
Logistic Regression & SVM
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What about classification using regression?

Binary classification: Desired outputs 0 and 1
... we want to capture the probability distribution of the classes
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... does not capture the probability well (it is not a probability at all)
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What about classification using regression?

Binary classification: Desired outputs 0 and 1
... we want to capture the probability distribution of the classes

... logistic sigmoid 1
1+e−(~w·~x) is much better!
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Logistic Regression

Logistic regression model h[~w ] is determined by a vector of
weights ~w = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given ~x = (x1, . . . , xn) ∈ Rn,

h[~w ](~x) :=
1

1 + e−(w0+
∑n

k=1 wkxk)
=

1
1 + e−(~w ·~x)

Here

~x = (x0, x1, . . . , xn) where x0 = 1

is the augmented feature vector.
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But what is the meaning of the sigmoid?

The model gives probability h[~w ](~x) of the class 1 given an input ~x .
But why do we model such a probability using 1/(1 + e−~w ·~x) ??
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But what is the meaning of the sigmoid?

The model gives probability h[~w ](~x) of the class 1 given an input ~x .
But why do we model such a probability using 1/(1 + e−~w ·~x) ??

Denote by ĥ the probability P(Y = 1 | X = ~x), i.e., the "true"
probability of the class 1 given the features ~x .

The probability ĥ cannot be easily modeled using a linear function
(the probabilities are between 0 and 1).
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But what is the meaning of the sigmoid?

The model gives probability h[~w ](~x) of the class 1 given an input ~x .
But why do we model such a probability using 1/(1 + e−~w ·~x) ??

Denote by ĥ the probability P(Y = 1 | X = ~x), i.e., the "true"
probability of the class 1 given the features ~x .

What about odds of the class 1?

odds(ĥ) =

ĥ/(1− ĥ)

Better, at least it is unbounded on one side ... 4



But what is the meaning of the sigmoid?

The model gives probability h[~w ](~x) of the class 1 given an input ~x .
But why do we model such a probability using 1/(1 + e−~w ·~x) ??

Denote by ĥ the probability P(Y = 1 | X = ~x), i.e., the "true"
probability of the class 1 given the features ~x .

What about log odds (aka logit) of the class 1?

logit(ĥ) =

log(ĥ/(1− ĥ))

Looks almost linear, at least for probabilities not too close to 0 or 1
...
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But what is the meaning of the sigmoid?

Assume that ĥ is the true probability of the class 1 for an "object"
with features ~x ∈ Rn. Put

log(ĥ/(1− ĥ)) = ~w ·~x

Then

log((1− ĥ)/ĥ)) = −~w ·~x

and

(1− ĥ)/ĥ = e−~w ·~x

and

ĥ =
1

1 + e−~w ·~x = h[~w ](~x)

That is, if we model log odds using a linear function, the probability is obtained
by applying the logistic sigmoid on the result of the linear function.
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Logistic Regression

I Given a set D of training samples:

D = {(~x1, c(~x1)) , (~x2, c(~x2)) , . . . , (~xp, c(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and c(~xk) ∈ {0, 1}.

In what follows we use ck to denote c(~xk).

Recall that h[~w ](~xk) = 1 /
(
1 + e−~w ·~xk

)
where

~xk = (xk0, xk1 . . . , xkn), here xk0 = 1
Our goal: Find ~w such that for every k = 1, . . . , p we have
that h[~w ](~xk) ≈ ck

I Binary Cross-entropy:

E (~w) = −
p∑

k=1

ck log(h[~w ](~xk)) + (1−ck) log(1−h[~w ](~xk))

6



Logistic Regression

I Given a set D of training samples:

D = {(~x1, c(~x1)) , (~x2, c(~x2)) , . . . , (~xp, c(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and c(~xk) ∈ {0, 1}.

In what follows we use ck to denote c(~xk).

Recall that h[~w ](~xk) = 1 /
(
1 + e−~w ·~xk

)
where

~xk = (xk0, xk1 . . . , xkn), here xk0 = 1
Our goal: Find ~w such that for every k = 1, . . . , p we have
that h[~w ](~xk) ≈ ck

I Binary Cross-entropy:

E (~w) = −
p∑

k=1

ck log(h[~w ](~xk)) + (1−ck) log(1−h[~w ](~xk))

6



Logistic Regression

I Given a set D of training samples:

D = {(~x1, c(~x1)) , (~x2, c(~x2)) , . . . , (~xp, c(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and c(~xk) ∈ {0, 1}.

In what follows we use ck to denote c(~xk).

Recall that h[~w ](~xk) = 1 /
(
1 + e−~w ·~xk

)
where

~xk = (xk0, xk1 . . . , xkn), here xk0 = 1
Our goal: Find ~w such that for every k = 1, . . . , p we have
that h[~w ](~xk) ≈ ck

I Binary Cross-entropy:

E (~w) = −
p∑

k=1

ck log(h[~w ](~xk)) + (1−ck) log(1−h[~w ](~xk))

6



Gradient of the Error Function

Consider the gradient of the error function:

∇E (~w) =

(
∂E

∂w0
(~w), . . . ,

∂E

∂wn
(~w)

)
=

p∑
k=1

(h[~w ](~xk)− ck) ·~xk

Fakt
If ∇E (~w) = ~0 = (0, . . . , 0), then ~w is a global minimum of E .
This follows from the fact that E is convex.

Note that using the squared error with the logistic sigmoid would
lead to a non-convex error with several minima!
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Logistic Regression – Learning

Gradient Descent:
I Weights ~w (0) are initialized randomly close to ~0.

I In (t + 1)-th step, ~w (t+1) is computed as follows:
~w (t+1) = ~w (t) − ε · ∇E (~w (t))

= ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− ck

)
·~xk

Here 0 < ε ≤ 1 is the learning rate.
Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For sufficiently small ε > 0 the sequence ~w (0), ~w (1), ~w (2), . . .
converges (in a component-wise manner) to the global minimum of
the error function E .
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Logistic Regression - Using the Trained Model

Assume that we have already trained our logistic regression model,
i.e., we have a vector of weights ~w = (w0,w1, . . . ,wn).

The model is the function h[~w ] which for a given feature vector
~x = (x1, . . . , xn) returns the probability

h[~w ](~x) =
1

1 + e−(w0+
∑n

k=1 wkxk)

that ~x belongs to the class 1.

To decide whether a given ~x belongs to the class 1 we use h[~w ] as
a Bayes classifier: Assign ~x to the class 1 iff h[~w ](~x) ≥ 1/2.
Other thresholds can also be used depending on the application and properties
of the model. In such a case, given a threshold ξ ∈ [0, 1], assign ~x to
the class 1 iff h[~w ](~x) ≥ ξ.
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Maximum Likelihood vs Cross-entropy (Dim 1)
Fix a training set D = {(x1, c1) , (x2, c2) , . . . , (xp, cp)}
Generate a sequence c ′1, . . . , c

′
p ∈ {0, 1}p where each c ′k has been

generated independently by the Bernoulli trial generating 1 with
probability

h[w0,w1](xk) =
1

1 + e−(w0+w1·xk )

and 0 otherwise.

Here w0,w1 are unknown weights.

How "probable" is it to generate the correct classes c1, . . . , cp ?

The following conditions are equivalent:
I w0,w1 minimize the binary cross-entropy E

I w0,w1 maximize the likelihood (i.e., the "probability") of generating
the correct values c1, . . . , cp using the above described Bernoulli
trials (i.e., that c ′k = ck for all k = 1, . . . , p)

Note that the above equivalence is a property of the cross-entropy and is not
dependent on the "implementation" of h[w0,w1](xk) using the logistic sigmoid.
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SVM Idea – Which Linear Classifier is the Best?

Benefits of maximum margin:
I Intuitively, maximum margin is good w.r.t. generalization.
I Only the support vectors (those on the magin) matter, others

can, in principle, be ignored.
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Support Vector Machines (SVM)
Notation:

I ~w = (w0,w1, . . . ,wn) a vector of weights,

I ~w = (w1, . . . ,wn) a vector of all weights except w0,

I ~x = (x1, . . . , xn) a (generic) feature vector.

Consider a linear classifier:

h[~w ](~x) :=

{
1 w0 +

∑n
i=1 wi · xi = w0 + ~w · ~x ≥ 0

−1 w0 +
∑n

i=1 wi · xi = w0 + ~w · ~x < 0

The signed distance of ~x from the decision boundary determined by ~w is

d [~w ](~x) =
w0 + ~w · ~xk
‖~w‖

Here ‖~w‖ =
√∑n

i=1 w
2
i is the Euclidean norm of ~w .

|d [~w ](~x)| is the distance of ~x from the decision boundary.
d [~w ](~x) is positive for ~x on the side to which ~w points and negative on the
opposite side.
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Support Vectors & Margin

I Given a training set

D = {(~x1, y(~x1)) , (~x2, y(~x2)) , . . . , (~xp, y(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ X ⊆ Rn and y(~xk) ∈ {−1, 1}.

We write yk instead of y(~xk).

I Assume that D is linearly separable, let ~w be consistent with D.

I Support vectors are those ~xk that
minimize |d [~w ](~xk)|.

I Margin ρ[~w ] of ~w is twice the
distance between support vectors
and the decision boundary.

Our goal is to find ~w that maximizes the margin ρ[~w ].
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Maximizing the Margin

For ~w consistent with D (such that no ~xk lies on the decision
boundary) we have

ρ[~w ] = 2 · |w0 + ~w · ~xk |
‖~w‖

= 2 · yk · (w0 + ~w · ~xk)

‖~w‖
> 0

where ~xk is a support vector.

We may safely consider only ~w such that yk · (w0 + ~w · ~xk) = 1 for
the support vectors.
Just adjust the length of ~w so that yk · (w0 + ~w · ~xk) = 1, the denominator ‖~w‖
will compensate.

Then maximizing ρ[~w ] is equivalent to maximizing 2/‖~w‖.
(In what follows we use a bit looser constraint:

yk · (w0 + ~w · ~xk) ≥ 1 for all ~xk

However, the result is the same since even with this looser condition,
the support vectors always satisfy yk · (w0 + ~w · ~xk) = 1 whenever 2/‖w‖ is
maximal.)
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SVM – Optimization

Margin maximization can be formulated as a quadratic optimization
problem:

Find ~w = (w0, . . . ,wn) such that

ρ =
2
‖~w‖

is maximized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

which can be reformulated as:

Find ~w such that

Φ(~w) = ‖~w‖2 = ~w · ~w is minimized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.
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SVM – Optimization

I Need to optimize a quadratic function subject to linear
constraints.

I Quadratic optimization problems are a well-known class of
mathematical programming problems for which efficient
methods (and tools) exist.

But why the SVM have been so successful?
... the improvement by finding the maximum margin classifier does not seem to
be so strong ... right?

The answer lies in their ability to deal with non-linearly separable
sets in an efficient way using so called kernel trick.
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Quadratic Decision Boundary

Left: The original set,

Right: Squared features: (x1, x2) 7→ (x2
1 , x

2
2 )

Right: the green line is the decision boundary learned using
the perceptron algorithm.
(The red boundary corresponds to another learning algorithm.)

Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature
vector by squaring the features, then use the linear classifier.
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Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with
the dimension.

Sometimes its even beneficial to map to infinite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use the so called kernel trick.

But first we need to dualize our learning algorithm.
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Dual SVM

The original SVM optimization:

Find ~w such that

Φ(~w) = ‖~w‖2 = ~w · ~w is minimized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

The dual problem (here p is the number of training samples):

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
`=1

α`−
1
2

p∑
`=1

p∑
k=1

α` ·αk · y` · yk ·~x` · ~xk is maximized

so that the following constraints are satisfied:
I
∑p

`=1 α`y` = 0
I α` ≥ 0 for all 1 ≤ ` ≤ p
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The Optimization Problem Solution

I Given a solution α1, . . . , αn to the dual problem, solution
~w = (w0,w1, . . . ,wn) to the original one is:

~w = (w1, . . . ,wn) =

p∑
`=1

α` · y` · ~x`

w0 = yk−~w ·~xk = yk−
p∑

`=1

α` · y` · ~x`·~xk for an arbitrary αk > 0

Note that αk > 0 iff ~xk is a support vector iff y1 · (w0 + ~w · ~xk) = 1.
Hence it does not matter which αk > 0 is chosen in the above
definition of w0.

I The classifier is then

h(~x) = sig(w0 + ~w · ~x)
= sig (yk −

∑
` α` · y` · ~x` · ~xk +

∑
` α` · y` · ~x` · ~x)
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Dual SVM

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
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1
2
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`=1
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α` ·αk · y` · yk ·~x` · ~xk is maximized

so that the following constraints are satisfied:
I
∑
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The classifier:
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Dual SVM after projection

Consider your favorite projection ϕ to another space
(where possibly the linear classification works)

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
`=1

α`−
1
2

p∑
`=1

p∑
k=1

α` ·αk ·y` ·yk ·ϕ(~x`) · ϕ(~xk) is maximized

so that the following constraints are satisfied:
I
∑

` α`y` = 0
I α` ≥ 0 for all 1 ≤ ` ≤ p

The classifier:
h(~x) = sig (yk −

∑
` α` · y` · ϕ(~x`) · ϕ(~xk) +

∑
` α` · y` · ϕ(~x`) · ϕ(~x))

... wait a second ... do we really need to compute the values of
ϕ(~x`) etc. to obtain the scalar products??NO!
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Kernel Dual SVM

Introduce a function κ(~u, ~v) = ϕ(~u) · ϕ(~v) which computes the
scalar product in the space transformed by ϕ.

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
`=1

α`−
1
2

p∑
`=1

p∑
k=1

α` ·αk ·y` ·yk ·κ(~x`, ~xk) is maximized

so that the following constraints are satisfied:
I
∑

` α`y` = 0
I α` ≥ 0 for all 1 ≤ ` ≤ p

The classifier:
h(~x) = sig (yk −

∑
` α` · y` · κ(~x`, ~xk) +

∑
` α` · y` · κ(~x`, ~x))

... but now we no longer care what the ϕ is, right? We just need to
know that it exists.
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Examples of Kernels
I Linear: κ(~u, ~v) = ~u · ~v

The corresponding mapping φ(~u) = ~u is identity (no
transformation).

I Polynomial of power m: κ(~u, ~v) = (1 + ~u · ~v)m

The corresponding mapping assigns to ~u ∈ Rn the vector φ(~v) in
R(n+m

m ).

I Gaussian (radial-basis function): κ(~u, ~v) = e−
‖~u−~v‖2

2σ2

The corresponding mapping φ maps ~u to an infinite-dimensional
vector φ(~u) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

I · · ·
Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).
Now let’s go on to the main area where kernel methods are used: to enhance
support vector machines.
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Kernel SVM examples

25



Comments on Algorithms

I The main bottleneck of SVM’s is in complexity of quadratic
programming (QP). A naive QP solver has cubic complexity.

I For small problems any general purpose optimization algorithm
can be used.

I For large problems this is usually not possible, many methods
avoiding direct solution have been devised.

I These methods usually decompose the optimization problem
into a sequence of smaller ones. Intuitively,
I start with a (smaller) subset of training examples.
I Find an optimal solution using any solver.
I Afterwards, only support vectors matter in the solution! Leave

only them in the training set, and add new training examples.
I This iterative procedure decreases the (general) cost function.
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Comments on SVM

I SVMs were originally proposed by Boser, Guyon and Vapnik in
1992 and gained increasing popularity in late 1990s.

I SVMs are currently among the best performers for a number
of classification tasks ranging from text to genomic data.

I SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

I SVM techniques have been extended to a number of tasks
such as regression [Vapnik et al. ’97], principal component
analysis [Schölkopf et al. ’99], etc.

I Most popular optimization algorithms for SVMs use
decomposition to hillclimb over a subset of αi ’s at a time, e.g.
SMO [Platt ’99] and [Joachims ’99]

I Tuning SVMs remains a black art: selecting a specific kernel
and parameters is usually done in a try-and-see manner.
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