Numerical features Throughout this lecture we assume that all features are numerical, i.e., feature vectors belong to \mathbb{R}^n . L #### Numerical features - ▶ Throughout this lecture we assume that all features are numerical, i.e., feature vectors belong to \mathbb{R}^n . - Most non-numerical features can be conveniently transformed to numerical ones. #### For example: ► Colors { blue, red, yellow} can be represented by $$\{(1,0,0),(0,1,0),(0,0,1)\}$$ (one-hot encoding) - Words can be embedded into vector spaces by various means (word2vec etc.) - A black-and-white picture of $x \times y$ pixels can be encoded as a vector of xy numbers that capture the shades of gray of the pixels. (Even though this is possibly not the best way of representing images.) #### **Basic Problems** We consider two basic problems: ▶ (Binary) classification Our goal: Classify inputs into two categories. ### **Basic Problems** We consider two basic problems: ► (Binary) classification Our goal: Classify inputs into two categories. Function approximation (regression) Our goal: Find a (hypothesized) functional dependency in data. ### Binary classification in \mathbb{R}^n Assume an *unknown* categorization function $c : \mathbb{R}^n \to \{0,1\}$. #### Our goal: ▶ Given a set *D* of training examples of the form $(\vec{x}, c(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$, ## Binary classification in \mathbb{R}^n Assume an *unknown* categorization function $c : \mathbb{R}^n \to \{0,1\}$. #### Our goal: - ▶ Given a set *D* of training examples of the form $(\vec{x}, c(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$, - ▶ construct a hypothesized categorization function $h \in \mathcal{H}$ that is consistent with c on the training examples, i.e., $$h(\vec{x}) = c(\vec{x})$$ for all training examples $(\vec{x}, c(\vec{x})) \in D$ ## Binary classification in \mathbb{R}^n Assume an *unknown* categorization function $c : \mathbb{R}^n \to \{0,1\}$. #### Our goal: - ▶ Given a set *D* of training examples of the form $(\vec{x}, c(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$. - ▶ construct a hypothesized categorization function $h \in \mathcal{H}$ that is consistent with c on the training examples, i.e., $$h(\vec{x}) = c(\vec{x})$$ for all training examples $(\vec{x}, c(\vec{x})) \in D$ #### Comments: - ▶ In practice, we often do not strictly demand $h(\vec{x}) = c(\vec{x})$ for all training examples $(\vec{x}, c(\vec{x})) \in D$ (often it is impossible) - We are more interested in good generalization, that is how well h classifies new instances that do not belong to D. (Recall that we usually evaluate accuracy of the resulting hypothesized function h on a test set.) ## **Hypothesis Spaces** We consider two kinds of hypothesis spaces: ► Linear (affine) classifiers (this lecture) ## **Hypothesis Spaces** We consider two kinds of hypothesis spaces: ► Linear (affine) classifiers (this lecture) Non-linear classifiers (kernel SVM, neural networks) (next lectures) ## Linear classifier - example ## Linear classifier - example ## Length and Scalar Product of Vectors ▶ We consider vectors $\vec{x} = (x_1, ..., x_m) \in \mathbb{R}^m$. ### Length and Scalar Product of Vectors - We consider vectors $\vec{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$. - ► Euclidean metric on vectors: $|\vec{x}| = \sqrt{\sum_{i=1}^{m} x_i^2}$ The distance between two vectors (points) \vec{x}, \vec{y} is $|\vec{x} - \vec{y}|$. ### Length and Scalar Product of Vectors - We consider vectors $\vec{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$. - ► Euclidean metric on vectors: $|\vec{x}| = \sqrt{\sum_{i=1}^{m} \vec{x}_i^2}$ The distance between two vectors (points) \vec{x}, \vec{y} is $|\vec{x} - \vec{y}|$. - Scalar product $\vec{x} \cdot \vec{y}$ of vectors $\vec{x} = (x_1, \dots, x_m)$ and $\vec{y} = (y_1, \dots, y_m)$ defined by $$\vec{x} \cdot \vec{y} = \sum_{i=1}^{m} x_i y_i$$ - ▶ Recall that $\vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta$ where θ is the angle between \vec{x} and \vec{y} . That is $\vec{x} \cdot \vec{y}$ is the length of the projection of \vec{y} on \vec{x} multiplied by $|\vec{x}|$. - Note that $\vec{x} \cdot \vec{x} = |\vec{x}|^2$ ### **Linear Classifier** A *linear classifier* $h[\vec{w}]$ is determined by a vector of *weights* $\vec{w} = (w_0, w_1, \dots, w_n) \in \mathbb{R}^{n+1}$ as follows: ### **Linear Classifier** A *linear classifier* $h[\vec{w}]$ is determined by a vector of *weights* $\vec{w} = (w_0, w_1, \dots, w_n) \in \mathbb{R}^{n+1}$ as follows: Given $$\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$, $$h[\vec{w}](\vec{x}) := \begin{cases} 1 & w_0 + \sum_{i=1}^n w_i \cdot x_i \ge 0 \\ 0 & w_0 + \sum_{i=1}^n w_i \cdot x_i < 0 \end{cases}$$ ### **Linear Classifier** A *linear classifier* $h[\vec{w}]$ is determined by a vector of *weights* $\vec{w} = (w_0, w_1, \dots, w_n) \in \mathbb{R}^{n+1}$ as follows: Given $$\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$, $$h[\vec{w}](\vec{x}) := \begin{cases} 1 & w_0 + \sum_{i=1}^n w_i \cdot x_i \ge 0 \\ 0 & w_0 + \sum_{i=1}^n w_i \cdot x_i < 0 \end{cases}$$ More succinctly: $$h(\vec{x}) = sgn\left(w_0 + \sum_{i=1}^n w_i \cdot x_i\right)$$ where $sgn(y) = \begin{cases} 1 & y \ge 0 \\ 0 & y < 0 \end{cases}$ ## Linear Classifier - Geometry ### **Linear Classifier – Notation** Given $$\vec{x}=(x_1,\ldots,x_n)\in\mathbb{R}^n$$ we define an augmented feature vector $\widetilde{x}=(x_0,x_1,\ldots,x_n)$ where $x_0=1$ ### **Linear Classifier – Notation** Given $$\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$ we define an augmented feature vector $$\tilde{\mathsf{x}} = (x_0, x_1, \dots, x_n)$$ where $x_0 = 1$ This makes the notation for the linear classifier more succinct: $$h[\vec{w}](\vec{x}) = sgn(\vec{w} \cdot \tilde{x})$$ ► Given a training set $$D = \{ (\vec{x}_1, c(\vec{x}_1)), (\vec{x}_2, c(\vec{x}_2)), \dots, (\vec{x}_p, c(\vec{x}_p)) \}$$ Here $\vec{x}_k = (x_{k1}, \dots, x_{kn}) \in \mathbb{R}^n$ and $c(\vec{x}_k) \in \{0, 1\}$. Given a training set $$D = \{ (\vec{x}_1, c(\vec{x}_1)), (\vec{x}_2, c(\vec{x}_2)), \dots, (\vec{x}_p, c(\vec{x}_p)) \}$$ Here $$\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$$ and $c(\vec{x}_k) \in \{0, 1\}$. We write c_k instead of $c(\vec{x_k})$. Note that $\tilde{x}_k = (x_{k0}, x_{k1}, \dots, x_{kn})$ where $x_{k0} = 1$. Given a training set $$D = \{ (\vec{x}_1, c(\vec{x}_1)), (\vec{x}_2, c(\vec{x}_2)), \dots, (\vec{x}_p, c(\vec{x}_p)) \}$$ Here $\vec{x}_k = (x_{k1}, \dots, x_{kn}) \in \mathbb{R}^n$ and $c(\vec{x}_k) \in \{0, 1\}$. We write c_k instead of $c(\vec{x}_k)$. Note that $\tilde{\mathbf{x}}_k = (x_{k0}, x_{k1}, \dots, x_{kn})$ where $x_{k0} = 1$. ▶ A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is **consistent with** D if $$h[\vec{w}](\vec{x}_k) = sgn(\vec{w} \cdot \tilde{x}_k) = c_k$$ for all $k = 1, ..., p$ Given a training set $$D = \{ (\vec{x}_1, c(\vec{x}_1)), (\vec{x}_2, c(\vec{x}_2)), \dots, (\vec{x}_p, c(\vec{x}_p)) \}$$ Here $$\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$$ and $c(\vec{x}_k) \in \{0, 1\}$. We write c_k instead of $c(\vec{x}_k)$. Note that $\tilde{\mathbf{x}}_k = (x_{k0}, x_{k1}, \dots, x_{kn})$ where $x_{k0} = 1$. ▶ A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is **consistent with** D if $$h[\vec{w}](\vec{x}_k) = sgn(\vec{w} \cdot \tilde{x}_k) = c_k$$ for all $k = 1, ..., p$ D is **linearly separable** if there is a vector $\vec{w} \in \mathbb{R}^{n+1}$ which is consistent with D. Given a training set $$D = \{ (\vec{x}_1, c(\vec{x}_1)), (\vec{x}_2, c(\vec{x}_2)), \dots, (\vec{x}_p, c(\vec{x}_p)) \}$$ Here $\vec{x}_k = (x_{k1}, \dots, x_{kn}) \in \mathbb{R}^n$ and $c(\vec{x}_k) \in \{0, 1\}$. We write c_k instead of $c(\vec{x_k})$. Note that $\tilde{\mathbf{x}}_k = (x_{k0}, x_{k1}, \dots, x_{kn})$ where $x_{k0} = 1$. ▶ A weight vector $\vec{w} \in \mathbb{R}^{n+1}$ is **consistent with** D if $$h[\vec{w}](\vec{x}_k) = sgn(\vec{w} \cdot \tilde{x}_k) = c_k$$ for all $k = 1, ..., p$ D is **linearly separable** if there is a vector $\vec{w} \in \mathbb{R}^{n+1}$ which is consistent with D. ▶ Our goal is to find a consistent \vec{w} assuming that D is linearly separable. ### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. ### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ ### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ #### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ - $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \left(h[\vec{w}^{(t)}](\vec{x}_k) - c_k\right) \cdot \tilde{x}_k$$ #### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ - $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \left(h[\vec{w}^{(t)}](\vec{x}_k) - c_k \right) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \left(sgn\left(\vec{w}^{(t)} \cdot \tilde{x}_k \right) - c_k \right) \cdot \tilde{x}_k$$ Here $k = (t \mod p) + 1$, i.e., the examples are considered cyclically, and $0 < \varepsilon \le 1$ is a **learning rate**. #### Online learning algorithm: Idea: Cyclically go through the training examples in D and adapt weights. Whenever an example is incorrectly classified, turn the hyperplane so that the example becomes closer to it's correct half-space. Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ - $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \left(h[\vec{w}^{(t)}](\vec{x}_k) - c_k \right) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \left(sgn\left(\vec{w}^{(t)} \cdot \tilde{x}_k \right) - c_k \right) \cdot \tilde{x}_k$$ Here $k = (t \mod p) + 1$, i.e., the examples are considered cyclically, and $0 < \varepsilon \le 1$ is a **learning rate**. ### Věta (Rosenblatt) If D is linearly separable, then there is t^* such that $\vec{w}^{(t^*)}$ is consistent with D. ### **Example** Training set: $$D = \{((2,-1),1),((2,1),1),((1,3),0)\}$$ That is $$\vec{x}_1 = (2,-1)$$ $\vec{x}_1 = (1,2,-1)$ $\vec{x}_2 = (2,1)$ $\vec{x}_3 = (1,3)$ $\vec{x}_3 = (1,1,3)$ $$c_1 = 1$$ $c_2 = 1$ $c_3 = 0$ Assume that the initial vector $\vec{w}^{(0)}$ is $\vec{w}^{(0)} = (0, -1, 1)$. Consider $\varepsilon = 1$. # Example: Separating by $\vec{w}^{(0)}$ Denoting $\vec{w}^{(0)} = (w_0, w_1, w_2) = (0, -1, 1)$ the blue separating line is given by $w_0 + w_1x_1 + w_2x_2 = 0$. The red vector normal to the blue line is (w_1, w_2) . The points on the side of (w_1, w_2) are assigned 1 by the classifier, the others zero. (In this case \vec{x}_3 is assigned one and \vec{x}_1, \vec{x}_2 are assigned zero, all of this is inconsistent with $c_1=1, c_2=1, c_3=0$.) ## Example: $\vec{w}^{(1)}$ We have $$\vec{w}^{(0)} \cdot \tilde{x}_1 = (0, -1, 1) \cdot (1, 2, -1) = 0 - 2 - 1 = -3$$ thus $$sgn\left(\vec{w}^{(0)}\cdot\widetilde{\mathsf{x}}_{1}\right)=0$$ and thus $$sgn\left(ec{w}^{(0)}\cdot\widetilde{\mathsf{x}}_1 ight)-c_1=0-1=-1$$ (I.e., $\vec{x_1}$ is not correctly classified, and $\vec{w}^{(0)}$ is not consistent with D.) Hence. $$\vec{w}^{(1)} = \vec{w}^{(0)} - \left(sgn\left(\vec{w}^{(0)} \cdot \tilde{x}_1\right) - c_1\right) \cdot \tilde{x}_1$$ $$= \vec{w}^{(0)} + \tilde{x}_1$$ $$= (0, -1, 1) + (1, 2, -1)$$ $$= (1, 1, 0)$$ # **Example** ## Example: Separating by $\vec{w}^{(1)}$ We have $$\vec{w}^{(1)} \cdot \tilde{\mathsf{x}}_2 = (1, 1, 0) \cdot (1, 2, 1) = 1 + 2 = 3$$ thus $$sgn\left(ec{w}^{(1)}\cdot\widetilde{\mathsf{x}}_{2} ight)=1$$ and thus $$sgn\left(\vec{w}^{(1)}\cdot\widetilde{\mathsf{x}}_{2}\right)-c_{2}=1-1=0$$ (I.e., $\vec{x_2}$ is currently correctly classified by $\vec{w}^{(1)}$. However, as we will see, $\vec{x_3}$ is not well classified.) Hence, $$\vec{w}^{(2)} = \vec{w}^{(1)} = (1, 1, 0)$$ ## Example: $\vec{w}^{(3)}$ We have $$\vec{w}^{(2)} \cdot \tilde{x}_3 = (1, 1, 0) \cdot (1, 1, 3) = 1 + 1 = 2$$ thus $$sgn\left(ec{w}^{(2)}\cdot \widetilde{\mathsf{x}}_{3} ight) =1$$ and thus $$sgn\left(ec{w}^{(2)}\cdot\widetilde{\mathsf{x}}_{3} ight)-c_{3}=1-0=1$$ (This means that \vec{x}_3 is not well classified, and $\vec{w}^{(2)}$ is not consistent with D.) Hence, $$\vec{w}^{(3)} = \vec{w}^{(2)} - \left(sgn\left(\vec{w}^{(2)} \cdot \tilde{x}_3\right) - c_3\right) \cdot \tilde{x}_3$$ $$= \vec{w}^{(2)} - \tilde{x}_3$$ $$= (1, 1, 0) - (1, 1, 3)$$ $$= (0, 0, -3)$$ # Example: Separating by $\vec{w}^{(3)}$ # Example: $\vec{w}^{(4)}$ We have $$\vec{w}^{(3)} \cdot \tilde{x}_1 = (0,0,-3) \cdot (1,2,-1) = 3$$ thus $$sgn\left(ec{w}^{\left(3 ight) }\cdot\widetilde{\mathsf{x}}_{1} ight) =1$$ and thus $$sgn\left(ec{w}^{(3)}\cdot\widetilde{\mathsf{x}}_1 ight)-c_1=1-1=0$$ (I.e., \vec{x}_1 is currently correctly classified by $\vec{w}^{(3)}$. However, we shall see that \vec{x}_2 is not.) Hence, $$\vec{w}^{(4)} = \vec{w}^{(3)} = (0, 0, -3)$$ # Example: $\vec{w}^{(5)}$ We have $$\vec{w}^{(4)} \cdot \tilde{x}_2 = (0,0,-3) \cdot (1,2,1) = -3$$ thus $$sgn\left(\vec{w}^{(4)}\cdot\widetilde{\mathsf{x}}_{2}\right)=0$$ and thus $$sgn\left(\vec{w}^{(4)}\cdot\widetilde{\mathsf{x}}_{2}\right)-c_{2}=0-1=-1$$ (I.e., $\vec{x_2}$ is not correctly classified, and $\vec{w}^{(4)}$ is not consistent with D.) Hence. $$\vec{w}^{(5)} = \vec{w}^{(4)} - \left(sgn\left(\vec{w}^{(4)} \cdot \tilde{x}_2\right) - c_2\right) \cdot \tilde{x}_2$$ $$= \vec{w}^{(4)} + \tilde{x}_2$$ $$= (0, 0, -3) + (1, 2, 1)$$ $$= (1, 2, -2)$$ # Example: Separating by $\vec{w}^{(5)}$ ### Example: The result The vector $\vec{w}^{(5)}$ is consistent with D: $$\begin{split} sgn\left(\vec{w}^{(5)} \cdot \widetilde{x}_1\right) &= sgn\left((1,2,-2) \cdot (1,2,-1)\right) = sgn(7) = 1 = c_1 \\ sgn\left(\vec{w}^{(5)} \cdot \widetilde{x}_2\right) &= sgn\left((1,2,-2) \cdot (1,2,1)\right) = sgn(3) = 1 = c_2 \\ sgn\left(\vec{w}^{(5)} \cdot \widetilde{x}_3\right) &= sgn\left((1,2,-2) \cdot (1,1,3)\right) = sgn(-3) = 0 = c_3 \end{split}$$ #### Batch learning algorithm: Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ #### Batch learning algorithm: Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ #### Batch learning algorithm: Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ - $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(h[\vec{w}^{(t)}](\vec{x}_k) - c_k \right) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(sgn\left(\vec{w}^{(t)} \cdot \tilde{x}_k \right) - c_k \right) \cdot \tilde{x}_k$$ Here $0 < \varepsilon \le 1$ is a **learning rate**. #### Batch learning algorithm: Compute a sequence of weight vectors $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ - $\vec{w}^{(0)}$ is randomly initialized close to $\vec{0} = (0, \dots, 0)$ - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(h[\vec{w}^{(t)}](\vec{x}_k) - c_k \right) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} \left(sgn\left(\vec{w}^{(t)} \cdot \tilde{x}_k \right) - c_k \right) \cdot \tilde{x}_k$$ Here $0 < \varepsilon \le 1$ is a **learning rate**. # Function Approximation – Oaks in Wisconsin This example is from How to Lie with Statistics by Darrell Huff (1954) | Age | DBH | |---------|--------| | (years) | (inch) | | 97 | 12.5 | | 93 | 12.5 | | 88 | 8.0 | | 81 | 9.5 | | 75 | 16.5 | | 57 | 11.0 | | 52 | 10.5 | | 45 | 9.0 | | 28 | 6.0 | | 15 | 1.5 | | 12 | 1.0 | | 11 | 1.0 | # Function Approximation - Oaks in Wisconsin This example is from How to Lie with Statistics by Darrell Huff (1954) | Age | DBH | |---------|--------| | (years) | (inch) | | 97 | 12.5 | | 93 | 12.5 | | 88 | 8.0 | | 81 | 9.5 | | 75 | 16.5 | | 57 | 11.0 | | 52 | 10.5 | | 45 | 9.0 | | 28 | 6.0 | | 15 | 1.5 | | 12 | 1.0 | | 11 | 1.0 | ### Function Approximation – Oaks in Wisconsin This example is from How to Lie with Statistics by Darrell Huff (1954) | Age | DBH | |---------|--------| | (years) | (inch) | | 97 | 12.5 | | 93 | 12.5 | | 88 | 8.0 | | 81 | 9.5 | | 75 | 16.5 | | 57 | 11.0 | | 52 | 10.5 | | 45 | 9.0 | | 28 | 6.0 | | 15 | 1.5 | | 12 | 1.0 | | 11 | 1.0 | ### **Function Approximation** Assume an *unknown* function $f: \mathbb{R}^n \to \mathbb{R}$. #### Our goal: ▶ Given a set *D* of training examples of the form $(\vec{x}, f(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$, ### **Function Approximation** Assume an *unknown* function $f: \mathbb{R}^n \to \mathbb{R}$. #### Our goal: - ▶ Given a set *D* of training examples of the form $(\vec{x}, f(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$, - construct a hypothesized function $h \in \mathcal{H}$ such that $h(\vec{x}) \approx f(\vec{x})$ for all training examples $(\vec{x}, f(\vec{x})) \in D$ Here \approx means that the values are somewhat close to each other w.r.t. an appropriate *error function E*. ### **Function Approximation** Assume an *unknown* function $f: \mathbb{R}^n \to \mathbb{R}$. #### Our goal: - ▶ Given a set *D* of training examples of the form $(\vec{x}, f(\vec{x}))$ where $\vec{x} \in \mathbb{R}^n$, - ▶ construct a hypothesized function $h \in \mathcal{H}$ such that $h(\vec{x}) \approx f(\vec{x})$ for all training examples $(\vec{x}, f(\vec{x})) \in D$ Here \approx means that the values are somewhat close to each other w.r.t. an appropriate *error function* E. In what follows we use the squared error defined by $$E = \frac{1}{2} \sum_{(\vec{x}, f(\vec{x})) \in D} (h(\vec{x}) - f(\vec{x}))^2$$ Our goal is to minimize E. The main reason is that this function has nice mathematical properties (as opposed e.g. to $\sum_{(\vec{x}, f(\vec{x})) \in D} |h(\vec{x}) - f(\vec{x})|$). ### **Linear Function Approximation** Given a set D of training examples: $$D = \{ (\vec{x}_1, f(\vec{x}_1)), (\vec{x}_2, f(\vec{x}_2)), \dots, (\vec{x}_p, f(\vec{x}_p)) \}$$ Here $$\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$$ and $f_k(\vec{x}) \in \mathbb{R}$. In what follows we use f_k to denote $f(\vec{x}_k)$. ### **Linear Function Approximation** Given a set D of training examples: $$D = \{ (\vec{x}_1, f(\vec{x}_1)), (\vec{x}_2, f(\vec{x}_2)), \dots, (\vec{x}_p, f(\vec{x}_p)) \}$$ Here $\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$ and $f_k(\vec{x}) \in \mathbb{R}$. In what follows we use f_k to denote $f(\vec{x}_k)$. Our goal: Find \vec{w} so that $h[\vec{w}](\vec{x}) = \vec{w} \cdot \tilde{x}$ approximates the function f some of whose values are given by the training set. Recall that $\tilde{x}_k = (x_{k0}, x_{k1} \dots, x_{kn})$. ## **Linear Function Approximation** Given a set D of training examples: $$D = \{ (\vec{x}_1, f(\vec{x}_1)), (\vec{x}_2, f(\vec{x}_2)), \dots, (\vec{x}_p, f(\vec{x}_p)) \}$$ Here $\vec{x}_k = (x_{k1} \dots, x_{kn}) \in \mathbb{R}^n$ and $f_k(\vec{x}) \in \mathbb{R}$. In what follows we use f_k to denote $f(\vec{x}_k)$. Our goal: Find \vec{w} so that $h[\vec{w}](\vec{x}) = \vec{w} \cdot \tilde{x}$ approximates the function f some of whose values are given by the training set. Recall that $\tilde{x}_k = (x_{k0}, x_{k1} \dots, x_{kn})$. Squared Error Function: $$E(\vec{w}) = \frac{1}{2} \sum_{k=1}^{p} (\vec{w} \cdot \tilde{x}_{k} - f_{k})^{2} = \frac{1}{2} \sum_{k=1}^{p} \left(\sum_{i=0}^{n} w_{i} x_{ki} - f_{k} \right)^{2}$$ # **Error function** Consider the **gradient** of the error function: $$\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \dots, \frac{\partial E}{\partial w_n}(\vec{w})\right) = \sum_{k=1}^{p} (\vec{w} \cdot \tilde{x}_k - f_k) \cdot \tilde{x}_k$$ What is the gradient $\nabla E(\vec{w})$? It is a vector in \mathbb{R}^{n+1} which points in the direction of the steepest *ascent* of E (it's length corresponds to the steepness). Note that here the vectors \tilde{x}_k are *fixed* parameters of E! Consider the **gradient** of the error function: $$\nabla E(\vec{w}) = \left(\frac{\partial E}{\partial w_0}(\vec{w}), \dots, \frac{\partial E}{\partial w_n}(\vec{w})\right) = \sum_{k=1}^{p} (\vec{w} \cdot \tilde{x}_k - f_k) \cdot \tilde{x}_k$$ What is the gradient $\nabla E(\vec{w})$? It is a vector in \mathbb{R}^{n+1} which points in the direction of the steepest *ascent* of E (it's length corresponds to the steepness). Note that here the vectors $\tilde{\mathbf{x}}_k$ are *fixed* parameters of E! #### **Fakt** If $$\nabla E(\vec{w}) = \vec{0} = (0, \dots, 0)$$, then \vec{w} is a global minimum of E . This follows from the fact that E is a convex paraboloid that has a unique extreme which is a minimum. Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} $$E(w_0, w_1) = \frac{1}{2}[(w_0 + w_1 \cdot 2 - 1)^2 + (w_0 + w_1 \cdot 3 - 2)^2 + (w_0 + w_1 \cdot 4 - 5)^2]$$ Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} $$E(w_0, w_1) = \frac{1}{2} [(w_0 + w_1 \cdot 2 - 1)^2 + (w_0 + w_1 \cdot 3 - 2)^2 + (w_0 + w_1 \cdot 4 - 5)^2]$$ $$\frac{\delta E}{\delta w_0}$$ Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} $$E(w_0, w_1) = \frac{1}{2} [(w_0 + w_1 \cdot 2 - 1)^2 + (w_0 + w_1 \cdot 3 - 2)^2 + (w_0 + w_1 \cdot 4 - 5)^2]$$ $$\frac{\delta E}{\delta w_0} = (w_0 + w_1 \cdot 2 - 1) \cdot 1 + (w_0 + w_1 \cdot 3 - 2) \cdot 1 + (w_0 + w_1 \cdot 4 - 5) \cdot 1$$ Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} $$E(w_0, w_1) = \frac{1}{2} [(w_0 + w_1 \cdot 2 - 1)^2 + (w_0 + w_1 \cdot 3 - 2)^2 + (w_0 + w_1 \cdot 4 - 5)^2]$$ $$\frac{\delta E}{\delta w_0} = (w_0 + w_1 \cdot 2 - 1) \cdot 1 + (w_0 + w_1 \cdot 3 - 2) \cdot 1 + (w_0 + w_1 \cdot 4 - 5) \cdot 1$$ $$\frac{\delta E}{\delta w_1}$$ Consider n = 1, which means that $\vec{w} = (w_0, w_1)$ and we write x instead of \vec{x} since $\vec{x} \in \mathbb{R}^n = \mathbb{R}^1 = \mathbb{R}$. Then the model is $h[\vec{w}](x) = w_0 + w_1 \cdot x$. Consider a concrete training set: $$\mathcal{T} = \{(2,1), (3,2), (4,5)\}$$ = \{(x₁, f₁), (x₂, f₂), (x₃, f₃)\} $$E(w_0, w_1) = \frac{1}{2} [(w_0 + w_1 \cdot 2 - 1)^2 + (w_0 + w_1 \cdot 3 - 2)^2 + (w_0 + w_1 \cdot 4 - 5)^2]$$ $$\frac{\delta E}{\delta w_0} = (w_0 + w_1 \cdot 2 - 1) \cdot 1 + (w_0 + w_1 \cdot 3 - 2) \cdot 1 + (w_0 + w_1 \cdot 4 - 5) \cdot 1$$ $$\frac{\delta E}{\delta w_1} = (w_0 + w_1 \cdot 2 - 1) \cdot 2 + (w_0 + w_1 \cdot 3 - 2) \cdot 3 + (w_0 + w_1 \cdot 4 - 5) \cdot 4$$ $$\nabla E(\vec{w}) = \left(\frac{\delta E}{\delta w_0}, \frac{\delta E}{\delta w_1}\right) = \\ \left(w_0 + w_1 \cdot 2 - 1\right) \cdot (1, 2) + \left(w_0 + w_1 \cdot 3 - 2\right) \cdot (1, 3) + \left(w_0 + w_1 \cdot 4 - 5\right) \cdot (1, 4)$$ #### **Gradient Descent:** ▶ Weights $\vec{w}^{(0)}$ are initialized randomly close to $\vec{0}$. #### **Gradient Descent:** - Weights $\vec{w}^{(0)}$ are initialized randomly close to $\vec{0}$. - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$$ #### **Gradient Descent:** - ▶ Weights $\vec{w}^{(0)}$ are initialized randomly close to $\vec{0}$. - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} (\vec{w}^{(t)} \cdot \tilde{x}_k - f_k) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} (h[\vec{w}^{(t)}](\vec{x}_k) - f_k) \cdot \tilde{x}_k$$ Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is the learning rate. Note that the algorithm is almost similar to the batch perceptron algorithm! #### **Gradient Descent:** - ▶ Weights $\vec{w}^{(0)}$ are initialized randomly close to $\vec{0}$. - ▶ In (t+1)-th step, $\vec{w}^{(t+1)}$ is computed as follows: $$\vec{w}^{(t+1)} = \vec{w}^{(t)} - \varepsilon \cdot \nabla E(\vec{w}^{(t)})$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} (\vec{w}^{(t)} \cdot \tilde{x}_k - f_k) \cdot \tilde{x}_k$$ $$= \vec{w}^{(t)} - \varepsilon \cdot \sum_{k=1}^{p} (h[\vec{w}^{(t)}](\vec{x}_k) - f_k) \cdot \tilde{x}_k$$ Here $k = (t \mod p) + 1$ and $0 < \varepsilon \le 1$ is the learning rate. Note that the algorithm is almost similar to the batch perceptron algorithm! #### Tvrzení For sufficiently small $\varepsilon > 0$ the sequence $\vec{w}^{(0)}, \vec{w}^{(1)}, \vec{w}^{(2)}, \dots$ converges (component-wisely) to the global minimum of E. ### Linear regression - animation ### Linear regression - animation ### Linear regression - animation ### Finding the Minimum in Dimension One Assume n = 1. Then the error function E is $$E(w_0, w_1) = \frac{1}{2} \sum_{k=1}^{p} (w_0 + w_1 x_k - f_k)^2$$ ### Finding the Minimum in Dimension One Assume n = 1. Then the error function E is $$E(w_0, w_1) = \frac{1}{2} \sum_{k=1}^{p} (w_0 + w_1 x_k - f_k)^2$$ Minimize E w.r.t. w_0 a w_1 : $$\frac{\delta E}{\delta w_0} = 0 \quad \Leftrightarrow \quad w_0 = \bar{f} - w_1 \bar{x} \quad \Leftrightarrow \quad \bar{f} = w_0 + w_1 \bar{x}$$ where $$ar{x} = rac{1}{p} \sum_{k=1}^p x_k$$ a $ar{f} = rac{1}{p} \sum_{k=1}^p f_k$ ### Finding the Minimum in Dimension One Assume n = 1. Then the error function E is $$E(w_0, w_1) = \frac{1}{2} \sum_{k=1}^{p} (w_0 + w_1 x_k - f_k)^2$$ Minimize E w.r.t. w_0 a w_1 : $$\frac{\delta E}{\delta w_0} = 0 \quad \Leftrightarrow \quad w_0 = \bar{f} - w_1 \bar{x} \quad \Leftrightarrow \quad \bar{f} = w_0 + w_1 \bar{x}$$ where $$ar{x} = rac{1}{p} \sum_{k=1}^p x_k$$ a $ar{f} = rac{1}{p} \sum_{k=1}^p f_k$ $$\frac{\delta E}{\delta w_1} = 0 \quad \Leftrightarrow \quad w_1 = \frac{\frac{1}{p} \sum_{k=1}^{p} (f_k - \bar{f})(x_k - \bar{x})}{\frac{1}{p} \sum_{k=1}^{p} (x_k - \bar{x})^2}$$ i.e. $$w_1 = cov(f, x)/var(x)$$ ## Maximum Likelihood vs Least Squares (Dim 1) Fix a training set $D = \{(x_1, f_1), (x_2, f_2), \dots, (x_p, f_p)\}$ Assume that each f_k has been generated randomly by $$f_k = (\mathbf{w_0} + \mathbf{w_1} \cdot \mathbf{x_k}) + \epsilon_k$$ where w_0 , w_1 are **unknown weights**, and ϵ_k are independent, normally distributed noise values with mean 0 and some variance σ^2 How "probable" is it to generate the correct f_1, \ldots, f_p ? ## Maximum Likelihood vs Least Squares (Dim 1) How "probable" is it to generate the correct f_1, \ldots, f_p ? The following conditions are equivalent: - \triangleright w_0, w_1 minimize the squared error E - ▶ w_0 , w_1 maximize the likelihood (i.e., the "probability") of generating the correct values f_1, \ldots, f_p using $f_k = (w_0 + w_1 \cdot x_k) + \epsilon_k$ ▶ Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance). - Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance). - Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data). - ▶ Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance). - Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data). - Linear models are less likely to overfit (low variance) the training data but sometimes tend to underfit (high bias). - ▶ Linear models are parametric, i.e., they have a fixed form with a small number of parameters that need to be learned from data (as opposed, e.g., to decision trees where the structure is not fixed in advance). - ► Linear models are stable, i.e., small variations in the training data have only limited impact on the learned model. (tree models typically vary more with the training data). - ► Linear models are less likely to overfit (low variance) the training data but sometimes tend to underfit (high bias). - Linear models are prone to outliers.