖ (Y ∪ X)

89

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.

90

MLP – computing the gradient
Compute ∂E

∂wji
=

∑p
k=1

∂Ek
∂wji

as follows:

Initialize Eji := 0
(By the end of the computation: Eji =

∂E
∂wji

)

For every k = 1, . . . ,p do:

1. forward pass: compute yj = yj(w⃗, x⃗k) for all j ∈ Z

2. backward pass: compute ∂Ek
∂yj

for all j ∈ Z using
backpropagation (see the next slide!)

3. compute ∂Ek
∂wji

for all wji using

∂Ek

∂wji
:=

∂Ek

∂yj
· σ′j (ξj) · yi

4. Eji := Eji +
∂Ek
∂wji

The resulting Eji equals ∂E
∂wji

.
90

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

91

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

91

MLP – backpropagation

Compute ∂Ek
∂yj

for all j ∈ Z as follows:

▶ if j ∈ Y , then ∂Ek
∂yj

= yj − dkj

▶ if j ∈ Z ∖ Y ∪ X , then assuming that j is in the ℓ-th layer and
assuming that ∂Ek

∂yr
has already been computed for all

neurons in the ℓ + 1-st layer, compute

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

(This works because all neurons of r ∈ j→ belong to the ℓ+ 1-st layer.)

91

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:

1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Complexity of the batch algorithm

Computation of ∂E
∂wji

(w⃗(t−1)) stops in time linear in the size of
the network plus the size of the training set.
(assuming unit cost of operations including computation of σ′r(ξr) for given ξr)

Proof sketch: The algorithm does the following p times:
1. forward pass, i.e. computes yj(w⃗, x⃗k)

2. backpropagation, i.e. computes ∂Ek
∂yj

3. computes ∂Ek
∂wji

and adds it to Eji (a constant time operation
in the unit cost framework)

The steps 1. - 3. take linear time w.r.t. the number of network
weights.

Note that the speed of convergence of the gradient descent cannot be
estimated ...

92

Illustration of the gradient descent – XOR

Source: Pattern Classification (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
93

MLP – learning algorithm

Online algorithm:

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −ε(t) ·

∂Ek

∂wji
(w(t)

ji)

is the weight update of wji in the step t + 1 and 0 < ε(t) ≤ 1
is the learning rate in the step t + 1.

There are other variants determined by the selection of the training examples
used for the error computation (more on this later).

94

SGD

▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are
computed as follows:

▶ Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
▶ Compute

w⃗(t+1) = w⃗(t) +∆w⃗(t)

where

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t))

▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1

▶ ∇Ek (w⃗(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

95

Regression: Output and Error
▶ For regression, the output activation is typically the

identity, i.e., yi = σ(ξi) = ξi for i ∈ Y .

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

96

Regression: Output and Error
▶ For regression, the output activation is typically the

identity, i.e., yi = σ(ξi) = ξi for i ∈ Y .
▶ A training dataset{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

96

Regression: Output and Error
▶ For regression, the output activation is typically the

identity, i.e., yi = σ(ξi) = ξi for i ∈ Y .
▶ A training dataset{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every i ∈ Y , denote by
dki the desired output of the neuron i for a given network
input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function mean squared error (mse):

E(w⃗) =
1
p

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
i∈Y

(
yi(w⃗, x⃗k) − dki

)2

96

Maximum Likelihood vs Least Squares
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
, dk ∈ R.

Consider a single output neuron o.

Assume that each dk was generated randomly as follows

dk = yo(w⃗, x⃗k) + ϵk

▶ w⃗ are unknown constants
▶ ϵk are normally distributed with mean 0 and an unknown

variance σ2

Assume that ϵ1, . . . , ϵp have been generated independently.

Denote by p(d1, . . . ,dp | w⃗, σ2) the probability density of the values
d1, . . . ,dn assuming fixed x1, . . . , xp , w⃗, σ2 .

(For the interested: The independence and definition of dk ’s imply

p(d1, . . . ,dp | w⃗, σ2) =

p∏
k=1

N[yo(w⃗, x⃗k), σ
2](dk)

N[yo(w⃗, x⃗k), σ2](dk) is a normal dist. with the mean yo(w⃗, x⃗k) and var. σ2.)

97

Maximum Likelihood vs Least Squares
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
, dk ∈ R.

Consider a single output neuron o.

Assume that each dk was generated randomly as follows

dk = yo(w⃗, x⃗k) + ϵk

▶ w⃗ are unknown constants
▶ ϵk are normally distributed with mean 0 and an unknown

variance σ2

Assume that ϵ1, . . . , ϵp have been generated independently.

Denote by p(d1, . . . ,dp | w⃗, σ2) the probability density of the values
d1, . . . ,dn assuming fixed x1, . . . , xp , w⃗, σ2 .

(For the interested: The independence and definition of dk ’s imply

p(d1, . . . ,dp | w⃗, σ2) =

p∏
k=1

N[yo(w⃗, x⃗k), σ
2](dk)

N[yo(w⃗, x⃗k), σ2](dk) is a normal dist. with the mean yo(w⃗, x⃗k) and var. σ2.)

97

Maximum Likelihood vs Least Squares
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
, dk ∈ R.

Consider a single output neuron o.

Assume that each dk was generated randomly as follows

dk = yo(w⃗, x⃗k) + ϵk

▶ w⃗ are unknown constants
▶ ϵk are normally distributed with mean 0 and an unknown

variance σ2

Assume that ϵ1, . . . , ϵp have been generated independently.

Denote by p(d1, . . . ,dp | w⃗, σ2) the probability density of the values
d1, . . . ,dn assuming fixed x1, . . . , xp , w⃗, σ2 .

(For the interested: The independence and definition of dk ’s imply

p(d1, . . . ,dp | w⃗, σ2) =

p∏
k=1

N[yo(w⃗, x⃗k), σ
2](dk)

N[yo(w⃗, x⃗k), σ2](dk) is a normal dist. with the mean yo(w⃗, x⃗k) and var. σ2.)

97

Maximum Likelihood vs Least Squares
Fix a training set D =

{
(x1,d1) , (x2,d2) , . . . ,

(
xp ,dp

)}
, dk ∈ R.

Consider a single output neuron o.

Assume that each dk was generated randomly as follows

dk = yo(w⃗, x⃗k) + ϵk

▶ w⃗ are unknown constants
▶ ϵk are normally distributed with mean 0 and an unknown

variance σ2

Assume that ϵ1, . . . , ϵp have been generated independently.

Denote by p(d1, . . . ,dp | w⃗, σ2) the probability density of the values
d1, . . . ,dn assuming fixed x1, . . . , xp , w⃗, σ2 .

(For the interested: The independence and definition of dk ’s imply

p(d1, . . . ,dp | w⃗, σ2) =

p∏
k=1

N[yo(w⃗, x⃗k), σ
2](dk)

N[yo(w⃗, x⃗k), σ2](dk) is a normal dist. with the mean yo(w⃗, x⃗k) and var. σ2.)
97

Maximum Likelihood vs Least Squares

Our goal is to find the weights w⃗ that maximize the likelihood

L(w⃗, σ2) := p(d1, . . . ,dp | w⃗, σ2)

But now with the fixed values d1, . . . ,dn from the training
set!

Theorem
The unique w⃗ that minimize the least squares error E[w⃗]
maximize L(w⃗, σ2) for an arbitrary variance σ2.

98

Maximum Likelihood vs Least Squares

Our goal is to find the weights w⃗ that maximize the likelihood

L(w⃗, σ2) := p(d1, . . . ,dp | w⃗, σ2)

But now with the fixed values d1, . . . ,dn from the training
set!

Theorem
The unique w⃗ that minimize the least squares error E[w⃗]
maximize L(w⃗, σ2) for an arbitrary variance σ2.

98

Classification: Output and Error

▶ The output activation function softmax:

yi = σi(ξj1 , . . . , ξjk) =
eξi∑

j∈Y eξj
Here Y = {j1, . . . , jk }

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

99

Classification: Output and Error

▶ The output activation function softmax:

yi = σi(ξj1 , . . . , ξjk) =
eξi∑

j∈Y eξj
Here Y = {j1, . . . , jk }

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

99

Classification: Output and Error

▶ The output activation function softmax:

yi = σi(ξj1 , . . . , ξjk) =
eξi∑

j∈Y eξj
Here Y = {j1, . . . , jk }

▶ A training dataset{ (
x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every

d⃗k ∈ {0,1}|Y | is the desired network output. For every i ∈ Y ,
denote by dki the desired output of the neuron i for a given
network input x⃗k (the vector d⃗k can be written as (dki)i∈Y).

▶ The error function (categorical) cross entropy:

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

99

Gradient with Softmax & Cross-Entropy

Assume that V is the layer just below the output layer Y .

E(w⃗) = −
1
p

p∑
k=1

∑
i∈Y

dki log(yi(w⃗, x⃗k))

= −
1
p

p∑
k=1

∑
i∈Y

dki log

 eξi∑
j∈Y eξj


= −

1
p

p∑
k=1

∑
i∈Y

dki

ξi − log

∑
j∈Y

eξj




= −
1
p

p∑
k=1

∑
i∈Y

dki

∑
ℓ∈V

wiℓyℓ − log

∑
j∈Y

e
∑
ℓ∈V wjℓyℓ




Now compute the derivatives δE
δyℓ

for ℓ ∈ V .

100

Binary Classification: Output and Error

Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) = −

p∑
k=1

dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k))

101

Binary Classification: Output and Error

Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) = −

p∑
k=1

dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k))

101

Binary Classification: Output and Error

Assume a single output neuron o ∈ Y = {o}.
▶ The output activation function logistic sigmoid:

σo(ξo) =
eξo

eξo + 1
=

1
1 + e−ξo

▶ A training dataset

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th
input, and dk ∈ {0,1} is the desired output.

▶ The error function (Binary) cross-entropy:

E(w⃗) = −

p∑
k=1

dk log(yo(w⃗, x⃗k))+(1−dk) log(1−yo(w⃗, x⃗k))

101

Cross-entropy vs max likelihood

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.

Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-entropy maximizes the log-likelihood
(and vice versa).

102

Cross-entropy vs max likelihood

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.
Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-entropy maximizes the log-likelihood
(and vice versa).

102

Cross-entropy vs max likelihood

Consider our model giving a probability yo(w⃗, x⃗) given input x⃗.
Recall that the training dataset is

T =
{(

x⃗1,d1

)
,
(
x⃗2,d2

)
, . . . ,

(
x⃗p ,dp

)}
Here x⃗k = (xk0, xk1 . . . , xkn) ∈ R

n+1, xk0 = 1, is the k -th input,
and dk ∈ {0,1} is the expected output.

The likelihood:

L(w⃗) =

p∏
k=1

(
yo(w⃗, x⃗k)

)dk
·

(
1 − yo(w⃗, x⃗k)

)(1−dk)

log(L) =∑p
k=1

(
dk · log(yo(w⃗, x⃗k)) + (1 − dk) · log(1 − yo(w⃗, x⃗k))

)
and thus − log(L) = the cross-entropy.

Minimizing the cross-entropy maximizes the log-likelihood
(and vice versa).

102

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

103

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Squared error E(w) = 1
2(y − d)2.

δE
δw

= (y − d) · y · (1 − y) · x

103

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Squared error E(w) = 1
2(y − d)2.

δE
δw

= (y − d) · y · (1 − y) · x

Thus
▶ If d = 1 and y ≈ 0, then δE

δw ≈ 0
▶ If d = 0 and y ≈ 1, then δE

δw ≈ 0

The gradient of E is small even though the model is wrong!

103

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

103

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

For d = 1

δE
δw

= −
1
y
· y · (1 − y) · x = −(1 − y) · x

which is close to −x for y ≈ 0.

103

Squared Error vs Logistic Output Activation

Consider a single neuron model y = σ(w · x) = 1/(1 + e−w·x)
where w ∈ R is the weight (ignore the bias).

A training dataset T = {(x ,d)} where x ∈ R and d ∈ {0,1}.

Cross-entropy error E(w) = −d · log(y) − (1 − d) · log(1 − y).

For d = 1

δE
δw

= −
1
y
· y · (1 − y) · x = −(1 − y) · x

which is close to −x for y ≈ 0.

For d = 0

δE
δw

= −
1

1 − y
· (−y) · (1 − y) · x = y · x

which is close to x for y ≈ 1.
103

MLP training – practical issues

104

Practical issues of gradient descent

▶ Training efficiency:
▶ What size of a minibatch?
▶ How to choose the learning rate ε(t) and control SGD ?
▶ How to pre-process the inputs?
▶ How to initialize weights?
▶ How to choose desired output values of the network?

▶ Quality of the resulting model:
▶ When to stop training?
▶ Regularization techniques.
▶ How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

105

Practical issues of gradient descent

▶ Training efficiency:
▶ What size of a minibatch?
▶ How to choose the learning rate ε(t) and control SGD ?
▶ How to pre-process the inputs?
▶ How to initialize weights?
▶ How to choose desired output values of the network?

▶ Quality of the resulting model:
▶ When to stop training?
▶ Regularization techniques.
▶ How large network?

For simplicity, I will illustrate the reasoning on MLP + mse.
Later we will see other topologies and error functions with
different but always somewhat related issues.

105

Issues in gradient descent
▶ Small networks: Lots of local minima where the descent

gets stuck.
▶ The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

▶ Recent studies show that for sufficiently large networks, all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

106

Issues in gradient descent
▶ Small networks: Lots of local minima where the descent

gets stuck.
▶ The model identifiability problem: Swapping incoming

weights of neurons i and j leaves the same network
topology – weight space symmetry.

▶ Recent studies show that for sufficiently large networks, all
local minima have low values of the error function.

Saddle points
One can show (by a combinatorial
argument) that larger networks
have exponentially more saddle
points than local minima.

106

Issues in gradient descent – too slow descent

▶ flat regions

107

Issues in gradient descent – too fast descent

▶ steep cliffs: the gradient is extremely large, descent skips
important weight vectors

108

Issues in gradient descent – local vs global
structure

What if we initialize on the left?

109

Gradient Descent in Large Networks

Theorem
Assume (roughly),

▶ activation functions: "smooth" ReLU (softplus)

σ(z) = log(1 + exp(z))

In general: Smooth, non-polynomial, analytic, Lipschitz continuous.

▶ inputs x⃗k of Euclidean norm equal to 1, desired values dk such
that all |dk | are bounded by a constant,

▶ the number of hidden neurons per layer sufficiently large
(polynomial in certain numerical characteristics of inputs roughly
measuring their similarity, and exponential in the depth of the network),

▶ the learning rate constant and sufficiently small.

The gradient descent converges (with high probability w.r.t. random
initialization) to a global minimum with zero error at a linear rate.

Later, we get to a special type of network called ResNet where the above
result demands only polynomially many neurons per layer (w.r.t. depth). 110

Issues in computing the gradient

▶ vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

▶ inexact gradient computation:
▶ Minibatch gradient is only an estimate of the true gradient.
▶ Note that the standard deviation of the estimate is (roughly)
σ/
√

m where m is the size of the minibatch and σ is the
variance of the gradient estimate for a single training
example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less deviation.)

111

Issues in computing the gradient

▶ vanishing and exploding gradients

∂Ek

∂yj
= yj − dkj for j ∈ Y

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj for j ∈ Z ∖ (Y ∪ X)

▶ inexact gradient computation:
▶ Minibatch gradient is only an estimate of the true gradient.
▶ Note that the standard deviation of the estimate is (roughly)
σ/
√

m where m is the size of the minibatch and σ is the
variance of the gradient estimate for a single training
example.
(E.g. minibatch size 10 000 means 100 times more computation
than the size 100 but gives only 10 times less deviation.)

111

Minibatch size

▶ Larger batches provide a more accurate estimate of the gradient
but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups, this is the limiting factor
in batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. The typical power of 2 batch sizes
ranges from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch,
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." Keskar et al, ICLR’17)

112

Minibatch size

▶ Larger batches provide a more accurate estimate of the gradient
but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups, this is the limiting factor
in batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. The typical power of 2 batch sizes
ranges from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch,
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." Keskar et al, ICLR’17)

112

Minibatch size

▶ Larger batches provide a more accurate estimate of the gradient
but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups, this is the limiting factor
in batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. The typical power of 2 batch sizes
ranges from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch,
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." Keskar et al, ICLR’17)

112

Minibatch size

▶ Larger batches provide a more accurate estimate of the gradient
but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups, this is the limiting factor
in batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. The typical power of 2 batch sizes
ranges from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch,
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." Keskar et al, ICLR’17)

112

Minibatch size

▶ Larger batches provide a more accurate estimate of the gradient
but with less than linear returns.

▶ Multicore architectures are usually underutilized by extremely
small batches.

▶ If all examples in the batch are to be processed in parallel (as is
the typical case), then the amount of memory scales with the
batch size. For many hardware setups, this is the limiting factor
in batch size.

▶ It is common (especially when using GPUs) for power of 2 batch
sizes to offer better runtime. The typical power of 2 batch sizes
ranges from 32 to 256, with 16 sometimes being attempted for
large models.

▶ Small batches can offer a regularizing effect, perhaps due to the
noise they add to the learning process.
It has been observed in practice that when using a larger batch,
there is a degradation in the quality of the model, as measured
by its ability to generalize.

("On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima." Keskar et al, ICLR’17)
112

Momentum

The issue in the gradient descent:
▶ ∇E(w⃗(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step, add the change made in the previous
step (weighted by a factor α):

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α ·∆w⃗(t−1)

where 0 < α < 1.

113

Momentum

The issue in the gradient descent:
▶ ∇E(w⃗(t)) constantly changes direction (but the error

steadily decreases).

Solution: In every step, add the change made in the previous
step (weighted by a factor α):

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α ·∆w⃗(t−1)

where 0 < α < 1.
113

Momentum – illustration

114

SGD with momentum

▶ weights in w⃗(0) are randomly initialized to values close to 0

▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are
computed as follows:
▶ Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
▶ Compute

w⃗(t+1) = w⃗(t) +∆w⃗(t)

where

∆w⃗(t) = −ε(t) ·
∑
k∈T

∇Ek (w⃗(t)) + α∆w⃗(t−1)

▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1

▶ 0 < α < 1 measures the "influence" of the momentum

▶ ∇Ek (w⃗(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.

115

Learning rate

116

Search for the learning rate

▶ Use settings from a successful solution of a similar problem as a
baseline.

▶ Search for the learning rate using the learning monitoring:

▶ Search through values from small (e.g. 0.001) to (0.1),
possibly multiplying by 2.

▶ Train for several epochs, observe the learning curves (see
cross-validation later).

117

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a constant number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith, this may converge much
faster (100 epochs vs 800 epochs on the CIFAR10 dataset).

For a comparison of some methods, see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

118

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a constant number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith, this may converge much
faster (100 epochs vs 800 epochs on the CIFAR10 dataset).

For a comparison of some methods, see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

118

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a constant number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith, this may converge much
faster (100 epochs vs 800 epochs on the CIFAR10 dataset).

For a comparison of some methods, see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

118

Adaptive learning rate

▶ Power scheduling: Set ϵ(t) = ϵ0/(1 + t/s) where ϵ0 is an initial
learning rate and s is a constant number
(after s steps the learning rate is ϵ0/2, after 2s it is ϵ0/3 etc.)

▶ Exponential scheduling: Set ϵ(t) = ϵ0 · 0.1t/s .
(the learning rate decays faster than in the power scheduling)

▶ Piecewise constant scheduling: A constant learning rate for a
number of steps/epochs, then a smaller learning rate, and so on.

▶ 1cycle scheduling: Start by increasing the initial learning rate
from ϵ0 linearly to ϵ1 (approx. ϵ1 = 10ϵ0) halfway through
training. Then decrease from ϵ1 linearly to ϵ0. Finish by dropping
the learning rate by several orders of magnitude (still linearly).
According to a 2018 paper by Leslie Smith, this may converge much
faster (100 epochs vs 800 epochs on the CIFAR10 dataset).

For a comparison of some methods, see: AN EMPIRICAL STUDY OF LEARNING RATES IN DEEP NEURAL

NETWORKS FOR SPEECH RECOGNITION, Senior et al

118

AdaGrad

So far, we have considered fixed schedules for learning rates.

It is better to have
▶ larger rates for weights with smaller updates,
▶ smaller rates for weights with larger updates.

AdaGrad uses individually adapting learning rates for each
weight.

119

SGD with AdaGrad

▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate,
typically 0.01.

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

120

SGD with AdaGrad

▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = r (t−1)
ji +

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate,
typically 0.01.

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
120

RMSProp

The main disadvantage of AdaGrad is the accumulation of
gradients throughout the learning process.

In case the learning needs to get over several "hills" before
settling in a deep "valley," the weight updates get far too small
before getting to it.

RMSProp uses an exponentially decaying average to discard
history from the extreme past so that it can converge rapidly
after finding a convex bowl as if it were an instance of the
AdaGrad algorithm initialized within that bowl.

121

SGD with RMSProp
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.

122

SGD with RMSProp
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), compute w⃗(t+1) :

▶ Choose (randomly) a minibatch T ⊆ {1, . . . ,p}
▶ Compute

w(t+1)
ji = w(t)

ji +∆w(t)
ji

where

∆w(t)
ji = −

η√
r (t)ji + δ

·

∑
k∈T

∂Ek

∂wji
(w⃗(t))

and

r (t)ji = ρr (t−1)
ji + (1 − ρ)

∑
k∈T

∂Ek

∂wji
(w⃗(t))


2

▶ η is a constant expressing the influence of the learning rate
(Hinton suggests ρ = 0.9 and η = 0.001).

▶ δ > 0 is a smoothing term (typically 1e-8) avoiding division by 0.
122

Other optimization methods

There are more methods, such as AdaDelta and Adam
(RMSProp combined with momentum).

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta, and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

123

Other optimization methods

There are more methods, such as AdaDelta and Adam
(RMSProp combined with momentum).

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta, and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

123

Other optimization methods

There are more methods, such as AdaDelta and Adam
(RMSProp combined with momentum).

A natural question: Which algorithm should one choose?

Unfortunately, there is currently no consensus on this point.

According to a recent study, the family of algorithms with
adaptive learning rates (represented by RMSProp and
AdaDelta) performed fairly robustly, no single best algorithm
has emerged.

Currently, the most popular optimization algorithms actively in
use include SGD, SGD with momentum, RMSProp, RMSProp
with momentum, AdaDelta, and Adam.

The choice of which algorithm to use, at this point, seems to
depend largely on the user’s familiarity with the algorithm.

123

Choice of (hidden) activations

Generic requirements imposed on activation functions:

1. differentiability
(to do gradient descent)

2. non-linearity
(linear multi-layer networks are equivalent to single-layer)

3. monotonicity
(local extrema of activation functions induce local extrema of the error
function)

4. "linearity"
(i.e. preserve as much linearity as possible; linear models are easiest to
fit; find the "minimum" non-linearity needed to solve a given task)

The choice of activation functions is closely related to input
preprocessing and the initial choice of weights.

124

Input preprocessing
▶ Some inputs may be much larger than others.

For example, the height vs. weight of a person, the max.
speed of a car (in km/h) vs. its price (in CZK), etc.

▶ Large inputs have a greater influence on the training than
the small ones. Also, too large inputs may slow down
learning (saturation of some activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here, the mean and standard deviation may be estimated
from the data (the training set).

(illustration of standard deviation)

125

Input preprocessing
▶ Some inputs may be much larger than others.

For example, the height vs. weight of a person, the max.
speed of a car (in km/h) vs. its price (in CZK), etc.

▶ Large inputs have a greater influence on the training than
the small ones. Also, too large inputs may slow down
learning (saturation of some activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here, the mean and standard deviation may be estimated
from the data (the training set).

(illustration of standard deviation)

125

Input preprocessing
▶ Some inputs may be much larger than others.

For example, the height vs. weight of a person, the max.
speed of a car (in km/h) vs. its price (in CZK), etc.

▶ Large inputs have a greater influence on the training than
the small ones. Also, too large inputs may slow down
learning (saturation of some activation functions).

▶ Typical standardization:
▶ average = 0 (subtract the mean)
▶ variance = 1 (divide by the standard deviation)

Here, the mean and standard deviation may be estimated
from the data (the training set).

(illustration of standard deviation)
125

Initial weights - intuition

▶ Assume weights are chosen randomly. What distribution?

Consider the behavior of a deep network:
▶ Small weights make the values of inner potentials vanish.
▶ Large weights make the values of inner potentials explode.

Hence, we want to choose weights so that the inner
potentials of neurons are stable
(similar in all layers of the network).

126

Initial weights - intuition

▶ Assume weights are chosen randomly. What distribution?

Consider the behavior of a deep network:
▶ Small weights make the values of inner potentials vanish.
▶ Large weights make the values of inner potentials explode.

Hence, we want to choose weights so that the inner
potentials of neurons are stable
(similar in all layers of the network).

126

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights are chosen randomly by the normal distribution
N(0,w2).

Assume that all random choices are independent of each other.
▶ The rule: Choose the standard deviation of weights w so that

the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.

▶ Basic properties of the variance of independent variables give
oj =

√
n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers; n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)

127

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights are chosen randomly by the normal distribution
N(0,w2).

Assume that all random choices are independent of each other.
▶ The rule: Choose the standard deviation of weights w so that

the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.
▶ Basic properties of the variance of independent variables give

oj =
√

n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers; n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)

127

Normal LeCun initialization

▶ Assume the input data have the mean = 0 and the variance = 1.
Consider a neuron j from the first layer with n inputs. Assume its
weights are chosen randomly by the normal distribution
N(0,w2).

Assume that all random choices are independent of each other.
▶ The rule: Choose the standard deviation of weights w so that

the standard deviation of ξj (denote by oj) satisfies oj ≈ 1.
▶ Basic properties of the variance of independent variables give

oj =
√

n · w.

Thus by putting w =
√

1
n we obtain oj = 1.

▶ The same works for higher layers; n corresponds to the number
of neurons in the layer one level lower.

This gives normal LeCun initialization:

wi ∼ N

(
0,

1
n

)
127

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n

We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Derivation of the LeCun initialization

Consider a single neuron without bias with the inner potential

ξ =

n∑
i=1

wixi

Consider all wi and xi as independent random variables
(hence also ξ is a random variable) where
▶ wi ∈ N(0,w2) for i = 1, . . . ,n where w is a constant,
▶ Exi = 0 and Var [xi] = E[(xi − Exi)

2] = 1 for i = 1, . . . ,n
We prove that Var [ξ] = n · w2 as follows:

Eξ = E
n∑

i=1

wixi =

n∑
i=1

Ewixi
ind.
=

n∑
i=1

EwiExi = 0

and Var [wixi] = E[w2
i x2

i] − E[wixi]
2 ind.
= E[w2

i]E[x
2
i] − 0 = w2

implies

Var [ξ] = Var [
n∑

i=1

wixi]
ind.
=

n∑
i=1

Var [wixi] =

n∑
i=1

w2 = n · w2

128

Normal Glorot initialization
The previous heuristic for weight initialization ignores the variance of
the gradient (i.e., it is concerned only with the "size" of activations in
the forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)

129

Normal Glorot initialization
The previous heuristic for weight initialization ignores the variance of
the gradient (i.e., it is concerned only with the "size" of activations in
the forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)

129

Normal Glorot initialization
The previous heuristic for weight initialization ignores the variance of
the gradient (i.e., it is concerned only with the "size" of activations in
the forward pass).

Glorot & Bengio (2010) presented a normalized initialization by
choosing weights randomly from the following normal distribution:

N
(
0,

2
m + n

)
= N

(
0,

1
(m + n)/2

)
Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

This is designed to compromise between the goal of initializing all
layers to have the same activation variance and the goal of initializing
all layers to have the same gradient variance.

This gives normal Glorot initialization (also called normal Xavier
initialization):

wi ∼ N

(
(0,

2
m + n

)
129

Uniform LeCun initialization

▶ Assume that the input data have mean = 0 and variance = 1.

Consider a neuron j from the first layer with n inputs. Assume its
weights are chosen randomly by the uniform distribution
U(−w,w).

Assume that all random choices are independent of each other.

▶ As before, we want the standard deviation oj of the inner
potential ξj to be approximately 1.

▶ Basic properties of the variance of independent variables give

oj =
√

n
3 · w.

Thus by putting w =
√

3
n we obtain oj = 1.

We obtain uniform LeCun initialization:

wi ∼ U

−
√

3
n
,

√
3
n


130

Uniform Glorot initialization

Similarly to the normal case, we want to normalize the initialization
w.r.t. both forward and backward passes.

We obtain uniform Glorot initialization (aka uniform Xavier init.):

wi ∼ U

−√
6

m + n
,

√
6

m + n

 = U

−
√

3
(m + n)/2

,

√
3

(m + n)/2


Here n is the number of inputs to the layer, m is the number of
neurons in the layer above.

131

Modern activation functions
For hidden neurons, sigmoidal functions are often substituted with
piece-wise linear activation functions. Most prominent is ReLU:

σ(ξ) = max{0, ξ}

▶ THE default activation function recommended for most
feedforward neural networks.

▶ As close to linear function as possible; very simple; does not
saturate for large potentials.

▶ Dead for negative potentials.

132

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still, the variance is good to be constant (at least due to
the output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has variance = 1, it is not true of the output
(the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

133

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still, the variance is good to be constant (at least due to
the output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has variance = 1, it is not true of the output
(the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

133

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still, the variance is good to be constant (at least due to
the output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has variance = 1, it is not true of the output
(the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))

133

Normal He initialization

▶ The ReLU is not as sensitive to the large variance of
the inner potential as sigmoidal functions (large variance
does not matter as much).

▶ Still, the variance is good to be constant (at least due to
the output layer).

▶ LeCun initialization cannot be justified for ReLU due to
the following reason:
The ReLU is not a symmetric function. So even if the inner
potential ξj has variance = 1, it is not true of the output
(the variance is halved).

Modifying the normal LeCun initialization to take the halving
variance into account, we obtain normal He initialization:

wi ∈ N

(
0,

2
n

) (
LeCun is wi ∈ N

(
0,

1
n

))
133

More modern activation functions

▶ Leaky ReLU (green board):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

134

More modern activation functions

▶ Leaky ReLU (green board):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

134

More modern activation functions

▶ Leaky ReLU (green board):
▶ Generalizes ReLU, not dead for negative potentials.
▶ Experimentally not much better than ReLU.

▶ ELU: "Smoothed" ReLU:

σ(ξ) =

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Here α is a parameter, ELU converges to −α as ξ→ −∞. As
opposed to ReLU: Smooth, always non-zero gradient (but
saturates), slower to compute.

▶ SELU: Scaled variant of ELU: :

σ(ξ) = λ

α(exp(ξ) − 1) for ξ < 0
ξ for ξ ≥ 0

Self-normalizing, i.e. output of each layer will tend to preserve
a mean (close to) 0 and a standard deviation (close to) 1 for
λ ≈ 1.050 and α ≈ 1.673, properly initialized weights (see below)
and normalized inputs (zero mean, standard deviation 1).

134

135

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

136

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

136

Initializing with Normal Distribution
Denote by n the number of inputs to the initialized layer, and m the
number of neurons in the layer.

▶ normal Glorot:

wi ∼ N

(
(0,

2
m + n

)
Suitable for none, tanh, logistic, softmax

▶ normal He:

wi ∈ N

(
0,

2
n

)
Suitable for ReLU, leaky ReLU

▶ normal LeCun:

wi ∼ N

(
0,

1
n

)
Suitable for SELU (by the authors)

136

How to choose activation of hidden neurons

▶ The default is ReLU.
▶ According to Aurélien Géron:

SELU > ELU > leakyReLU > ReLU > tanh > logistic

For discussion see: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems, Aurélien Géron

137

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

138

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

138

Batch normalization (roughly)

Intuition: Instead of keeping mean = 0 and variance = 1
implicitly due to a clever weight initialization, we may
renormalize values of neurons throughout the layers.

Consider the ℓ-th layer of the network.

Note that the output values of neurons in the ℓ-th layer can be
seen as inputs to the sub-network consisting of all layers above
the ℓ-th one.

What if we standardize the values of the ℓ-th layer as we did
with the input data?

For this we need to form a "dataset" of values of the ℓ-th layer.

138

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)

▶ For every k = 1, . . . ,p: Compute the values of neurons in
the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (zk1, . . . , zkn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

139

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (zk1, . . . , zkn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

139

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (zk1, . . . , zkn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

139

Batch normalization (roughly)

Let us consider the ℓ-th layer with n neurons.

Consider a batch of training examples:

{(x⃗k , d⃗k) | k = 1, . . . ,p}

(This is typically a minibatch.)
▶ For every k = 1, . . . ,p: Compute the values of neurons in

the ℓ-th layer for the input x⃗k and obtain a vector

z⃗k = (zk1, . . . , zkn)

▶ Set all components of all vectors z⃗k to the mean = 0 and
the variance = 1 and obtain normalized vectors: ẑ1, . . . , ẑp.

▶ For every k = 1, . . . ,p give

γ⃗ · ẑk + δ⃗

as the output of the ℓ-th layer instead of z⃗k . Here γ⃗ and δ⃗
are new trainable weights.

139

Normalization

During the training, the normalized vectors ẑ1, . . . , ẑp are
computed as follows:

ẑki =
zki − µi

si

Here

µi =
1
p

p∑
k=1

zki

si =

√√
1
p

p∑
k=1

(zki − µi)
2

During inference, where we have just a single value z⃗ of the
layer ℓ for an input x⃗, we use µi and si estimated on a
population (e.g., a larger sample of the training set).

140

Generalization

141

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(x⃗k) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

142

Generalization

Intuition: Generalization = ability to cope with new unseen
instances.

Data are mostly noisy, so it is not good idea to fit exactly.

In case of function approximation, the network should not
return exact results as in the training set.

More formally: It is typically assumed that the training set has
been generated as follows:

dkj = gj(x⃗k) + Θkj

where gj is the "underlying" function corresponding to
the output neuron j ∈ Y and Θkj is random noise.
The network should fit gj not the noise.

Methods improving generalization are called regularization
methods.

142

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters, I can fit an elephant,
and with five, I can make him wiggle his trunk."

143

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters, I can fit an elephant,
and with five, I can make him wiggle his trunk."

143

Elephant

x(t) = −60 cos(t) + 30 sin(t) − 8 sin(2t) + 10 sin(3t)
y(t) = 50 sin(t) + 18 sin(2t) − 12 cos(3t) + 14 cos(5t)

The four parameters are complex numbers (e.g., −60 + 50i).
Mayer, Jurgen; Khairy, Khaled; Howard, Jonathon (May 12, 2010). "Drawing an elephant with four complex

parameters". American Journal of Physics. 78 (6)

144

Fifth Elephant

145

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters, I can fit an elephant,
and with five, I can make him wiggle his trunk."

... and I ask you, prof. Neumann:

What can you fit with 40GB of parameters??

146

Regularization

Regularization is a big issue in neural networks, as they
typically use a huge amount of parameters and thus are very
susceptible to overfitting.

von Neumann: "With four parameters, I can fit an elephant,
and with five, I can make him wiggle his trunk."

... and I ask you, prof. Neumann:

What can you fit with 40GB of parameters??

146

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

147

Early stopping

Early stopping means that we stop learning before it reaches
a minimum of the error E.

When to stop?

In many applications the error function is not the main thing we
want to optimize.
E.g. in the case of a trading system, we typically want to maximize our profit
not to minimize (strange) error functions designed to be easily differentiable.

Also, as noted before, minimizing E completely is not good for
generalization.

For start: We may employ standard approach of training on one
set and stopping on another one.

147

Early stopping

Divide your dataset into several subsets:
▶ training set (e.g. 60%) – train the network here
▶ validation set (e.g. 20%) – use to stop the training

▶ test set (e.g. 20%) – use to evaluate the final model
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(some studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.)

To compare models you may use ML techniques such as
various types of cross-validation etc.

148

Early stopping

Divide your dataset into several subsets:
▶ training set (e.g. 60%) – train the network here
▶ validation set (e.g. 20%) – use to stop the training

▶ test set (e.g. 20%) – use to evaluate the final model
What to use as a stopping rule?

You may observe E (or any other function of interest) on the
validation set, if it does not improve for last k steps, stop.

Alternatively, you may observe the gradient, if it is small for
some time, stop.
(some studies shown that this traditional rule is not too good: it may happen
that the gradient is larger close to minimum values; on the other hand, E
does not have to be evaluated which saves time.)

To compare models you may use ML techniques such as
various types of cross-validation etc.

148

Size of the network

Similar problem as in the case of the training duration:
▶ Too small network is not able to capture intrinsic properties

of the training set.
▶ Large networks overfit faster.

Solution: Optimal number of neurons :-)

▶ there are some (useless) theoretical bounds
▶ there are algorithms dynamically adding/removing neurons

(not much use nowadays)
▶ In practice: Start with an existing network solving similar

problem.
If you are trully desperate trying to solve a brand new problem, you may
try an ancient rule of thumb: the number of neurons ≈ ten times less
than the number of training instances.

Experiment, experiment, experiment.

149

Size of the network

Similar problem as in the case of the training duration:
▶ Too small network is not able to capture intrinsic properties

of the training set.
▶ Large networks overfit faster.

Solution: Optimal number of neurons :-)
▶ there are some (useless) theoretical bounds
▶ there are algorithms dynamically adding/removing neurons

(not much use nowadays)
▶ In practice: Start with an existing network solving similar

problem.
If you are trully desperate trying to solve a brand new problem, you may
try an ancient rule of thumb: the number of neurons ≈ ten times less
than the number of training instances.

Experiment, experiment, experiment.

149

Feature extraction

Consider a two-layer network. Hidden neurons are supposed to
represent "patterns" in the inputs.

Example: Network 64-2-3 for letter classification:

150

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
▶ Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

▶ For each i, train a model Mi on Ti .
▶ Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

151

Ensemble methods

Techniques for reducing generalization error by combining
several models.
The reason that ensemble methods work is that different models will usually
not make all the same errors on the test set.

Idea: Train several different models separately, then have all of
the models vote on the output for test examples.

Bagging:
▶ Generate k training sets T1, ...,Tk by sampling from T

uniformly with replacement.
If the number of samples is |T |, then on average |Ti | = (1 − 1/e)|T |.

▶ For each i, train a model Mi on Ti .
▶ Combine outputs of the models: for regression by

averaging, for classification by (majority) voting.

151

Dropout

The algorithm: In every step of the gradient descent

▶ choose randomly a set N of neurons, each neuron is included
independently with probability 1/2,
(in practice, different probabilities are used as well).

▶ do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

152

Dropout

The algorithm: In every step of the gradient descent

▶ choose randomly a set N of neurons, each neuron is included
independently with probability 1/2,
(in practice, different probabilities are used as well).

▶ do forward and backward propagations only using the selected
neurons
(i.e. leave weights of the other neurons unchanged)

Dropout resembles bagging: Large ensemble of neural networks is
trained "at once" on parts of the data.

Dropout is not exactly the same as bagging: The models share
parameters, with each model inheriting a different subset of
parameters from the parent neural network. This parameter sharing
makes it possible to represent an exponential number of models with
a tractable amount of memory.
In the case of bagging, each model is trained to convergence on its respective
training set. This would be infeasible for large networks/training sets.

152

Dropout – details

▶ The inner potential of a neuron j without dropout:

ξj =
∑
i∈j←

wjiyi

▶ The inner potential of a neuron j with dropout:

ri ∼ Bernoulli(1/2) for all i ∈ j← ∖ {0}

ξj =
∑
i∈j←

wji(riyi)

(Intuitively, randomly chosen neurons are masked out.)

▶ During inference do not drop out neurons and multiply
values of neurons with 1/2.
This compensates for the fact that without the drop out there are twice
as many neurons.

153

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

154

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

154

Weight decay and L2 regularization
Generalization can be improved by removing "unimportant" weights.

Penalising large weights gives stronger indication about their
importance.

In every step we decrease weights (multiplicatively) as follows:

w(t+1)
ji = (1 − ζ)w(t)

ji − ε ·
∂E
∂wji

(w⃗(t))

Intuition: Unimportant weights will be pushed to 0, important weights
will survive the decay.

Weight decay is equivalent to the gradient descent with a constant
learning rate ε and the following error function:

E′(w⃗) = E(w⃗) +
ζ
2ε

(w⃗ · w⃗)

Here ζ
2ε (w⃗ · w⃗) is the L2 regularization that penalizes large weights.

We use the gradient descent with a constant learning rate to illustrate
the equivalence between L2 regularization and the weight decay. Both
methods can be combined with other learning algorithnms (AdaGrad, etc.).

154

More optimization, regularization ...

There are many more practical tips, optimization methods,
regularization methods, etc.

For a very nice survey see

http://www.deeplearningbook.org/

... and also all other infinitely many urls concerned with deep
learning.

155

http://www.deeplearningbook.org/

Some application(s)

156

MLP applications

▶ MLP is the basic network used when it is unclear what
topology is appropriate.

▶ MLP is often used as a component of larger deep models
(especially at the head of the network, interpreting the features
extracted by the lower, more specialized layers.)

▶ The most prominent NN architecture in the 80s and 90s.
▶ Various applications:

▶ ALVINN - autonomous driving car
▶ Characters/digits recognition
▶ Table data processing
▶ ...

▶ Two-layer MLPs are usually not much better than
non-neural models.

157

MLP applications

▶ MLP is the basic network used when it is unclear what
topology is appropriate.

▶ MLP is often used as a component of larger deep models
(especially at the head of the network, interpreting the features
extracted by the lower, more specialized layers.)

▶ The most prominent NN architecture in the 80s and 90s.
▶ Various applications:

▶ ALVINN - autonomous driving car
▶ Characters/digits recognition
▶ Table data processing
▶ ...

▶ Two-layer MLPs are usually not much better than
non-neural models.

157

MLP applications

▶ MLP is the basic network used when it is unclear what
topology is appropriate.

▶ MLP is often used as a component of larger deep models
(especially at the head of the network, interpreting the features
extracted by the lower, more specialized layers.)

▶ The most prominent NN architecture in the 80s and 90s.

▶ Various applications:
▶ ALVINN - autonomous driving car
▶ Characters/digits recognition
▶ Table data processing
▶ ...

▶ Two-layer MLPs are usually not much better than
non-neural models.

157

MLP applications

▶ MLP is the basic network used when it is unclear what
topology is appropriate.

▶ MLP is often used as a component of larger deep models
(especially at the head of the network, interpreting the features
extracted by the lower, more specialized layers.)

▶ The most prominent NN architecture in the 80s and 90s.
▶ Various applications:

▶ ALVINN - autonomous driving car
▶ Characters/digits recognition
▶ Table data processing
▶ ...

▶ Two-layer MLPs are usually not much better than
non-neural models.

157

MLP applications

▶ MLP is the basic network used when it is unclear what
topology is appropriate.

▶ MLP is often used as a component of larger deep models
(especially at the head of the network, interpreting the features
extracted by the lower, more specialized layers.)

▶ The most prominent NN architecture in the 80s and 90s.
▶ Various applications:

▶ ALVINN - autonomous driving car
▶ Characters/digits recognition
▶ Table data processing
▶ ...

▶ Two-layer MLPs are usually not much better than
non-neural models.

157

MNIST – handwritten digits recognition

▶ Database of labeled images of
handwritten digits: 60 000
training examples, 10 000 testing.

▶ Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
a fixed size.

▶ More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

158

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST – handwritten digits recognition

▶ Database of labeled images of
handwritten digits: 60 000
training examples, 10 000 testing.

▶ Dimensions: 28 x 28, digits are
centered to the "center of gravity"
of pixel values and normalized to
a fixed size.

▶ More at http:
//yann.lecun.com/exdb/mnist/

The database is used as a standard benchmark in lots of publications.

Allows comparison of various methods.

158

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

MNIST

One of the best "old" results is the following:

6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU)
(Ciresan et al. 2010)

Abstract: Good old on-line back-propagation for plain multi-layer
perceptrons yields a very low 0.35 error rate on the famous MNIST
handwritten digits benchmark. All we need to achieve this best result so far
are many hidden layers, many neurons per layer, numerous deformed
training images, and graphics cards to greatly speed up learning.

A famous application of a learning convolutional network LeNet-1 in
1998.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998

159

MNIST – LeNet1

160

MNIST – LeNet1

Interpretation of output:
▶ the output neuron with the highest value identifies the digit.
▶ the same, but if the two largest neuron values are too close

together, the input is rejected (i.e. no answer).
Learning:
Inputs:
▶ training on 7291 samples, tested on 2007 samples

Results:
▶ error on test set without rejection: 5%
▶ error on test set with rejection: 1% (12% rejected)

▶ compare with dense MLP with 40 hidden neurons: error
1% (19.4% rejected)

161

Convolutional Networks

Some parts of the lecture are based on the online book Neural
Networks and Deep Learning by Michael Nielsen.
http://neuralnetworksanddeeplearning.com/index.html

162

http://neuralnetworksanddeeplearning.com/index.html

Convolutional networks - local receptive fields

Every neuron is connected with a field of k × k (in this case
5 × 5) neurons in the lower layer (this field is receptive field).

The neuron is "standard": Computes a weighted sum of its
inputs and applies an activation function.

163

Convolutional networks - stride length

Then we slide the local receptive field over by one pixel to the right
(i.e., by one neuron) to connect to a second hidden neuron:

The "size" of the slide is
called stride length.

The group of all such
neurons is feature map.
all these neurons share
weights and biases!

164

Feature maps

Each feature map represents a property of the input that is
supposed to be spatially invariant.

Typically, we consider several feature maps in a single layer.

165

Pooling

Neurons in the pooling layer compute functions of their
receptive fields:
▶ Max-pooling : maximum of inputs
▶ L2-pooling : square root of the sum of squres
▶ Average-pooling : mean
▶ · · ·

166

Trained receptive fields

(20 feature maps, receptive fields 5 × 5)

167

Trained feature maps

168

Simple convolutional network

28 × 28 input image, 3 feature maps, each feature map has its
own max-pooling (field 5 × 5, stride = 1), 10 output neurons.

Each neuron in the output layer gets input from each neuron in
the pooling layer.

Trained using backprop, which can be easily adapted to
convolutional networks.

169

Convolutional network

170

Simple convolutional network vs MNIST

two convolutional-pooling layers, one 20, second 40 feature
maps, two dense (MLP) layers (1000-1000), outputs (10)
▶ Activation functions of the feature maps and dense layers:

ReLU
▶ max-pooling
▶ output layer: soft-max

▶ Error function: negative log-likelihood (= cross-entropy)

▶ Training: SGD, mini-batch size 10
▶ learning rate 0.03
▶ L2 regularization with "weight" λ = 0.1 + dropout with prob.

1/2
▶ training for 40 epochs (i.e., every training example is

considered 40 times)

▶ Expanded dataset: displacement by one pixel to an
arbitrary direction.

▶ Committee voting of 5 networks. 171

MNIST

Out of 10,000 images in the test set, only these 33 have been
incorrectly classified:

172

More complex convolutional networks

Convolutional networks have been used for the classification of
images from the ImageNet database (16 million color images,
20 thousand classes)

173

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classification over a subset of images from
ImageNet.
Started in 2010, assisted in a breakthrough in image
recognition.

The training set 1.2 million images, 1000 classes. Validation
set: 50 000, test set: 150 000.

Many images contain more than one object⇒ model is allowed
to choose five classes, the correct label must be among the
five. (top-5 criterion).

174

ILSVRC 2014

The same set as in 2012, top-5 criterion.

GoogLeNet: deep convolutional network, 22 layers

Results:
▶ Accuracy 93.33% top-5

175

ILSVRC 2015

▶ Deep convolutional network - ResNet
▶ Various numbers of layers, the winner has

152 layers
▶ Skip connections implementing residual

learning

▶ Error 3.57% in top-5.

176

Further development of CNN architectures

Convolutional networks made a breakthrough in image
recognition.
See IB031 for discussion of ILSVRC challenge.

There are myriads of CNNs for
▶ Image classification

Binary, or many classes, 2D, 3D, ... nD "images" and movies. Various
architectures.

▶ Image segmentation
I.e., partitioning pixels of images, a HUGE amount of CNN variants
(U-Net, fully convolutional, etc.)

▶ Object detection
Bounding box prediction, R-CNN architectures

▶ ...
For more details, see

PA228 Machine Learning in Image Processing.

177

Further development of CNN architectures

Convolutional networks made a breakthrough in image
recognition.
See IB031 for discussion of ILSVRC challenge.

There are myriads of CNNs for
▶ Image classification

Binary, or many classes, 2D, 3D, ... nD "images" and movies. Various
architectures.

▶ Image segmentation
I.e., partitioning pixels of images, a HUGE amount of CNN variants
(U-Net, fully convolutional, etc.)

▶ Object detection
Bounding box prediction, R-CNN architectures

▶ ...

For more details, see

PA228 Machine Learning in Image Processing.

177

Further development of CNN architectures

Convolutional networks made a breakthrough in image
recognition.
See IB031 for discussion of ILSVRC challenge.

There are myriads of CNNs for
▶ Image classification

Binary, or many classes, 2D, 3D, ... nD "images" and movies. Various
architectures.

▶ Image segmentation
I.e., partitioning pixels of images, a HUGE amount of CNN variants
(U-Net, fully convolutional, etc.)

▶ Object detection
Bounding box prediction, R-CNN architectures

▶ ...
For more details, see

PA228 Machine Learning in Image Processing.

177

Convolutional networks – learning theory

178

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
▶ input layer L0

▶ dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

▶ convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

▶ pooling layer: "Neurons" organized into pooling maps, all
neurons
▶ compute a simple aggregate function (such as max),
▶ have disjoint inputs.

Pooling after convolution is usually applied to each feature map separately.
I.e., a single pooling map after each feature map.

179

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
▶ input layer L0

▶ dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

▶ convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

▶ pooling layer: "Neurons" organized into pooling maps, all
neurons
▶ compute a simple aggregate function (such as max),
▶ have disjoint inputs.

Pooling after convolution is usually applied to each feature map separately.
I.e., a single pooling map after each feature map.

179

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
▶ input layer L0

▶ dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

▶ convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

▶ pooling layer: "Neurons" organized into pooling maps, all
neurons
▶ compute a simple aggregate function (such as max),
▶ have disjoint inputs.

Pooling after convolution is usually applied to each feature map separately.
I.e., a single pooling map after each feature map.

179

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
▶ input layer L0

▶ dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

▶ convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

▶ pooling layer: "Neurons" organized into pooling maps, all
neurons
▶ compute a simple aggregate function (such as max),
▶ have disjoint inputs.

Pooling after convolution is usually applied to each feature map separately.
I.e., a single pooling map after each feature map.

179

Convolutional networks – architecture

Neurons organized in layers, L0,L1, . . . ,Ln, connections
(typically) only from Lm to Lm+1.

Several types of layers:
▶ input layer L0

▶ dense layer Lm: Each neuron of Lm connected with each
neuron of Lm−1.

▶ convolutional layer Lm: Neurons organized into disjoint
feature maps, all neurons of a given feature map share
weights (but have different inputs)

▶ pooling layer: "Neurons" organized into pooling maps, all
neurons
▶ compute a simple aggregate function (such as max),
▶ have disjoint inputs.

Pooling after convolution is usually applied to each feature map separately.
I.e., a single pooling map after each feature map.

179

Convolutional networks – architecture
▶ Denote

▶ X a set of input neurons
▶ Y a set of output neurons
▶ Z a set of all neurons (X ,Y ⊆ Z)

▶ individual neurons denoted by indices i, j etc.
▶ ξj is the inner potential of the neuron j after the computation

stops
▶ yj is the output of the neuron j after the computation stops

(define y0 = 1 is the value of the formal unit input)
▶ wji is the weight of the connection from i to j

(in particular, wj0 is the weight of the connection from the formal unit
input, i.e. wj0 = −bj where bj is the bias of the neuron j)

▶ j← is a set of all i such that j is adjacent from i
(i.e. there is an arc to j from i)

▶ j→ is a set of all i such that j is adjacent to i
(i.e. there is an arc from j to i)

▶ [ji] is a set of all connections (i.e. pairs of neurons) sharing
the weight wji . 180

Convolutional networks – activity
▶ neurons of dense and convolutional layers:

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

▶ Neurons of pooling layers: Apply the "pooling" function:
▶ max-pooling:

yj = max
i∈j←

yi

▶ avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(w⃗, x⃗) is the value of the output neuron j after evaluating the
network with weights w⃗ and input x⃗.

181

Convolutional networks – activity
▶ neurons of dense and convolutional layers:

▶ inner potential of neuron j:

ξj =
∑
i∈j←

wjiyi

▶ activation function σj for neuron j (arbitrary differentiable):

yj = σj(ξj)

▶ Neurons of pooling layers: Apply the "pooling" function:
▶ max-pooling:

yj = max
i∈j←

yi

▶ avg-pooling:

yj =

∑
i∈j← yi

|j←|
A convolutional network is evaluated layer-wise (as MLP), for each j ∈ Y we
have that yj(w⃗, x⃗) is the value of the output neuron j after evaluating the
network with weights w⃗ and input x⃗.

181

Convolutional networks – learning

Learning:
▶ Given a training set T of the form{ (

x⃗k , d⃗k

) ∣∣∣ k = 1, . . . ,p
}

Here, every x⃗k ∈ R
|X | is an input vector end every d⃗k ∈ R

|Y |

is the desired network output. For every j ∈ Y , denote by
dkj the desired output of the neuron j for a given network
input x⃗k (the vector d⃗k can be written as

(
dkj

)
j∈Y

).

▶ Error function – squared error (for example):

E(w⃗) =

p∑
k=1

Ek (w⃗)

where

Ek (w⃗) =
1
2

∑
j∈Y

(
yj(w⃗, x⃗k) − dkj

)2

182

Convolutional networks – SGD

The algorithm computes a sequence of weight vectors
w⃗(0), w⃗(1), w⃗(2),
▶ weights in w⃗(0) are randomly initialized to values close to 0
▶ in the step t + 1 (here t = 0,1,2 . . .), weights w⃗(t+1) are

computed as follows:
▶ Choose (randomly) a set of training examples T ⊆ {1, . . . ,p}
▶ Compute

w⃗(t+1) = w⃗(t) +∆w⃗(t)

where

∆w⃗(t) = −ε(t) ·
1
|T |

∑
k∈T

∇Ek (w⃗(t))

Here T is a minibatch (of a fixed size),
▶ 0 < ε(t) ≤ 1 is a learning rate in step t + 1
▶ ∇Ek (w⃗(t)) is the gradient of the error of the example k

Note that the random choice of the minibatch is typically implemented by
randomly shuffling all data and then choosing minibatches sequentially.
Epoch consists of one round through all data. 183

Backprop

Recall that ∇Ek (w⃗(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
▶ Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

▶ Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
rℓ∈[ji]

∂Ek

∂yr
· σ′r(ξr) · yℓ

▶ Neurons of pooling layers do not have weights.

184

Backprop

Recall that ∇Ek (w⃗(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
▶ Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

▶ Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
rℓ∈[ji]

∂Ek

∂yr
· σ′r(ξr) · yℓ

▶ Neurons of pooling layers do not have weights.

184

Backprop

Recall that ∇Ek (w⃗(t)) is a vector of all partial derivatives of
the form ∂Ek

∂wji
.

How to compute ∂Ek
∂wji

?

First, switch from derivatives w.r.t. wji to derivatives w.r.t. yj :
▶ Recall that for every wji where j is in a dense layer, i.e.

does not share weights:

∂Ek

∂wji
=
∂Ek

∂yj
· σ′j (ξj) · yi

▶ Now for every wji where j is in a convolutional layer:

∂Ek

∂wji
=

∑
rℓ∈[ji]

∂Ek

∂yr
· σ′r(ξr) · yℓ

▶ Neurons of pooling layers do not have weights.
184

Backprop
Now compute derivatives w.r.t. yj :
▶ for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

▶ for every j ∈ Z ∖ Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

▶ for every j ∈ Z ∖ Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

The gradient can be propagated from the output layer downwards as in MLP.

185

Backprop
Now compute derivatives w.r.t. yj :
▶ for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

▶ for every j ∈ Z ∖ Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

▶ for every j ∈ Z ∖ Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

The gradient can be propagated from the output layer downwards as in MLP.

185

Backprop
Now compute derivatives w.r.t. yj :
▶ for every j ∈ Y :

∂Ek

∂yj
= yj − dkj

This holds for the squared error, for other error functions the derivative
w.r.t. outputs will be different.

▶ for every j ∈ Z ∖ Y such that j→ is either a dense layer, or a
convolutional layer:

∂Ek

∂yj
=

∑
r∈j→

∂Ek

∂yr
· σ′r(ξr) · wrj

▶ for every j ∈ Z ∖ Y such that j→ is max-pooling: Then j→ = {i} for
a single "max" neuron and we have

∂Ek

∂yj
=

 ∂Ek
∂yi

if j = arg max r∈i←yr

0 otherwise

The gradient can be propagated from the output layer downwards as in MLP.
185

Convolutional networks – summary

▶ Conv. nets. are nowadays the most used networks in
image processing (and also in other areas where input has
some local, "spatially" invariant properties)
2024 update: Vision transformers are gradually taking over.

▶ Typically trained using the gradient descent and its
modifications (such as Adam).

▶ Due to the weight sharing allow (very) deep architectures.
▶ Typically extended with more adjustments and tricks in

their topologies.

186

The problem of cancer detection in WSI

The problem: Detect cancer in this image.
187

The problem of cancer detection in WSI

▶ WSI annotated by pathologists, not pixel level precise!
188

Input data

WSI too large, 105,185 px × 221,772 px

Cut into patches of size 512 px × 512 px

Patch positive iff the inner square intersects the annotation

189

Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
▶ 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
▶ Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

▶ random vertical and horizontal flips
▶ random color perturbations

▶ Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

190

Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
▶ 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
▶ Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

▶ random vertical and horizontal flips
▶ random color perturbations

▶ Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

190

Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
▶ 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
▶ Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

▶ random vertical and horizontal flips
▶ random color perturbations

▶ Training data three step sampling:
1. randomly select a label
2. randomly select a slide containing at least a single patch

with the label
3. randomly select a patch with the label from the slide

190

VGG16

3 × 3 convolutions, stride 1, padding 1. Max pooling 2 × 2, stride 2.
191

Training VGG16 on WSI

▶ VGG16 pretrained on the ImageNet (of-the-shelf solution).
Top fully connected parts removed, substituted with global
max-pooling and a single dense layer.

▶ The network has single logistic output - the probability of
cancer in the patch

▶ The error E = cross-entropy
▶ Training:

▶ RMSprop optimizer
▶ The "forgetting" hyperparameter: ρ = 0.9
▶ The initial learning rate 5 × 10−5

▶ If no improvement in E on validation data for 3 consecutive
epochs⇒ half the learning rate

▶ If no improvement in ROCAUC on validation data for 5
consecutive epochs⇒ terminate

▶ Momentum with the weight α = 0.9

192

Training VGG16 on WSI

▶ VGG16 pretrained on the ImageNet (of-the-shelf solution).
Top fully connected parts removed, substituted with global
max-pooling and a single dense layer.

▶ The network has single logistic output - the probability of
cancer in the patch

▶ The error E = cross-entropy
▶ Training:

▶ RMSprop optimizer
▶ The "forgetting" hyperparameter: ρ = 0.9
▶ The initial learning rate 5 × 10−5

▶ If no improvement in E on validation data for 3 consecutive
epochs⇒ half the learning rate

▶ If no improvement in ROCAUC on validation data for 5
consecutive epochs⇒ terminate

▶ Momentum with the weight α = 0.9

192

Training VGG16 on WSI

▶ VGG16 pretrained on the ImageNet (of-the-shelf solution).
Top fully connected parts removed, substituted with global
max-pooling and a single dense layer.

▶ The network has single logistic output - the probability of
cancer in the patch

▶ The error E = cross-entropy

▶ Training:
▶ RMSprop optimizer
▶ The "forgetting" hyperparameter: ρ = 0.9
▶ The initial learning rate 5 × 10−5

▶ If no improvement in E on validation data for 3 consecutive
epochs⇒ half the learning rate

▶ If no improvement in ROCAUC on validation data for 5
consecutive epochs⇒ terminate

▶ Momentum with the weight α = 0.9

192

Training VGG16 on WSI

▶ VGG16 pretrained on the ImageNet (of-the-shelf solution).
Top fully connected parts removed, substituted with global
max-pooling and a single dense layer.

▶ The network has single logistic output - the probability of
cancer in the patch

▶ The error E = cross-entropy
▶ Training:

▶ RMSprop optimizer
▶ The "forgetting" hyperparameter: ρ = 0.9
▶ The initial learning rate 5 × 10−5

▶ If no improvement in E on validation data for 3 consecutive
epochs⇒ half the learning rate

▶ If no improvement in ROCAUC on validation data for 5
consecutive epochs⇒ terminate

▶ Momentum with the weight α = 0.9

192

Prediction

193

Model evaluation - attempt 2

Can we detect cancer in patches?

Predict I positive iff F(I) ≥ 0.75

Ok, does it detect cancer?
194

Model evaluation – attempt 3 – FROC

Detect particular tumors ?

How to evaluate the quality of tumor detection?
195

Model evaluation – attempt 3 – FROC

sensitivity ≈ the proportion of tumors containing at least one
patch I with F(I) ≥ t w.r.t. all tumors in all slides

AvgFP ≈ average number of patches I with F(I) ≥ t in each
non-cancerous slide

196

Is it good?

▶ Tile-based metric does not tell us whether cancer will be
detected

▶ FROC curve captures tumor detection - however, WSI
contains only cuts across tumors

▶ WSI level evaluation needs huge amounts of WSIs
Our later results shown that the system has approx. 0.98 AUC for WSI
level tumor detection on thousands of WSI from MMCI

▶ The system broke down when we used WSIs from a
completely different scanner and different hospital (they
used slightly different colors).
We have corrected this by appropriate color normalization. But more
data from more hospitals is needed!

197

Explainable methods (XAI)

198

199

What is XAI?

IBM: "Explainable artificial intelligence (XAI) is a set of
processes and methods that allows human users to
comprehend and trust the results and output created by
machine learning algorithms."
https://www.ibm.com/topics/explainable-ai

ISO/IEC TR 29119-11:2020(en):
▶ Interpretability: Level of understanding how the underlying

(AI) technology works.
▶ Explainability: Level of understanding how the AI-based

system came up with a given result.

200

XAI methods

The goal is to understand how and why the network does what
it does.

We will consider classification models only.

201

202

XAI methods

Many methods are available.

We consider only a few representative methods for interpreting
learning models.

Methods based on various principles:
▶ Visualize weights and feature maps
▶ Visualize the most important inputs for a given class
▶ Visualize the effect of input perturbations on the output
▶ Construct an interpretable surrogate model

203

Alex-net - filters of the first convolutional layer

▶ 64 filters of depth 3 (RGB)
▶ Combined each filter RGB channels into one RGB image

of size 11x11x3.
204

CNN - feature maps

205

CNN - feature maps - radar target classification

Synthetic-aperture radar (SAR) – used to create two-dimensional images or
three-dimensional reconstructions of objects, such as landscapes.

206

Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.
▶ Denote by ξi(x⃗) the inner potential of the output neuron

i ∈ Y given a network input vector x⃗.
▶ Maximize

ξi(x⃗) − λ
∣∣∣∣∣∣x⃗ ∣∣∣∣∣∣2

2

over all input vectors x⃗.
▶ A maximizing input vector computed using the gradient

ascent.
▶ Gives the most "representative" input vector of the class

represented by the neuron i.

207

Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.

▶ Denote by ξi(x⃗) the inner potential of the output neuron
i ∈ Y given a network input vector x⃗.

▶ Maximize

ξi(x⃗) − λ
∣∣∣∣∣∣x⃗ ∣∣∣∣∣∣2

2

over all input vectors x⃗.
▶ A maximizing input vector computed using the gradient

ascent.
▶ Gives the most "representative" input vector of the class

represented by the neuron i.

207

Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.
▶ Denote by ξi(x⃗) the inner potential of the output neuron

i ∈ Y given a network input vector x⃗.

▶ Maximize

ξi(x⃗) − λ
∣∣∣∣∣∣x⃗ ∣∣∣∣∣∣2

2

over all input vectors x⃗.
▶ A maximizing input vector computed using the gradient

ascent.
▶ Gives the most "representative" input vector of the class

represented by the neuron i.

207

Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.
▶ Denote by ξi(x⃗) the inner potential of the output neuron

i ∈ Y given a network input vector x⃗.
▶ Maximize

ξi(x⃗) − λ
∣∣∣∣∣∣x⃗ ∣∣∣∣∣∣2

2

over all input vectors x⃗.

▶ A maximizing input vector computed using the gradient
ascent.

▶ Gives the most "representative" input vector of the class
represented by the neuron i.

207

Maximizing input

Now what if we try to find the most "representative" input vector
for a given class?

Assume a trained model giving a score for each class given
an input vector.
▶ Denote by ξi(x⃗) the inner potential of the output neuron

i ∈ Y given a network input vector x⃗.
▶ Maximize

ξi(x⃗) − λ
∣∣∣∣∣∣x⃗ ∣∣∣∣∣∣2

2

over all input vectors x⃗.
▶ A maximizing input vector computed using the gradient

ascent.
▶ Gives the most "representative" input vector of the class

represented by the neuron i.

207

Maximizing input - example

208

Input specific saliency maps

The goal: Label features in a given input that are "most
important" for the output of the network.

Various approaches:
▶ gradient based

▶ Gradient saliency maps
▶ GradCAM
▶ SmoothGrad
▶ · · ·

▶ occlusion based
▶ Simple occlusion maps
▶ LIME
▶ · · ·

209

Input specific saliency maps

The goal: Label features in a given input that are "most
important" for the output of the network.

Various approaches:
▶ gradient based

▶ Gradient saliency maps
▶ GradCAM
▶ SmoothGrad
▶ · · ·

▶ occlusion based
▶ Simple occlusion maps
▶ LIME
▶ · · ·

209

Gradient based saliency
▶ Let us fix an output neuron i and an input vector x⃗.

▶ Idea: Rank every input neuron k ∈ X based on its
influence on the value ξi(x⃗).
Note that the vector of input values is fixed.
For every input neuron k ∈ X we consider∣∣∣∣∣ ∂ξi

∂yk
(x⃗)

∣∣∣∣∣
to measure the importance of the input yk for the output
potential ξi with respect to the particular input vector x⃗.

▶ Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

ξi(x⃗′) ≈ ξi(x⃗) +
(
∂ξi

∂X
(x⃗)

)
(x⃗′ − x⃗)

Here ∂ξi
∂X is the vector of all partial derivatives ∂ξi

∂yk
where

k ∈ X .

210

Gradient based saliency
▶ Let us fix an output neuron i and an input vector x⃗.
▶ Idea: Rank every input neuron k ∈ X based on its

influence on the value ξi(x⃗).
Note that the vector of input values is fixed.

For every input neuron k ∈ X we consider∣∣∣∣∣ ∂ξi

∂yk
(x⃗)

∣∣∣∣∣
to measure the importance of the input yk for the output
potential ξi with respect to the particular input vector x⃗.

▶ Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

ξi(x⃗′) ≈ ξi(x⃗) +
(
∂ξi

∂X
(x⃗)

)
(x⃗′ − x⃗)

Here ∂ξi
∂X is the vector of all partial derivatives ∂ξi

∂yk
where

k ∈ X .

210

Gradient based saliency
▶ Let us fix an output neuron i and an input vector x⃗.
▶ Idea: Rank every input neuron k ∈ X based on its

influence on the value ξi(x⃗).
Note that the vector of input values is fixed.
For every input neuron k ∈ X we consider∣∣∣∣∣ ∂ξi

∂yk
(x⃗)

∣∣∣∣∣
to measure the importance of the input yk for the output
potential ξi with respect to the particular input vector x⃗.

▶ Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

ξi(x⃗′) ≈ ξi(x⃗) +
(
∂ξi

∂X
(x⃗)

)
(x⃗′ − x⃗)

Here ∂ξi
∂X is the vector of all partial derivatives ∂ξi

∂yk
where

k ∈ X .

210

Gradient based saliency
▶ Let us fix an output neuron i and an input vector x⃗.
▶ Idea: Rank every input neuron k ∈ X based on its

influence on the value ξi(x⃗).
Note that the vector of input values is fixed.
For every input neuron k ∈ X we consider∣∣∣∣∣ ∂ξi

∂yk
(x⃗)

∣∣∣∣∣
to measure the importance of the input yk for the output
potential ξi with respect to the particular input vector x⃗.

▶ Note that saliency comes from a surrogate local linear
model given by the first-order Taylor approximation:

ξi(x⃗′) ≈ ξi(x⃗) +
(
∂ξi

∂X
(x⃗)

)
(x⃗′ − x⃗)

Here ∂ξi
∂X is the vector of all partial derivatives ∂ξi

∂yk
where

k ∈ X .
210

Saliency maps - example

211

Saliency maps - example

Quite noisy, the signal is spread and does not say much about
the perception of the owl.

212

Saliency maps - example

SmoothGrad:
▶ Do the following several times:

▶ Add noise to the input image
▶ Compute a saliency map

▶ Average the resulting saliency maps.

213

GradCAM
▶ Consider a convolutional network and fix an input image I

of the network.
ALL values of all neurons yj are computed on the input I.

▶ Fix a convolutional layer L consisting of convolutional
feature maps F1, . . . ,Fk .
Each F ℓ is a set of neurons that belong to the feature map F ℓ.
Slightly abusing notation, we write Fℓ(I) to denote
the tensor of all values of all neurons in Fℓ(I).

▶ Fix an output neuron i ∈ Y with the inner potential ξi .
Compute the average importance of Fℓ(I):

αℓi =
1
|Fℓ|

∑
j∈Fℓ

∂ξi

∂yj
(Fℓ(I))

and the final gradCAM heat map for L is obtained using

ML
i = ReLU

 k∑
ℓ=1

αℓi F
ℓ(I)



214

GradCAM
▶ Consider a convolutional network and fix an input image I

of the network.
ALL values of all neurons yj are computed on the input I.

▶ Fix a convolutional layer L consisting of convolutional
feature maps F1, . . . ,Fk .
Each F ℓ is a set of neurons that belong to the feature map F ℓ.
Slightly abusing notation, we write Fℓ(I) to denote
the tensor of all values of all neurons in Fℓ(I).

▶ Fix an output neuron i ∈ Y with the inner potential ξi .
Compute the average importance of Fℓ(I):

αℓi =
1
|Fℓ|

∑
j∈Fℓ

∂ξi

∂yj
(Fℓ(I))

and the final gradCAM heat map for L is obtained using

ML
i = ReLU

 k∑
ℓ=1

αℓi F
ℓ(I)



214

GradCAM
▶ Consider a convolutional network and fix an input image I

of the network.
ALL values of all neurons yj are computed on the input I.

▶ Fix a convolutional layer L consisting of convolutional
feature maps F1, . . . ,Fk .
Each F ℓ is a set of neurons that belong to the feature map F ℓ.
Slightly abusing notation, we write Fℓ(I) to denote
the tensor of all values of all neurons in Fℓ(I).

▶ Fix an output neuron i ∈ Y with the inner potential ξi .
Compute the average importance of Fℓ(I):

αℓi =
1
|Fℓ|

∑
j∈Fℓ

∂ξi

∂yj
(Fℓ(I))

and the final gradCAM heat map for L is obtained using

ML
i = ReLU

 k∑
ℓ=1

αℓi F
ℓ(I)



214

GradCAM
▶ Consider a convolutional network and fix an input image I

of the network.
ALL values of all neurons yj are computed on the input I.

▶ Fix a convolutional layer L consisting of convolutional
feature maps F1, . . . ,Fk .
Each F ℓ is a set of neurons that belong to the feature map F ℓ.
Slightly abusing notation, we write Fℓ(I) to denote
the tensor of all values of all neurons in Fℓ(I).

▶ Fix an output neuron i ∈ Y with the inner potential ξi .
Compute the average importance of Fℓ(I):

αℓi =
1
|Fℓ|

∑
j∈Fℓ

∂ξi

∂yj
(Fℓ(I))

and the final gradCAM heat map for L is obtained using

ML
i = ReLU

 k∑
ℓ=1

αℓi F
ℓ(I)


214

GradCAM on VGG16

215

GradCAM on VGG16

Consider the last convolutional layer of the VGG16 (Block5,
Conv3)

215

GradCAM on VGG16

From left to right:
▶ An image of a cat (has to be resized to 224 × 224 to fit

VGG16)
▶ The gradCAM heat map for the last convolutional layer and

the class "cat"
▶ Rescaled and smoothed gradCAM heat map.
▶ The gradCAM overlay.

216

Occlusion

▶ Systematically cover parts of the input image.
▶ Observe the effect on the output value.
▶ Find regions with the largest effect.

217

Occlusion - example

218

Occlusion - example

219

LIME - for images

Let us fix an image I to be explained.

Outline:
▶ Consider superpixels of I as interpretable components.
▶ Construct a linear model approximating the network around

the image I with weights corresponding to the superpixels.
▶ Select the superpixels with weights of large magnitude as

the important ones.

220

LIME - for images

Let us fix an image I to be explained.

Outline:
▶ Consider superpixels of I as interpretable components.

▶ Construct a linear model approximating the network around
the image I with weights corresponding to the superpixels.

▶ Select the superpixels with weights of large magnitude as
the important ones.

220

LIME - for images

Let us fix an image I to be explained.

Outline:
▶ Consider superpixels of I as interpretable components.
▶ Construct a linear model approximating the network around

the image I with weights corresponding to the superpixels.

▶ Select the superpixels with weights of large magnitude as
the important ones.

220

LIME - for images

Let us fix an image I to be explained.

Outline:
▶ Consider superpixels of I as interpretable components.
▶ Construct a linear model approximating the network around

the image I with weights corresponding to the superpixels.
▶ Select the superpixels with weights of large magnitude as

the important ones.

220

Superpixels as interpretable components

Denote by P1, . . . ,Pℓ all superpixels of I.

Consider binary vectors x⃗ = (x1, . . . , xℓ) ∈ {0,1}ℓ.

Each such vector x⃗ determines a "subimage" I[x⃗] of
I obtained by removing all Pk with xk = 0.

221

Superpixels as interpretable components

Denote by P1, . . . ,Pℓ all superpixels of I.

Consider binary vectors x⃗ = (x1, . . . , xℓ) ∈ {0,1}ℓ.

Each such vector x⃗ determines a "subimage" I[x⃗] of
I obtained by removing all Pk with xk = 0.

221

Superpixels as interpretable components

Denote by P1, . . . ,Pℓ all superpixels of I.

Consider binary vectors x⃗ = (x1, . . . , xℓ) ∈ {0,1}ℓ.

Each such vector x⃗ determines a "subimage" I[x⃗] of
I obtained by removing all Pk with xk = 0.

221

LIME

▶ Let us fix an output neuron i, we denote by ξi(J) the inner
potential of the output neuron i for the input image J.

▶ Given the image I to be interpreted, consider the following
training set:

T =
{
(x⃗1, ξi(I[x⃗1])), . . . , (x⃗p , ξi(I[x⃗p])

}
Here x⃗h = (xh1, . . . , xhℓ) are (some) binary vectors of {0,1}.
E.g., randomly selected.

▶ Train a linear model (ADALINE) with weights w0,w1, . . . ,wℓ

on T .
Intuitively, the linear model approximates the network on "subimages" of
I obtained by removing some superpixels.

▶ Inspect the weights (magnitude and sign).

222

LIME

▶ Let us fix an output neuron i, we denote by ξi(J) the inner
potential of the output neuron i for the input image J.

▶ Given the image I to be interpreted, consider the following
training set:

T =
{
(x⃗1, ξi(I[x⃗1])), . . . , (x⃗p , ξi(I[x⃗p])

}
Here x⃗h = (xh1, . . . , xhℓ) are (some) binary vectors of {0,1}.
E.g., randomly selected.

▶ Train a linear model (ADALINE) with weights w0,w1, . . . ,wℓ

on T .
Intuitively, the linear model approximates the network on "subimages" of
I obtained by removing some superpixels.

▶ Inspect the weights (magnitude and sign).

222

LIME

▶ Let us fix an output neuron i, we denote by ξi(J) the inner
potential of the output neuron i for the input image J.

▶ Given the image I to be interpreted, consider the following
training set:

T =
{
(x⃗1, ξi(I[x⃗1])), . . . , (x⃗p , ξi(I[x⃗p])

}
Here x⃗h = (xh1, . . . , xhℓ) are (some) binary vectors of {0,1}.
E.g., randomly selected.

▶ Train a linear model (ADALINE) with weights w0,w1, . . . ,wℓ

on T .
Intuitively, the linear model approximates the network on "subimages" of
I obtained by removing some superpixels.

▶ Inspect the weights (magnitude and sign).

222

LIME
More precisely, we train a linear model (ADALINE) F with weights
w⃗ = w0,w1, . . . ,wℓ on T minimizing the weighted mean-squared error

E(w⃗) =
1
p

p∑
k=1

πk · (F(x⃗k) − ξi(I[x⃗k]))
2 +Ω(w⃗)

where

▶ the weights are defined by

πk = exp

−(1 −
√

1 − (sk/ℓ))2

2ν2


Here sk is the number of elements in x⃗k equal to zero, ℓ is
the number of superpixels, ν determines how much perturbed
images are taken into account in the error.
Small ν means that πk is close to zero for x⃗k with many zeros.

▶ Ω(w⃗) is a regularization term making the number of non-zero
weights as small as possible.

223

LIME - example

224

LIME - example

225

LIME - example

226

LIME - example

227

Recurrent Neural Networks

228

RNN

▶ Input:
x⃗ = (x1, . . . , xM)

▶ Hidden:
h⃗ = (h1, . . . ,hH)

▶ Output:
y⃗ = (y1, . . . , yN)

229

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y 1 0 1
h (0,0) (1,1) (1,0) (0,1) · · ·

x (0,0) (1,0) (1,1)

230

RNN example

Activation function:

σ(ξ) =

1 ξ ≥ 0
0 ξ < 0

y y⃗1 = 1 y⃗2 = 0 y⃗3 = 1
h h⃗0 = (0,0) h⃗1 = (1,1) h⃗2 = (1,0) h⃗3 = (0,1) · · ·

x x⃗1 = (0,0) x⃗2 = (1,0) x⃗3 = (1,1)

230

RNN example

y y⃗1 = 1 y⃗2 = 0 y⃗3 = 1
h h⃗0 = (0,0) h⃗1 = (1,1) h⃗2 = (1,0) h⃗3 = (0,1) · · ·

x x⃗1 = (0,0) x⃗2 = (1,0) x⃗3 = (1,1)

230

RNN – formally

▶ M inputs: x⃗ = (x1, . . . , xM)

▶ H hidden neurons: h⃗ = (h1, . . . ,hH)

▶ N output neurons: y⃗ = (y1, . . . , yN)

▶ Weights:
▶ Ukk ′ from input xk ′ to hidden hk
▶ Wkk ′ from hidden hk ′ to hidden hk
▶ Vkk ′ from hidden hk ′ to output yk

231

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . ,htH)

We have h⃗0 = (0, . . . ,0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

232

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . ,htH)

We have h⃗0 = (0, . . . ,0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′



▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

232

RNN – formally

▶ Input sequence: x = x⃗1, . . . , x⃗T

x⃗t = (xt1, . . . , xtM)

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T

h⃗t = (ht1, . . . ,htH)

We have h⃗0 = (0, . . . ,0) and

h⃗tk = σ

 M∑
k ′=1

Ukk ′xtk ′ +

H∑
k ′=1

Wkk ′h(t−1)k ′


▶ Output sequence: y = y⃗1, . . . , y⃗T

y⃗t = (yt1, . . . , ytN)

where ytk = σ
(∑H

k ′=1 Vkk ′htk ′
)
.

232

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . ,0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

233

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . ,0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

233

RNN – in matrix form

▶ Input sequence: x = x⃗1, . . . , x⃗T

▶ Hidden sequence: h = h⃗0, h⃗1, . . . , h⃗T where

h⃗0 = (0, . . . ,0)

and

h⃗t = σ(Ux⃗t + Wh⃗t−1)

▶ Output sequence: y = y⃗1, . . . , y⃗T where

yt = σ(Vht)

233

RNN – Comments

▶ h⃗t is the memory of the network, captures what happened
in all previous steps (with decaying quality).

▶ RNN shares weights U,V ,W along the sequence.
Note the similarity to convolutional networks where the weights were
shared spatially over images, here they are shared temporally over
sequences.

▶ RNN can deal with sequences of variable length.
Compare with MLP which accepts only fixed-dimension vectors on
input.

234

Binary adder

The Task: Design a recurrent network with a single hidden
layer which works as a binary adder.

Example of behavior: Input two binary numbers, e.g., 111 and
101 (we assume that the least significant bit is on the left).

The input of the network will be: (1,1), (1,0), (1,1)

The output is supposed to be: 0,0,1 (we ignore the carry at the
end).

235

RNN – training

Training set

T =
{
(x1,d1), . . . , (xp ,dp)

}
here
▶ each xℓ = x⃗ℓ1, . . . , x⃗ℓTℓ is an input sequence,

▶ each dℓ = d⃗ℓ1, . . . , d⃗ℓTℓ is an expected output sequence.
Here each x⃗ℓt = (xℓt1, . . . , xℓtM) is an input vector and each
d⃗ℓt = (dℓt1, . . . ,dℓtN) is an expected output vector.

236

Error function

In what follows I will consider a training set with a single
element (x,d). I.e. drop the index ℓ and have
▶ x = x⃗1, . . . , x⃗T where x⃗t = (xt1, . . . , xtM)

▶ d = d⃗1, . . . , d⃗T where d⃗t = (dt1, . . . ,dtN)

The squared error of (x,d) is defined by

E(x,d) =

T∑
t=1

N∑
k=1

1
2
(ytk − dtk)

2

Recall that we have a sequence of network outputs
y = y⃗1, . . . , y⃗T and thus ytk is the k -th component of y⃗t

237

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:

▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

238

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.

▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"
weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

238

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!

238

Gradient descent (single training example)

Consider a single training example (x,d).

The algorithm computes a sequence of weight matrices as
follows:
▶ Initialize all weights randomly close to 0.
▶ In the step ℓ + 1 (here ℓ = 0,1,2, . . .) compute "new"

weights U(ℓ+1),V (ℓ+1),W (ℓ+1) from the "old" weights
U(ℓ),V (ℓ),W (ℓ) as follows:

U(ℓ+1)
kk ′ = U(ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δUkk ′

V (ℓ+1)
kk ′ = V (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δVkk ′

W (ℓ+1)
kk ′ = W (ℓ)

kk ′ − ε(ℓ) ·
δE(x,d)

δWkk ′

The above is THE learning algorithm that modifies weights!
238

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

239

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

239

Backpropagation

Computes the derivatives of E, no weights are modified!

δE(x,d)

δUkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · xtk ′ k ′ = 1, . . . ,M

δE(x,d)

δVkk ′
=

T∑
t=1

δE(x,d)

δytk
· σ′ · htk ′ k ′ = 1, . . . ,H

δE(x,d)

δWkk ′
=

T∑
t=1

δE(x,d)

δhtk
· σ′ · h(t−1)k ′ k ′ = 1, . . . ,H

Backpropagation:
δE(x,d)

δytk
= ytk − dtk (assuming squared error)

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

239

Long-term dependencies

δE(x,d)

δhtk
=

N∑
k ′=1

δE(x,d)

δytk ′
· σ′ · Vk ′k +

H∑
k ′=1

δE(x,d)

δh(t+1)k ′
· σ′ ·Wk ′k

▶ Unless
∑H

k ′=1 σ
′
·Wk ′k ≈ 1, the gradient either vanishes, or

explodes.
▶ For a large T (long-term dependency), the gradient

"deeper" in the past tends to be too small (large).
▶ A solution: LSTM etc.

LSTM is currently a bit obsolete. The main idea is to decompose W into
several matrices, each responsible for a different task. One is
concerned about memory, one is concerned about the output at each
step, etc.

https://arxiv.org/pdf/2205.13504.pdf

240

LSTM

h⃗t = o⃗t ◦ σh(C⃗t) output

C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t memory

C̃t = σh(WC · h⃗t−1 + UC · x⃗t) new memory contents

o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t) output gate

f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t) forget gate

i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t) input gate

▶ ◦ is the component-wise product of vectors
▶ · is the matrix-vector product
▶ σh hyperbolic tangents (applied component-wise)
▶ σg logistic sigmoid (applied component-wise)

241

RNN vs LSTM

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

242

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

243

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

243

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

243

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

243

LSTM

⇒ h⃗t = o⃗t ◦ σh(C⃗t)

⇒ C⃗t = f⃗t ◦ C⃗t−1 + i⃗t ◦ C̃t

⇒ C̃t = σh(WC · h⃗t−1 + UC · x⃗t)

⇒ o⃗t = σg(Wo · h⃗t−1 + Uo · x⃗t)

⇒ f⃗t = σg(Wf · h⃗t−1 + Uf · x⃗t)

⇒ i⃗t = σg(Wi · h⃗t−1 + Ui · x⃗t)

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

243

LSTM – summary

▶ LSTM (almost) solves the vanishing gradient problem w.r.t.
the "internal" state of the network.

▶ Learns to control its own memory (via forget gate).
▶ Revolution in machine translation and text processing.

... but the development goes on ...

244

Time-series Forecasting with LSTM

(see: https://www.tensorflow.org/tutorials/structured_data/
time_series)

▶ Weather time series dataset
▶ 14 different features such as air temperature, atmospheric

pressure, and humidity
▶ collected every 10 minutes, beginning in 2003 (only 2009 -

2016 considered in the example)

The Task: Predict the temperature for the next hour.
245

https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series

Weather Data

246

Preprocessing (omitted)

Before applying any prediction model, proper preprocessing is
essential for time series data.

▶ Train-validation-test Split

▶ Data Normalization

▶ Detrending

▶ Seasonal Adjustment

▶ Smoothing

247

Baseline model

The baseline: Predict that the temperature stays constant.

248

Simple linear model

The linear model: Consider the current values of all variables
and predict the temperature using linear regression.

249

Linear explained - weights

250

Data Windowing

Assume that the samples are taken hourly (subsample the
10-minute samples).

Consider windowed inputs to the model.

E.g., predict one hour given 6 hours from the past:

251

Data Windowing

252

LSTM

Given 24 hours in the past, predict the next hour with LSTM.

A possible LSTM architecture:

The used LSTM had the memory dimension equal to 32.

253

LSTM forecasting

254

Model comparison

MAE = mean absolute error

255

Time-series prediction summary

▶ The presented approach is very basic!
▶ Omitted lots of important ideas:

▶ Preprocessing - extremely important!
▶ Cross-validation - tricky!
▶ Classical models ARIMA etc. - very deep and advanced

area!
▶ Proper evaluation, explainability, ... (a whole new course

possible!)
▶ Read books, e.g.

▶ Hyndman and Athanasopoulos. Forecasting: Principles and
Practice. Online: https://otexts.com/fpp2/

▶ Manu Joseph. Modern Time Series Forecasting with
Python. Packt Publishing. 2022

256

RNN text generator (a little obsolete example)

Generating texts letter by letter.

257

Shakespeare

▶ Generating Shakespeare letter by letter.

▶ Trained on Shakespeare’s plays (4.4MB).

VIOLA: Why, Salisbury must find his flesh and thought That which I
am not aps, not a man and in fire, To show the reining of the raven
and the wars To grace my hand reproach within, and not a fair are
hand, That Caesar and my goodly father’s world; When I was heaven
of presence and our fleets, We spare with hours, but cut thy council I
am great, Murdered and by thy master’s ready there My power to give
thee but so much as hell: Some service in the noble bondman here,
Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods With his heads, and
my hands are wonder’d at the deeds, So drop upon your lordship’s
head, and your opinion Shall be against your honour.

258

Wikipedia
▶ Hutter Prize 100MB dataset from Wikipedia (96MB)

Naturalism and decision for the majority of Arab countries’ capitalide was
grounded by the Irish language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham’s sovereignty. His generals were the
powerful ruler of the Portugal in the [[Protestant Immineners]], which could be
said to be directly in Cantonese Communication, which followed a ceremony
and set inspired prison, training. The emperor travelled back to [[Antioch,
Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful
fashioned the [[Thrales]], [[Cynth’s Dajoard]], known in western [[Scotland]],
near Italy to the conquest of India with the conflict. Copyright was the
succession of independence in the slop of Syrian influence that was a famous
German movement based on a more popular servicious, non-doctrinal and
sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http:
//www.humah.yahoo.com/guardian.cfm/7754800786d17551963s89.htm

Official economics Adjoint for the Nazism, Montgomery was swear to
advance to the resources for those Socialism’s rule, was starting to signing a
major tripad of aid exile.]]

259

http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm
http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm

Xml halucination:

<page>
<title>Antichrist</title>
<id>865</id>
<revision>
<id>15900676</id>
<timestamp>2002-08-03T18:14:12Z</timestamp>
<contributor>
<username>Paris</username>
<id>23</id>

</contributor>
<minor />
<comment>Automated conversion</comment>
<text xml:space="preserve">
#REDIRECT [[Christianity]]</text>

</revision>
</page>

260

LaTeX

▶ Algebraic geometry textbook.
▶ LaTeX source (16MB).
▶ Almost compilable.

261

262

Linux source code

▶ Trained on all source files of Linux kernel concatenated
into a single file (474MB of C code).

263

264

265

Evolution of Shakespeare

100 iter.:

300 iter.:

500 iter.:

700 iter.:

1200 iter.:

2000 iter.:

266

Attention

Consider the following task: Given a sequence of vectors

x = x⃗1, . . . , x⃗T

generate a new sequence

y = y⃗1, . . . , y⃗T ′

of possibly different lengths (i.e., possibly T , T ′).

E.g., a machine translation task, x is an embedding of an
English sentence, y is a sequence of probability distributions on
a German vocabulary.

267

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

268

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

268

Attention

Consider two recurrent networks:
▶ Enc the encoder

▶ Hidden state h⃗0 initialized by standard methods for
recurrent networks

▶ Reads x⃗1, . . . , x⃗T , does not output anything but produces
a sequence of hidden states h⃗1, . . . , h⃗T

▶ Dec the decoder
▶ The initial hidden state is h⃗T
▶ Does not read anything but outputs the sequence y⃗1, . . . , y⃗T ′

This is a simplification. Typically, Dec reads y⃗0, y⃗1, . . . , y⃗T ′−1 where
y⃗0 is a special vector embedding a separator.

Trained on pairs of sentences, able to learn a fine translation between major
languages (if the recurrent networks are LSTM).

Is not perfect because all info about x = x⃗1, . . . , x⃗T is squeezed
into the single state vector h⃗T .
In particular, the network tends to forget the context of each word.

268

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′

T ′ is computed,
▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

269

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′

T ′ is computed,
▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

269

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′

T ′ is computed,

▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

269

Attention in Recurrent Networks

What if we provide the decoder with an information about
the relevant context of the generated word?

We use the same encoder Enc producing the sequence of
hidden states: h⃗1, . . . , h⃗T

The decoder Dec is still a recurrent network but
▶ the hidden state h⃗′0 initialized by h⃗T and a sequence of

hidden states h⃗′0, . . . , h⃗
′

T ′ is computed,
▶ reads a sequence of context vectors c⃗1, . . . , c⃗T ′ where

c⃗i =

T∑
j=1

αij h⃗j where αij =
exp(eij)∑T

k=1 exp(eik)

where eij = MLP(h⃗′i−1, h⃗j)

▶ outputs the sequence y⃗1, . . . , y⃗T ′

269

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

270

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

270

Do We Still Need the Recurrence?

▶ The attention mechanism extracts the information from
the sequence quite well.

▶ Is there a reason for reading the input sequence
sequentially?

▶ Could we remove the recurrent network itself and preserve
only the attention?

270

271

Self-Attention Layer (is all you need)

Fix an input sequence: x⃗1, . . . , x⃗T

Consider three learnable matrices: Wq,Wk ,Wv

Generate sequences of queries, keys, and values:
▶ q⃗1, . . . , q⃗T where q⃗i = Wqx⃗i for all i = 1, . . . ,T

▶ k⃗1, . . . , k⃗T where k⃗i = Wk x⃗i for all i = 1, . . . ,T
▶ v⃗1, . . . , v⃗T where v⃗i = Wv x⃗i for all i = 1, . . . ,T

272

Self-Attention Layer (is all you need)

Fix an input sequence: x⃗1, . . . , x⃗T

Consider three learnable matrices: Wq,Wk ,Wv

Generate sequences of queries, keys, and values:
▶ q⃗1, . . . , q⃗T where q⃗i = Wqx⃗i for all i = 1, . . . ,T
▶ k⃗1, . . . , k⃗T where k⃗i = Wk x⃗i for all i = 1, . . . ,T
▶ v⃗1, . . . , v⃗T where v⃗i = Wv x⃗i for all i = 1, . . . ,T

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij = q⃗i · k⃗j

Intuitively, eij measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.

Define

αij =
exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
dattn is the dimension of v⃗i

I.e., we apply the good old softmax to (ei1, . . . ,eiT) /
√

dattn 272

Self-Attention Layer (is all you need)

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij = q⃗i · k⃗j

Intuitively, eij measures how much the input at the position i is related to the
input at the position j, in other words, how much the query fits the key.

Define

αij =
exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
dattn is the dimension of v⃗i

I.e., we apply the good old softmax to (ei1, . . . ,eiT) /
√

dattn

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

272

Explainability and Self-Attention

BertViz (https://arxiv.org/pdf/1904.02679)

The intensity of the blue lines corresponds to αij
273

https://arxiv.org/pdf/1904.02679

Bias Detection

The visualization can be used to detect bias in the model:

Here, according to the model,
▶ He ≈ Doctor
▶ She ≈ Nurse

274

Neuron View

275

Language Model

A sequence of tokens a1, . . . ,aT ∈ Σ
∗

E.g. words from a vocabulary Σ.

The goal: Maximize

T∏
k=1

P(ak | a1, . . . ,ak−1;W) (= P(a1, . . . ,aT ;W))

where
▶ P is the conditional probability measure over Σ modeled

using a neural network with weights W .

Can be used to generate text:

Given a1, . . . ,ak , sample ak+1 from P(ak+1 | a1, . . . ,ak ;W)

276

Language Model

A sequence of tokens a1, . . . ,aT ∈ Σ
∗

E.g. words from a vocabulary Σ.

The goal: Maximize

T∏
k=1

P(ak | a1, . . . ,ak−1;W) (= P(a1, . . . ,aT ;W))

where
▶ P is the conditional probability measure over Σ modeled

using a neural network with weights W .

Can be used to generate text:

Given a1, . . . ,ak , sample ak+1 from P(ak+1 | a1, . . . ,ak ;W)

276

GPT

277

GPT

278

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =


exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

279

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =


exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

279

Masked Self-Attention Layer (is all you need)

Assume an attention mechanism which given an input
sequence x⃗1, . . . , x⃗T generates y⃗1, . . . , y⃗T .

The Problem: How to generate y⃗k only based on x⃗1, . . . , x⃗k−1 ?

Define a vector score for all i, j ∈ {1, . . . ,T } by

eij =

q⃗i · k⃗j if j < i
−∞ otherwise.

This means that

αij =


exp(eij /

√
dattn)∑T

k=1 exp(eik /
√

dattn)
if j < i

0 otherwise.

Define a sequence of outputs y⃗1, . . . , y⃗T by

y⃗i =

T∑
j=1

αij · v⃗j

279

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h = 1, . . . ,H the h-th head is an attention mechanism which
given the input x⃗1, . . . , x⃗T produces

y⃗h
1 , . . . , y⃗

h
T

Note that the output may be different, which means that, in particular, the
matrices Wq,Wk ,Wv may be different for each head.

Assume that all vectors y⃗h
k are of the same dimension dmid and

consider a learnable matrix Wout of dimensions dout × (H · dmid).

The multi-head attention produces the following output:

y⃗1, . . . , y⃗T

where

y⃗k = Wout ·
(
y⃗1

k ⊙ y⃗2
k ⊙ · · · y⃗

H
k

)
Here, ⊙ is a concatenation of vectors.

280

Multi-head Self-Attention Layer (is all you need)

Assume the number of heads is H.

For h = 1, . . . ,H the h-th head is an attention mechanism which
given the input x⃗1, . . . , x⃗T produces

y⃗h
1 , . . . , y⃗

h
T

Note that the output may be different, which means that, in particular, the
matrices Wq,Wk ,Wv may be different for each head.

Assume that all vectors y⃗h
k are of the same dimension dmid and

consider a learnable matrix Wout of dimensions dout × (H · dmid).

The multi-head attention produces the following output:

y⃗1, . . . , y⃗T

where

y⃗k = Wout ·
(
y⃗1

k ⊙ y⃗2
k ⊙ · · · y⃗

H
k

)
Here, ⊙ is a concatenation of vectors.

280

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

281

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.

Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

281

Multi-head Self-Attention Summary

Input: A sequence x⃗1, . . . , x⃗T
Output: A sequence y⃗1, . . . , y⃗T
I.e., a sequence of the same length. The dimensions of y⃗k and x⃗k do not have
to be equal.

Attention:
Learnable parameters: Matrices Wq,Wk ,Wv .
These matrices are used to compute queries, keys, and values from
x⃗1, . . . , x⃗T . Output y⃗1, . . . , y⃗T is computed using values "scaled" by
the query-key attention.
Multi-head attention:
Learnable parameters:
▶ Matrices Wh

q ,W
h
k ,W

h
v where h = 1, . . . ,H and H is

the number of heads.
Each attention head operates independently on the input x⃗1, . . . , x⃗T .

▶ Matrix Wout .
Linearly transforms the concatenated results of the attention heads.

281

GPT - transformer

282

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . ,d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′

T where

x⃗′k = x⃗k + P⃗k

283

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . ,d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′

T where

x⃗′k = x⃗k + P⃗k

283

Positional encoding

The Goal: To encode a position (index) k ∈ {1, . . . ,T } into
a vector P⃗k of real numbers.

Assume that P⃗k should have a dimension d.
Given a position k ∈ {1, . . . ,T } and i ∈ {0, . . . ,d/2} define

Pk ,2i = sin
(k
n2i/d

)
Pk ,(2i+1) = cos

(k
n2i/d

)
Here n = 10000.
A user defined constant, the original paper suggests n = 10000.

Given an input sequence x⃗1, . . . , x⃗T we add the position
embedding to each x⃗k obtaining a new input sequence
x⃗′1, . . . , x⃗

′

T where

x⃗′k = x⃗k + P⃗k

283

Positional encoding/embedding

284

Positional encoding/embedding

▶ Vertically: Sinusoidal functions
▶ Horizontally: Decreasing frequency

For any offset o ∈ {1, . . . ,T } there is a linear transformation M
such that for any k ∈ {1, . . . ,T − o} we have MP⃗k = P⃗k+o .
Intuitively, just rotate each component of the P⃗k appropriately.

285

GPT-2 - transformer

286

Layer normalization

Given a vector x⃗ ∈ Rd , the layer normalization computes:

x⃗′ = γ ·
(x⃗ − µ)
σ

+ β

Here
▶ µ = 1

d
∑d

i=1 xi and σ2 = 1
d
∑d

i=1(xi − µ)2

▶ γ, β ∈ Rd are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:
x⃗1, . . . , x⃗T . The layer normalization is applied to each x⃗k ,
producing a sequence of "normalized" vectors.

287

Layer normalization

Given a vector x⃗ ∈ Rd , the layer normalization computes:

x⃗′ = γ ·
(x⃗ − µ)
σ

+ β

Here
▶ µ = 1

d
∑d

i=1 xi and σ2 = 1
d
∑d

i=1(xi − µ)2

▶ γ, β ∈ Rd are vectors of trainable parameters

In Transformer:
The input to the layer normalization is a sequence of vectors:
x⃗1, . . . , x⃗T . The layer normalization is applied to each x⃗k ,
producing a sequence of "normalized" vectors.

287

GPT - learning

A sequence of tokens a1, . . . ,aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|

We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−

T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k .

288

GPT - learning

A sequence of tokens a1, . . . ,aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|

We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−

T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k .

288

GPT - learning

A sequence of tokens a1, . . . ,aT ∈ Σ and their
one-hot encodings u⃗1, . . . , u⃗T ∈ {0,1}|Σ|

We assume that a1 is a special token marking the start of
the sequence.

Embed to vectors and add the position
encoding (We is an embedding matrix):

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network (with the transformer block repeated 12x) to
x⃗1, . . . , x⃗T and obtain y⃗1, . . . , y⃗T
(Here assume that each y⃗k ∈ [0,1]Σ is a probability distribution on Σ)

Compute the error:

−

T−1∑
ℓ=1

log
(
y⃗ℓ[aℓ+1]

)
Here y⃗ℓ[ak+1] is the probability of ak+1 in the distribution y⃗k .

288

GPT - inference

A sequence of tokens
a1, . . . ,aℓ ∈ Σ and their one-hot
encodings u⃗1, . . . , u⃗ℓ ∈ {0,1}|Σ|

Embed to vectors and add
the position encoding:

x⃗k = We · u⃗k + Pk ∈ Rsetd

Apply the network to x⃗1, . . . , x⃗ℓ and
obtain y⃗1, . . . , y⃗ℓ
(Assume that each y⃗k ∈ [0,1]Σ is
a probability distribution on Σ)

Sample the next token from

aℓ+1 ∼ y⃗ℓ
https://transformer.huggingface.co/doc/distil-gpt2

289

Neural networks summary

Architectures:
▶ Multi-layer perceptron (MLP):

▶ dense connections between layers
▶ Convolutional networks (CNN):

▶ local receptors, feature maps
▶ pooling

▶ Recurrent networks (RNN):
▶ self-loops but still feed-forward through time

▶ Transformer
▶ Attention, query-key-value

Training:
▶ gradient descent algorithm + heuristics

290

Autoencoders

An autoencoder consists of two parts:
▶ ϕ : Rn

→ Rm the encoder
▶ ψ : Rm

→ Rn the decoder
The goal is to find ϕ, ψ so that ψ ◦ ϕ is (almost) identity.

The value h⃗ = ϕ(x⃗) is called the latent representation of x⃗.

291

Autoencoders – training

Assume

T = {x⃗1, . . . , x⃗p}

where x⃗i ∈ R
n for all i ∈ {1, . . . ,n}.

Minimize the reconstruction error

E =

p∑
i=1

(x⃗i − ψ(ϕ(x⃗i)))
2

292

Autoencoders – neural networks

Both ϕ and ψ can be represented using MLPMϕ andMψ,
respectively.

Mϕ andMψ can be connected into a single network.

293

Autoencoders – Usage

▶ Compression – from x⃗ to h⃗.
▶ Dimensionality reduction – the latent representation h⃗ has

a smaller dimension.
▶ Pretraining (next slides)
▶ Generative versions – (roughly) generate h⃗ from a known

distribution, letMψ generate realistic inputs x⃗

294

Application – dimensionality reduction

▶ Dimensionality reduction: A mapping R from Rn to Rm

where
▶ m < n,
▶ for every example x⃗ we have that x⃗ can be "reconstructed"

from R(x⃗).

▶ Standard method: PCA (there are many linear as well as
non-linear variants)

295

Application – dimensionality reduction

▶ Dimensionality reduction: A mapping R from Rn to Rm

where
▶ m < n,
▶ for every example x⃗ we have that x⃗ can be "reconstructed"

from R(x⃗).
▶ Standard method: PCA (there are many linear as well as

non-linear variants)

295

Reconstruction – PCA

1024 pixels compressed to 100 dimensions (i.e. 100 numbers).

296

PCA vs Autoencoders

297

Autoencoders – Pretraining

▶ An autoencoder is (pre)trained on input data x⃗i without
desired outputs (unsupervised)
typically much larger datasets of unlabelled data

▶ the encoderMϕ computes a latent representation for
every input vector, it is supposed to extract important
features (controversial)

▶ A new part of the modelMtop is added on top ofMϕ (e.g.
a MLP taking the output ofMϕ as an input).

▶ Subsequently, labels are added and the whole model
(composed ofMϕ andMtop) is trained on labelled data.

298

Autoencoders – Pretraining

299

Generative adversarial networks

Generative adversarial Nets, Goodfellow et al, NIPS 2014

An unsupervised generative model.

Two networks:
▶ Generator: A network computing a function G : Rk

→ Rn

which takes a random input z⃗ with a distribution pz⃗
(e.g., multivariate normal distribution) and returns G(z⃗)
which should follow the target probability distribution.
E.g., G(z⃗) could be realistically looking faces.

▶ Discriminator: A network computing a function
D : Rn

→ [0,1] that given x⃗ ∈ Rn gives a probability D(x)
that x⃗ is not "generated" by G.
E.g., x⃗ can be an image, D(x⃗) is a probability that it is a true face of an
existing person.

What error function will "motivate" G to generate realistically
and D to discriminate appropriately?

300

Generative adversarial networks – error function

Let T = {x⃗1, . . . , x⃗p} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of T .
D should recognize that its input is not from T .

Generate a multiset of noise samples: F = {z⃗1, . . . , z⃗p} from
the distribution pz⃗ .

ET ,F (G,D) = −
1
p

p∑
i=1

(
lnD(x⃗i) + ln(1 − D(G(z⃗i)))

)
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!

301

Generative adversarial networks – error function

Let T = {x⃗1, . . . , x⃗p} be a training multiset (or a minibatch).

Intuition: G should produce outputs similar to elements of T .
D should recognize that its input is not from T .

Generate a multiset of noise samples: F = {z⃗1, . . . , z⃗p} from
the distribution pz⃗ .

ET ,F (G,D) = −
1
p

p∑
i=1

(
lnD(x⃗i) + ln(1 − D(G(z⃗i)))

)
This is just the binary cross entropy error of D which classifies the input as
either real, or fake.

The problem can be seen as a game: The discriminator wants
to minimize E, the generator wants to maximize E!

301

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1
p

p∑
i=1

ln(1 − D(G(z⃗i)))


(The updates may also use momentum, adaptive learning rate etc.)

302

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1
p

p∑
i=1

ln(1 − D(G(z⃗i)))


(The updates may also use momentum, adaptive learning rate etc.)

302

The learning algorithm
Denote by WG and WD the weights of G and D, respectively.

In every iteration of the training, modify weights of the discriminator
and the generator as follows:

For k steps (here k is a hyperparameter) update the discriminator as
follows:
▶ Sample a minibatch T = {x⃗1, . . . , x⃗m} from the training set T .
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update WD using the gradient descent w.r.t. E:

WD := WD − α · ∇WD ET ,F(G,D)

Now update the generator:
▶ Sample a minibatch F = {z⃗1, . . . , z⃗m} from the distribution pz .
▶ Update the generator by gradient ascent:

WG := WG − α · ∇WG

1
p

p∑
i=1

ln(1 − D(G(z⃗i)))


(The updates may also use momentum, adaptive learning rate etc.) 302

GAN MNIST

303

GAN faces

... from the original paper.

304

GAN refined

... after some refinements.

... this was the start of deepfakes.

305

Nobel Prize in Physics 2024

"for foundational discoveries and inventions that enable
machine learning with artificial neural networks"

306

Hopfield Network

307

Hopfield network (1982)

Auto-associative network: Given an input, the network outputs
a training example (encoded in its weights) "similar" to
the given input.

308

Hopfield network

Architecture:
▶ complete topology, i.e., output of each neuron is input to all

neurons
▶ all neurons are both input and output
▶ denote by ξ1, . . . , ξn inner potentials and by y1, . . . , yn

outputs (states) of individual neurons
▶ denote by wji the weight of connection from a neuron

i ∈ {1, . . . ,n} to a neuron j ∈ {1, . . . ,n}
We assume wji = wij , i.e. symmetric connections.

▶ assume wjj = 0 for every j = 1, . . . ,n
▶ For now: no neuron has a bias

309

Hopfield network

Learning: Training set

T = {x⃗k | x⃗k = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

The goal is to "store" the training examples of T so that the
network is able to associate similar examples.

Hebb’s learning rule: If the inputs to a system cause the same pattern
of activity to occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That is, each
element will tend to turn on every other element and (with negative weights)
to turn off the elements that do not form part of the pattern. To put it another
way, the pattern as a whole will become "auto-associated".
Mathematically speaking:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Intuition: "Neurons that fire together, wire together".

310

Hopfield network

Learning: Training set

T = {x⃗k | x⃗k = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

The goal is to "store" the training examples of T so that the
network is able to associate similar examples.

Hebb’s learning rule: If the inputs to a system cause the same pattern
of activity to occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That is, each
element will tend to turn on every other element and (with negative weights)
to turn off the elements that do not form part of the pattern. To put it another
way, the pattern as a whole will become "auto-associated".

Mathematically speaking:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Intuition: "Neurons that fire together, wire together".

310

Hopfield network

Learning: Training set

T = {x⃗k | x⃗k = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

The goal is to "store" the training examples of T so that the
network is able to associate similar examples.

Hebb’s learning rule: If the inputs to a system cause the same pattern
of activity to occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That is, each
element will tend to turn on every other element and (with negative weights)
to turn off the elements that do not form part of the pattern. To put it another
way, the pattern as a whole will become "auto-associated".
Mathematically speaking:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Intuition: "Neurons that fire together, wire together".
310

Hopfield network

Learning: Training set

T = {x⃗k | x⃗k = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

Hebb’s rule:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Note that wji = wij , i.e. the weight matrix is symmetric.

Learning can be seen as a poll about equality of inputs:
▶ If xkj = xki , then the training example votes for "i equals j"

by adding one to wji .
▶ If xkj , xki , then the training example votes for "i does not

equal j" by subtracting one from wji .

311

Hopfield network

Learning: Training set

T = {x⃗k | x⃗k = (xk1, . . . , xkn) ∈ {−1,1}n, k = 1, . . . ,p}

Hebb’s rule:

wji =

p∑
k=1

xkjxki 1 ≤ j , i ≤ n

Note that wji = wij , i.e. the weight matrix is symmetric.

Learning can be seen as a poll about equality of inputs:
▶ If xkj = xki , then the training example votes for "i equals j"

by adding one to wji .
▶ If xkj , xki , then the training example votes for "i does not

equal j" by subtracting one from wji .

311

Hopfield network

Activity: Initially, neurons set to the network input
x⃗ = (x1, . . . , xn), thus y(0)

j = xj for every j = 1, . . . ,n.

Cyclically update states of neurons, i.e. in step t + 1 compute
the value of a neuron j such that j = (t mod p) + 1, as follows:

Compute the inner potential:

ξ(t)j =

n∑
i=1

wjiy
(t)
i

then

y(t+1)
j =


1 ξ(t)j > 0

y(t)
j ξ(t)j = 0

−1 ξ(t)j < 0

312

Hopfield network

Activity: Initially, neurons set to the network input
x⃗ = (x1, . . . , xn), thus y(0)

j = xj for every j = 1, . . . ,n.

Cyclically update states of neurons, i.e. in step t + 1 compute
the value of a neuron j such that j = (t mod p) + 1, as follows:

Compute the inner potential:

ξ(t)j =

n∑
i=1

wjiy
(t)
i

then

y(t+1)
j =


1 ξ(t)j > 0

y(t)
j ξ(t)j = 0

−1 ξ(t)j < 0

312

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, the computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

313

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, the computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

313

Hopfield network – activity

The computation stops in a step t ∗ if the network is for the first
time in a stable state, i.e.

y(t ∗+n)
j = y(t ∗)

j (j = 1, . . . ,n)

Theorem
Assuming symmetric weights, the computation of a Hopfiled
network always stops for every input.

This implies that a given Hopfiled network computes a function
from {−1,1}n to {−1,1}n (determined by its weights).

313

Ising model – an analogy

Simple models of magnetic materials resemble the Hopfield
network.

▶ atomic magnets organized into
square-lattice

▶ each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

▶ orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
the orientation of the other magnets

▶ weights in the Hopfiled net model
determine interaction among
magnets

314

Ising model – an analogy

Simple models of magnetic materials resemble the Hopfield
network.

▶ atomic magnets organized into
square-lattice

▶ each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

▶ orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
the orientation of the other magnets

▶ weights in the Hopfiled net model
determine interaction among
magnets

314

Ising model – an analogy

Simple models of magnetic materials resemble the Hopfield
network.

▶ atomic magnets organized into
square-lattice

▶ each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

▶ orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
the orientation of the other magnets

▶ weights in the Hopfiled net model
determine interaction among
magnets

314

Ising model – an analogy

Simple models of magnetic materials resemble the Hopfield
network.

▶ atomic magnets organized into
square-lattice

▶ each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

▶ orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
the orientation of the other magnets

▶ weights in the Hopfiled net model
determine interaction among
magnets

314

Ising model – an analogy

Simple models of magnetic materials resemble the Hopfield
network.

▶ atomic magnets organized into
square-lattice

▶ each magnet may have only one of
two possible orientations (in the
Hopfield network +1 a −1)

▶ orientation of each magnet is
influenced by an external magnetic
field (input of the network) as well as
the orientation of the other magnets

▶ weights in the Hopfiled net model
determine interaction among
magnets

314

Energy function

Energy function E assigns to every state y⃗ ∈ {−1,1}n

a (potential) energy:

E(y⃗) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

▶ states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

▶ i.e., large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(y⃗(t)) ≥ E(y⃗(t+1)), stable states y⃗(t ∗) correspond to local
minima of E.

315

Energy function

Energy function E assigns to every state y⃗ ∈ {−1,1}n

a (potential) energy:

E(y⃗) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

▶ states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

▶ i.e., large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(y⃗(t)) ≥ E(y⃗(t+1)), stable states y⃗(t ∗) correspond to local
minima of E.

315

Energy function

Energy function E assigns to every state y⃗ ∈ {−1,1}n

a (potential) energy:

E(y⃗) = −
1
2

n∑
j=1

n∑
i=1

wjiyjyi

▶ states with low energy are stable (few neurons "want to"
change their states), states with high energy are not stable

▶ i.e., large (positive) wjiyjyi is stable and small (negative)
wjiyjyi is not stable

The energy does not increase during computation:
E(y⃗(t)) ≥ E(y⃗(t+1)), stable states y⃗(t ∗) correspond to local
minima of E.

315

Energy landscape

316

Hopfield network – convergence

Observe that
▶ the energy does not increase during computation:

E(y⃗(t)) ≥ E(y⃗(t+1))

▶ if the state is updated in a step t + 1, then
E(y⃗(t)) > E(y⃗(t+1))

▶ there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that the computation of a Hopfield network always
stops.

317

Hopfield network – convergence

Observe that
▶ the energy does not increase during computation:

E(y⃗(t)) ≥ E(y⃗(t+1))

▶ if the state is updated in a step t + 1, then
E(y⃗(t)) > E(y⃗(t+1))

▶ there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that the computation of a Hopfield network always
stops.

317

Hopfield network – convergence

Observe that
▶ the energy does not increase during computation:

E(y⃗(t)) ≥ E(y⃗(t+1))

▶ if the state is updated in a step t + 1, then
E(y⃗(t)) > E(y⃗(t+1))

▶ there are only finitely many states, and thus, eventually,
a local minimum of E is reached.

This proves that the computation of a Hopfield network always
stops.

317

Hopfield network – example

▶ figures 12 × 10
(120 neurons, −1 is white and 1 is black)

▶ learned 8 figures
▶ input generated with 25% noise
▶ image shows the activity of the

Hopfield network

318

Hopfield network – example

319

Hopfield network – example

320

Restricted Boltzmann Machines

321

Restricted Boltzmann machine (RBM)

Architecture:
▶ Neural network with cycles and symmetric connections,

neurons divided into two disjoint sets:
▶ V - visible
▶ H - hidden

Connections: V × S (complete bipartite graph)
▶ N is a set of all neurons.
▶ Denote by ξj the inner potential and by yj the output (i.e.

state) of neuron j.
State of the machine: y⃗ ∈ {0,1}|N|.

▶ Denote by wji ∈ R the weight of the connection from i to j
(and thus also from j to i).

322

RBM – activity

Activity: States of neurons initially set to values of {0,1}, i.e.
y(0)

j ∈ {0,1} for j ∈ N.

In the step t + 1 do the following:
▶ t even: randomly choose new values of all hidden neurons,

for every j ∈ H

P
[
y(t+1)

j = 1
]
= 1

/ 1 + exp

−∑
i∈V

wjiy
(t)
i




▶ t odd: randomly choose new values of all visible neurons,
for every j ∈ V

P
[
y(t+1)

j = 1
]
= 1

/ 1 + exp

−∑
i∈H

wjiy
(t)
i




323

RBM – activity

Activity: States of neurons initially set to values of {0,1}, i.e.
y(0)

j ∈ {0,1} for j ∈ N.

In the step t + 1 do the following:
▶ t even: randomly choose new values of all hidden neurons,

for every j ∈ H

P
[
y(t+1)

j = 1
]
= 1

/ 1 + exp

−∑
i∈V

wjiy
(t)
i




▶ t odd: randomly choose new values of all visible neurons,
for every j ∈ V

P
[
y(t+1)

j = 1
]
= 1

/ 1 + exp

−∑
i∈H

wjiy
(t)
i




323

RBM Activity and Training

In what follows, we denote by y⃗(t)
V the vector of values of all visible

neurons after t steps of the RBM.

Assume that the RBM is executed for many steps, we obtain a long
sequence:

y⃗(1)
V , y⃗(2)

V , . . . , y⃗(t)
V , . . .

Consider a particular vector of possible values of visible neurons
x⃗ ∈ {0,1}|V |.

Denote by pV (x⃗) the frequency of occurrences of x⃗ in the above
sequence.
If we allow infinitely many steps, the frequency of visiting x⃗ does not depend
on the particular sequence almost surely by SLLN.

RBM is trained as follows:
Given a sequence of vectors D = x⃗(1), x⃗(2), . . . ∈ {0,1}|V |, train the
RBM so that for each x⃗ ∈ {0,1}|V | the value pV (x⃗) is close to the
frequency of occurrences of x⃗ in D (maximum likelihood).

324

RBM Activity and Training

In what follows, we denote by y⃗(t)
V the vector of values of all visible

neurons after t steps of the RBM.

Assume that the RBM is executed for many steps, we obtain a long
sequence:

y⃗(1)
V , y⃗(2)

V , . . . , y⃗(t)
V , . . .

Consider a particular vector of possible values of visible neurons
x⃗ ∈ {0,1}|V |.

Denote by pV (x⃗) the frequency of occurrences of x⃗ in the above
sequence.
If we allow infinitely many steps, the frequency of visiting x⃗ does not depend
on the particular sequence almost surely by SLLN.

RBM is trained as follows:
Given a sequence of vectors D = x⃗(1), x⃗(2), . . . ∈ {0,1}|V |, train the
RBM so that for each x⃗ ∈ {0,1}|V | the value pV (x⃗) is close to the
frequency of occurrences of x⃗ in D (maximum likelihood).

324

RBM Activity and Training

In what follows, we denote by y⃗(t)
V the vector of values of all visible

neurons after t steps of the RBM.

Assume that the RBM is executed for many steps, we obtain a long
sequence:

y⃗(1)
V , y⃗(2)

V , . . . , y⃗(t)
V , . . .

Consider a particular vector of possible values of visible neurons
x⃗ ∈ {0,1}|V |.

Denote by pV (x⃗) the frequency of occurrences of x⃗ in the above
sequence.
If we allow infinitely many steps, the frequency of visiting x⃗ does not depend
on the particular sequence almost surely by SLLN.

RBM is trained as follows:
Given a sequence of vectors D = x⃗(1), x⃗(2), . . . ∈ {0,1}|V |, train the
RBM so that for each x⃗ ∈ {0,1}|V | the value pV (x⃗) is close to the
frequency of occurrences of x⃗ in D (maximum likelihood).

324

RBM Activity and Training

In what follows, we denote by y⃗(t)
V the vector of values of all visible

neurons after t steps of the RBM.

Assume that the RBM is executed for many steps, we obtain a long
sequence:

y⃗(1)
V , y⃗(2)

V , . . . , y⃗(t)
V , . . .

Consider a particular vector of possible values of visible neurons
x⃗ ∈ {0,1}|V |.

Denote by pV (x⃗) the frequency of occurrences of x⃗ in the above
sequence.
If we allow infinitely many steps, the frequency of visiting x⃗ does not depend
on the particular sequence almost surely by SLLN.

RBM is trained as follows:
Given a sequence of vectors D = x⃗(1), x⃗(2), . . . ∈ {0,1}|V |, train the
RBM so that for each x⃗ ∈ {0,1}|V | the value pV (x⃗) is close to the
frequency of occurrences of x⃗ in D (maximum likelihood).

324

Deep Belief Networks - RBM Pretraining

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.

This basically started all the deep learning craze ...

325

Deep MLP

Input

Hidden

Output

x1 x2

y1 y2
▶ Neurons partitioned into layers;

one input layer, one output layer,
possibly several hidden layers

▶ layers numbered from 0; the
input layer has number 0
▶ E.g. three-layer network has

two hidden layers and one
output layer

▶ Neurons in the i-th layer are
connected with all neurons in
the i + 1-st layer

▶ Architecture of a MLP is typically
described by numbers of neurons
in individual layers (e.g. 2-4-3-2)

326

Deep Networks

One hidden layer is able to represent an arbitrary (reasonable)
function but

▶ one hidden layer may be very inefficient, i.e., a huge amount of
neurons may be needed. One can see that

▶ the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

▶ networks with multiple layers may be exponentially more
succinct as opposed to a single hidden layer.

... ok, so let’s try to train deep networks using the gradient descent
(with the backdrop)

Problems:

▶ Gradient may vanish/explode when backpropagated through
many layers.

▶ Deep networks (with many neurons) overfit very easily.

327

Deep Networks

One hidden layer is able to represent an arbitrary (reasonable)
function but

▶ one hidden layer may be very inefficient, i.e., a huge amount of
neurons may be needed. One can see that

▶ the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

▶ networks with multiple layers may be exponentially more
succinct as opposed to a single hidden layer.

... ok, so let’s try to train deep networks using the gradient descent
(with the backdrop)

Problems:

▶ Gradient may vanish/explode when backpropagated through
many layers.

▶ Deep networks (with many neurons) overfit very easily.

327

Deep Networks

One hidden layer is able to represent an arbitrary (reasonable)
function but

▶ one hidden layer may be very inefficient, i.e., a huge amount of
neurons may be needed. One can see that

▶ the number of hidden neurons may be exponential w.r.t. the
dimension of the input,

▶ networks with multiple layers may be exponentially more
succinct as opposed to a single hidden layer.

... ok, so let’s try to train deep networks using the gradient descent
(with the backdrop)

Problems:

▶ Gradient may vanish/explode when backpropagated through
many layers.

▶ Deep networks (with many neurons) overfit very easily.

327

Deep MLP – pretraining

Assume k layers. Denote

▶ Wi the weight matrix between layers i − 1 and i

▶ Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

328

Deep MLP – pretraining

Assume k layers. Denote

▶ Wi the weight matrix between layers i − 1 and i

▶ Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

328

Deep MLP – pretraining

Assume k layers. Denote

▶ Wi the weight matrix between layers i − 1 and i

▶ Fi function computed by the "lower" part of the MLP consisting of
layers 0,1, . . . , i
F1 is a function which consists of the input and the first hidden layer
(which is now considered as the output layer).

Crucial observation: For every i, the layers i − 1 and i together with
the matrix Wi can be considered as a RBM.

Denote such a RBM as Bi .

328

Deep MLP – pretraining

For now, consider only input vectors x⃗1, . . . , x⃗p where x⃗k ∈ {0,1}n for
all k = 1, . . . ,p.

Unsupervised pretraining: Gradually, for every i = 1, . . . , k , train
RBM Bi on randomly selected inputs from the training set:

Fi−1(x⃗1), . . . ,Fi−1(x⃗p)

using the training algorithm for RBM (here F0(x⃗i) = x⃗i).
(Thus Bi learns from training samples transformed by the
already pretrained layers 0, . . . , i − 1)

We obtain a deep belief network representing a
distribution given by x⃗1, . . . , x⃗p .
(Recall that in such a distribution, the probability of a given x⃗ is
equal to the relative frequency of x⃗ in x⃗1, . . . , x⃗p .)

Supervised training: For D = {(x⃗1, d⃗1), . . . , (x⃗p , d⃗p)}, we pretrain the
network on x⃗1, . . . , x⃗p and then fine-tune the weights using some
supervised learning algorithm on D.

329

Deep MLP – pretraining

For now, consider only input vectors x⃗1, . . . , x⃗p where x⃗k ∈ {0,1}n for
all k = 1, . . . ,p.

Unsupervised pretraining: Gradually, for every i = 1, . . . , k , train
RBM Bi on randomly selected inputs from the training set:

Fi−1(x⃗1), . . . ,Fi−1(x⃗p)

using the training algorithm for RBM (here F0(x⃗i) = x⃗i).
(Thus Bi learns from training samples transformed by the
already pretrained layers 0, . . . , i − 1)

We obtain a deep belief network representing a
distribution given by x⃗1, . . . , x⃗p .
(Recall that in such a distribution, the probability of a given x⃗ is
equal to the relative frequency of x⃗ in x⃗1, . . . , x⃗p .)

Supervised training: For D = {(x⃗1, d⃗1), . . . , (x⃗p , d⃗p)}, we pretrain the
network on x⃗1, . . . , x⃗p and then fine-tune the weights using some
supervised learning algorithm on D.

329

Deep MLP – pretraining

For now, consider only input vectors x⃗1, . . . , x⃗p where x⃗k ∈ {0,1}n for
all k = 1, . . . ,p.

Unsupervised pretraining: Gradually, for every i = 1, . . . , k , train
RBM Bi on randomly selected inputs from the training set:

Fi−1(x⃗1), . . . ,Fi−1(x⃗p)

using the training algorithm for RBM (here F0(x⃗i) = x⃗i).
(Thus Bi learns from training samples transformed by the
already pretrained layers 0, . . . , i − 1)

We obtain a deep belief network representing a
distribution given by x⃗1, . . . , x⃗p .
(Recall that in such a distribution, the probability of a given x⃗ is
equal to the relative frequency of x⃗ in x⃗1, . . . , x⃗p .)

Supervised training: For D = {(x⃗1, d⃗1), . . . , (x⃗p , d⃗p)}, we pretrain the
network on x⃗1, . . . , x⃗p and then fine-tune the weights using some
supervised learning algorithm on D.

329

Deep MLP – pretraining

For now, consider only input vectors x⃗1, . . . , x⃗p where x⃗k ∈ {0,1}n for
all k = 1, . . . ,p.

Unsupervised pretraining: Gradually, for every i = 1, . . . , k , train
RBM Bi on randomly selected inputs from the training set:

Fi−1(x⃗1), . . . ,Fi−1(x⃗p)

using the training algorithm for RBM (here F0(x⃗i) = x⃗i).
(Thus Bi learns from training samples transformed by the
already pretrained layers 0, . . . , i − 1)

We obtain a deep belief network representing a
distribution given by x⃗1, . . . , x⃗p .
(Recall that in such a distribution, the probability of a given x⃗ is
equal to the relative frequency of x⃗ in x⃗1, . . . , x⃗p .)

Supervised training: For D = {(x⃗1, d⃗1), . . . , (x⃗p , d⃗p)}, we pretrain the
network on x⃗1, . . . , x⃗p and then fine-tune the weights using some
supervised learning algorithm on D.

329

Deep MLP

... and it worked.

The 2006 paper sparked attention in academia (industry was
still not interested in neural networks)

Researchers found the RBM pertaining algorithm unnecessarily
complicated and made simplifications.

Once people started using GPUs and returned to specific
architectures (CNN, LSTM, etc.), the RBM became forgotten.

THE END

330

Deep MLP

... and it worked.

The 2006 paper sparked attention in academia (industry was
still not interested in neural networks)

Researchers found the RBM pertaining algorithm unnecessarily
complicated and made simplifications.

Once people started using GPUs and returned to specific
architectures (CNN, LSTM, etc.), the RBM became forgotten.

THE END

330

Deep MLP

... and it worked.

The 2006 paper sparked attention in academia (industry was
still not interested in neural networks)

Researchers found the RBM pertaining algorithm unnecessarily
complicated and made simplifications.

Once people started using GPUs and returned to specific
architectures (CNN, LSTM, etc.), the RBM became forgotten.

THE END

330

Deep MLP

... and it worked.

The 2006 paper sparked attention in academia (industry was
still not interested in neural networks)

Researchers found the RBM pertaining algorithm unnecessarily
complicated and made simplifications.

Once people started using GPUs and returned to specific
architectures (CNN, LSTM, etc.), the RBM became forgotten.

THE END

330

Deep MLP

... and it worked.

The 2006 paper sparked attention in academia (industry was
still not interested in neural networks)

Researchers found the RBM pertaining algorithm unnecessarily
complicated and made simplifications.

Once people started using GPUs and returned to specific
architectures (CNN, LSTM, etc.), the RBM became forgotten.

THE END
330

