
RationAI: Rational and conservative AI
(not only) in digital pathology

Presented by Tomáš Brázdil
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RationAI research group

The aim: Develop explainable AI systems useful in practice.
Ideally, develop production ready solutions based on current research.

Current projects:
▶ Tumor detection in whole-slide images from digital

pathology (this talk and more work on slide annotation etc.)
▶ Time series data from baryatry (preliminary data analysis)
▶ Spatio-temporal COVID-19 data analysis (just started)
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The problem of cancer detection in WSI

The problem: Detect cancer in this image.
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The problem of cancer detection in WSI – solution

▶ WSI annotated by pathologists, not pixel level precise!
▶ Train a deep learning model on the annotated WSI. 4



Input data

WSI too large, 105,185 px × 221,772 px

Cut into patches of size 512 px × 512 px

Patch positive iff the inner square intersects the annotation
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Supervised learning classification of images

▶ I is the input image
A patch from WSI

▶ Fθ is a function on images depending on parameters θ.
A neural network, θ contains its weights

Binary classification: Two classees: positive, negative;

Fθ(I) ∈ [0,1] is the probability that I is positive

Training: Given a dataset D of pairs (I1, c1), . . . , (In, cn)
▶ Ik is an image

▶ ck =

1 Ik positive
0 Ik negative

minimize a loss L(θ;D) with respect to θ.
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Training on WSI

Our dataset from Masaryk Memorial Cancer Insitute:
▶ 785 WSI from 166 patients

(698 WSI for training, 87 WSI for testing)
▶ Cut into 7,878,675 patches for training, 193,235 patches

for testing.

Dataset augmentation:

▶ random vertical and horizontal flips
▶ random color perturbations

Trained VGG16 network using RMSprop algorithm.
I.e. a standard solution.

The question: How good is the resulting model Fθ ?
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Prediction
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Model evaluation - attempt 1

Can we detect cancer somewhere in WSI?

Predict WSI positive iff at least one patch I satisfies Fθ(I) ≥ t for
a fixed threshold t ∈ [0,1].

Choosing t close to 1, we have achieved 100% accuracy, i.e.,

slide positive iff predicted positive

Problem Solved! ... No?
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Model evaluation - attempt 2

Can we detect cancer in patches?

Predict a patch I positive iff Fθ(I) ≥ 0.75

Single WSI: All WSIs:

Ok, does it detect cancer?
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Model evaluation – attempt 3 – FROC

Detect particular tumors ?

How to evaluate the quality of tumor detection?
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Model evaluation – attempt 3 – FROC

sensitivity ≈ the proportion of tumors containing at least one
patch I with Fθ(I) ≥ t w.r.t. all tumors

AvgFP ≈ the proportion of patches I with Fθ(I) ≥ t w.r.t. all
patches from non-cancerous WSI
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Interpretable AI

What features of the input I determine the value Fθ(I) ?

Huge research area
▶ Gradient based methods (consider δFθ(I)/δI)
▶ Surrogate models (LIME etc.)
▶ Occlusion based methods
▶ ...

The occlusion = cover a part of the input patch I obtaining Iocc
and compute Fθ(I) − Fθ(Iocc)
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The occlusion results
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The occlusion results
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The occlusion results

But still, what does it look for?
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Biological interpretation

The experiment:
▶ 647 regions of tissue around randomly selected points

from 86 test WSI (37 w/ cancer, 49 w/out cancer)

▶ Regions sampled from a grid (points = itersections of lines)
▶ a region eligible only if its average explanation score in the

square 15px x 15px around the point is sufficiently
unambiguous

Each region classified according to known biological features
used in routine tumor detection.
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Biological interpretation

single layered epithelium

small lumina

high cellular density

hyperchromatic nuclei with halo
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Biological interpretation
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Biological interpretation

▶ Biologically significant interpretation in 97.99 %
▶ WSI w/ carcinoma: More than 90% correct interpretation!

(occasionally found an error in the annotation)

The Holy Grail: Add new lines to the table! (not yet achieved)
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Explainable AI

We know what the model looks for.

But what does it think?

How do the parameters θ affect the value of Fθ(I) ?

Quickly growing research area of XAI
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The model we use – VGG-16
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VGG-16 explanation
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Explanation

24



Explanation

25



Explanation
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Conclusions

▶ Developed a deep learning pipeline for WSI
Mostly from known components

▶ Evaluated the interpretation from the pathologist’s point of
view

▶ Developed a visualization system allowing smooth
inspection of networks’ performance

... and lots of future work!
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RationAI - the team

▶ MU
▶ Petr Holub, Tomáš Brázdil
▶ Ph.D. students: Matej Gallo, Vojtěch Krajňanský, Rudolf

Wittner
▶ MSc students: Jakub Hruška, Jan Čech, Tomáš Bíl, Petr

Kantek, Lucie Nováková
▶ Bc students: Andrej Kubanda, Miroslav Bezák
▶ other collaborators: Michal Růžička, Jiří Horák, Martin

Kačenga . . .

▶ MMCI (MOÚ)
▶ Rudolf Nenutil, Phil Coates, . . .

▶ International collaborations
▶ Medical University Graz: Heimo Müller, Kurt Zatloukal
▶ CRS4: Luca Pireddu
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