
IB031 Úvod do strojového učeńı
Tomáš Brázdil

1

Course Info

Resources:

▶ Lectures & tutorials (the main source)

▶ Many books, few perfect for introductory level
One relatively good, especially the first part:
A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. O’Reilly Media; 3rd edition, 2022

▶ (Almost) infinitely many online courses, tutorials, materials,
etc.

2

Evaluation

The evaluation is composed of three parts:

▶ Mid-term exam: Written exam from the material of the first
half of the semester.

▶ End-term exam: The ”big” one containing everything from
the semester (with possibly more stress in the second half).

▶ Projects: During tutorials, you will work on larger projects (in
pairs).

Each part contributes the following number of points:

▶ Mid-term exam: 25

▶ End-term exam: 50

▶ Project: 25

To pass, you need to obtain at least 60 points.

3

Distinguishing Properties of the Course

▶ Introductory, prerequisites are held to a minimum

▶ Formal and precise: Be prepared for a complete and
“mathematical” description of presented methods.

I assume that you have basic knowledge of

▶ Elementary understanding of mathematical notation
(operations on sets, logic, etc.)

▶ Linear algebra: Vectors in Rn, operations on vectors
(including the dot product). Geometric interpretation!

▶ Calculus: Functions of multiple real variables, partial
derivatives, basic differential calculus.

▶ Probability: Notion of probability distribution, random
variables/vectors, expectation.

4

Distinguishing Properties of the Course

▶ Introductory, prerequisites are held to a minimum

▶ Formal and precise: Be prepared for a complete and
“mathematical” description of presented methods.

I assume that you have basic knowledge of

▶ Elementary understanding of mathematical notation
(operations on sets, logic, etc.)

▶ Linear algebra: Vectors in Rn, operations on vectors
(including the dot product). Geometric interpretation!

▶ Calculus: Functions of multiple real variables, partial
derivatives, basic differential calculus.

▶ Probability: Notion of probability distribution, random
variables/vectors, expectation.

4

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

Example
In the context of spam filtering:

▶ The task T is to flag spam in new emails.

▶ The experience E is represented by a set of emails labeled
either spam or ham by hand (the training data).

▶ The performance measure P could be the accuracy, which is
the ratio of the number of correctly classified emails and all
emails.
There are many more performance measures; we will study the basic ones

later.

In the context of housing price prediction:

▶ The task T is to predict prices of new houses based on their
basic parameters (size, number of bathrooms, etc.)

▶ The experience E is represented by information about existing
houses.

▶ The performance measure P could be, e.g., an absolute
difference between the predicted and real price.

6

Example
In the context of spam filtering:

▶ The task T is to flag spam in new emails.

▶ The experience E is represented by a set of emails labeled
either spam or ham by hand (the training data).

▶ The performance measure P could be the accuracy, which is
the ratio of the number of correctly classified emails and all
emails.
There are many more performance measures; we will study the basic ones

later.

In the context of housing price prediction:

▶ The task T is to predict prices of new houses based on their
basic parameters (size, number of bathrooms, etc.)

▶ The experience E is represented by information about existing
houses.

▶ The performance measure P could be, e.g., an absolute
difference between the predicted and real price.

6

Examples (cont.)
In the context of game playing:

▶ The task T is to play chess.

▶ The experience E is represented by a series of self-plays where
the computer plays against itself.

▶ The performance measure P is winning/losing the game.
Here, the trick is to spread the delayed and limited feedback about the

result of the game throughout the individual decisions in the game.

In the context of customer behavior:

▶ The task T is to group customers with similar shopping habits
in an e-shop.

▶ The experience E consists of lists of items individual
customers bought in the shop.

▶ The performance measure P?
Measure how ”nicely” the customers are grouped.
(whether people with similar habits, as seen by humans, fall
into the same group).

7

Examples (cont.)
In the context of game playing:

▶ The task T is to play chess.

▶ The experience E is represented by a series of self-plays where
the computer plays against itself.

▶ The performance measure P is winning/losing the game.
Here, the trick is to spread the delayed and limited feedback about the

result of the game throughout the individual decisions in the game.

In the context of customer behavior:

▶ The task T is to group customers with similar shopping habits
in an e-shop.

▶ The experience E consists of lists of items individual
customers bought in the shop.

▶ The performance measure P?
Measure how ”nicely” the customers are grouped.
(whether people with similar habits, as seen by humans, fall
into the same group).

7

Comparison of Programming and Learning
How to code the spam filter?
▶ Examine what spam mails typically contain: Specific words

(”Viagra”), sender’s address, etc.
▶ Write down a rule-based system that detects specific features.
▶ Test the program on new emails and (most probably) go back

to look for more spam features.

8

Comparison of Programming and Learning
The machine learning way:
▶ Study the problem and collect lots of emails, labeling them

spam or ham.
▶ Train a machine learning model that reads an email and

decides whether it’s spam or ham.
▶ Test the model and (most probably) go back to collect more

data and adjust the model.

9

ML Solutions are Adaptive

Spam filter: Authors of spam might and will adapt to your spam
filter (possibly change the wording to pass through).

ML systems can be adjusted to new situations by retraining on
new data (unless the data becomes ugly).

10

ML for Human Understanding

Spam filter: A trained system can be inspected for notorious spam
features.
Some models allow direct inspection, such as decision trees or linear/logistic

regression models.

11

Usage of Machine Learning

Machine learning suits various applications, especially where
traditional methods fall short. Here are some areas where it excels:

▶ Solving complex problems where fine-tuning and rule-based
solutions are inadequate.

▶ Tackling complex issues that resist traditional problem-solving
approaches.

▶ Adapting to fluctuating environments through retraining on
new data.

▶ Gaining insights from large and complex datasets.

In summary, machine learning offers innovative solutions and
adaptability for today’s complex and ever-changing problems,
(sometimes) providing insights beyond the reach of traditional
approaches.

12

Types of Learning

There are main categories based on information available during
the training:

▶ Supervised learning

▶ Unsupervised learning

▶ Semi-supervised learning

▶ Self-supervised learning

▶ Reinforcement learning

13

Supervised Learning

Labels are available for all input data.

Typical supervised learning tasks are

▶ Classification where the aim is to classify inputs into (typically
few) classes
(e.g., the spam filter where the classes are spam/ham)

▶ Regression where a numerical value is output for a given input
(e.g., housing prices)

14

Supervised Learning

Labels are available for all input data.

Typical supervised learning tasks are

▶ Classification where the aim is to classify inputs into (typically
few) classes
(e.g., the spam filter where the classes are spam/ham)

▶ Regression where a numerical value is output for a given input
(e.g., housing prices)

14

Unsupervised Learning

No labels are available for input data.

Typical unsupervised learning tasks are
▶ Clustering where inputs are grouped according to their

features
(e.g., clients of a bank grouped according to their age, wealth, etc.)

▶ Association where interesting relations and rules are
discovered among the features of inputs
(e.g., market basket mining where associations between various types of

goods are being learned from the behavior of customers)

▶ Dimensionality reduction reduce high-dimensional data to few
dimensions (e.g., images to few image features)

15

Unsupervised Learning

No labels are available for input data.

Typical unsupervised learning tasks are
▶ Clustering where inputs are grouped according to their

features
(e.g., clients of a bank grouped according to their age, wealth, etc.)

▶ Association where interesting relations and rules are
discovered among the features of inputs
(e.g., market basket mining where associations between various types of

goods are being learned from the behavior of customers)

▶ Dimensionality reduction reduce high-dimensional data to few
dimensions (e.g., images to few image features)

15

Semi-Supervised Learning

Labels for some data.

For example, Medical data, where elaborate diagnosis is available
only for some patients.

Combines supervised and unsupervised learning: e.g., clusters all
data and labels the unlabeled inputs with the most common labels
in their clusters.

16

Semi-Supervised Learning

Labels for some data.

For example, Medical data, where elaborate diagnosis is available
only for some patients.

Combines supervised and unsupervised learning: e.g., clusters all
data and labels the unlabeled inputs with the most common labels
in their clusters.

16

Self-Supervised Learning

Generate labels from (unlabeled) inputs.

The goal is to learn typical features of the data.

It can be later modified to generate images, classify, etc.

17

Reinforcement Learning

Learn from performing actions and getting feedback from environment.
18

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)

▶ Machine translation, image captioning
▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)

▶ Various ”table” data processing in finance, management, etc.
▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML in Context

20

Supervised Learning

21

Example - Fruit Recognition

The goal: Create an automatic
system for fruit recognition,
concretely apple, lemon, and
mandarin.

Inputs: Measures of height and
width of each fruit.

Suppose we have a dataset of
dimensions of several fruits labeled
with the correct class.

22

Data

;

Use similarity to solve the problem.

23

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Where is the machine learning?

24

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Among the five closest:

▶ M = 4 mandarins

▶ A = 1 apples

▶ L = 0 lemons

Where is the machine learning?

24

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Among the five closest:

▶ M = 4 mandarins

▶ A = 1 apples

▶ L = 0 lemons

It is a mandarin!

Where is the machine learning?

24

Learning in Fruit Classification with KNN

Learning:

Inference:

25

Fruit Classification Algorithm

Input: A fruit F with dimensions height, width
Output: mandarin, lemon, apple
1: Find K examples {E1, ...,EK} in the dataset whose dimensions

are closest to the dimensions of the fruit F
2: Count the number of examples of each class in {E1, ...,EK}

M mandarins in {E1, ...,EK}
L lemons in {E1, ...,EK}
A apples in {E1, ...,EK}

3: if M ≥ L and M ≥ A then return mandarin
4: else if L ≥ A then return lemon
5: elsereturn apple
6: end if

Does it work?

26

Testing the Model for Fruit Classification

Consider a test set of new instances (K = 5, d is Euclidean):

Perfect classification of new data! Just deploy and sell!!

27

K Nearest Neighbors
... on ideal data

28

Learning and Inference

Two crucial components of machine learning are the following:

Learning:
Creating model

Inference:
Using model

29

Training Data

Assume table training data, i.e., of the form

x11 x12 · · · x1n c1
x21 x22 · · · x2n c2
...

...
. . .

...
...

xp1 xp2 · · · xpn cp

Formally, we define training dataset

T = {(x⃗k , ck) | k = 1, . . . , p}

Here each x⃗k ∈ Rn is an input vector and ck ∈ C
is the correct class.

T ={(3.91, 5.76),M),

(7.09, 7.69),A),

. . .}

30

KNN: Learning

Consider the training set:

T = {(x⃗k , ck) | k = 1, . . . , p}

and memorize it exactly as it is.

Store in a table.

Possibly use a clever representation allowing fast computation of nearest

neighbors such as KDTrees (out of the scope of this lecture).

Also,

▶ determine the number of neighbors K ∈ N,
▶ and the distance measure d .

31

Inference in KNN
Assume a KNN ”trained” by memorizing
T = {(x⃗k , ck) ∈ Rn × C | k = 1, . . . , p}, a constant K ∈ N and
a distance measure d .
For d , consider Euclidean distance, but different norms may also be used to

define different distance measures.

Input: A vector z⃗ = (z1, . . . , zn) ∈ Rn

Output: A class from C
1: Find K indices of examples X = {i1, ..., iK} ⊆ {1, . . . , p} with

minimum distance to z⃗ , i.e., satisfying

max{d(z⃗ , x⃗ℓ) | ℓ ∈ X} ≤ min{d(z⃗ , x⃗ℓ) | ℓ ∈ {1, . . . , p}∖X}
2: For every c ∈ C count the number #c of elements ℓ in X such

that cℓ = c
3: Return some

cmax ∈ argmax
c∈C

#c

A class cmax ∈ C which maximizes #c.

32

Inference in KNN
Assume a KNN ”trained” by memorizing
T = {(x⃗k , ck) ∈ Rn × C | k = 1, . . . , p}, a constant K ∈ N and
a distance measure d .
For d , consider Euclidean distance, but different norms may also be used to

define different distance measures.

Input: A vector z⃗ = (z1, . . . , zn) ∈ Rn

Output: A class from C
1: Find K indices of examples X = {i1, ..., iK} ⊆ {1, . . . , p} with

minimum distance to z⃗ , i.e., satisfying

max{d(z⃗ , x⃗ℓ) | ℓ ∈ X} ≤ min{d(z⃗ , x⃗ℓ) | ℓ ∈ {1, . . . , p}∖X}
2: For every c ∈ C count the number #c of elements ℓ in X such

that cℓ = c
3: Return some

cmax ∈ argmax
c∈C

#c

A class cmax ∈ C which maximizes #c.

32

The resulting model

What exactly constitutes the model? The model consists of

▶ The trained parameters: In this case the memorized training
data.

▶ The hyperparameters set ”from the outside”: In this case, the
number of neighbors K and the distance measure d .

Note that different settings of K lead to different classifiers (for
the same d):

33

The resulting model

What exactly constitutes the model? The model consists of

▶ The trained parameters: In this case the memorized training
data.

▶ The hyperparameters set ”from the outside”: In this case, the
number of neighbors K and the distance measure d .

Note that different settings of K lead to different classifiers (for
the same d):

33

In Practice

... to get an efficient solution:

▶ Deal with issues in the data
▶ Data almost always comes in weird formats, with

inconsistencies, missing values, wrong values, etc.
▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

... to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.

▶ Deal with issues in the model
▶ In KNN, the training memorizes the example, but at least the

K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

... to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

... to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

... to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

Models Considered in This Course

Throughout this course, we will meet the following models:

▶ KNN (already did)

▶ Decision trees

▶ (Naive) Bayes classifier

▶ Clustering: K-means and hierarchical

▶ Linear and logistic regression

▶ Support Vector Machines (SVM)

▶ Kernel linear models

▶ Neural networks (light intro to feed-forward networks)

▶ Ensemble methods + random forests

▶ (maybe some reinforcement learning)

... but first, let us see the whole machine learning pipeline.

35

Models Considered in This Course

Throughout this course, we will meet the following models:

▶ KNN (already did)

▶ Decision trees

▶ (Naive) Bayes classifier

▶ Clustering: K-means and hierarchical

▶ Linear and logistic regression

▶ Support Vector Machines (SVM)

▶ Kernel linear models

▶ Neural networks (light intro to feed-forward networks)

▶ Ensemble methods + random forests

▶ (maybe some reinforcement learning)

... but first, let us see the whole machine learning pipeline.

35

Machine Learning Pipeline

36

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Clean Data
The cleaning usually comprises the following steps:
▶ Fix or remove incorrect or corrupted values.
▶ Identify outliers and decide what to do with them.

Outliers may harm some training methods and are not “representative”.

However, sometimes, they naturally belong to the dataset, and expert

insight is needed.

▶ Fix formatting.
For example, the Date may be expressed in many ways, and a simple

Yes/No answer.

▶ Resolve missing values (by either removing the whole
examples or imputing)
Many methods have been developed for missing values imputation. It is a

susceptible issue because new values may strongly bias the model.

▶ Remove duplicates.

The above steps often affect the training and need expertise in the application

domain.

Later in this course, we will discuss techniques for data cleaning.
39

40

Prepare Data

Unlike cleaning, which is application-dependent, data
preparation/transformation is model-dependent. This usually subsumes:

▶ Scaling: Settings values of inputs to a similar range.

Some models, especially those utilizing distance, are sensitive to large

differences between input sizes.

▶ Encoding: Encode non-numeric data using real-valued vectors.

Many models, especially those based on geometry, work only with

numeric data. Non-numeric data such as Yes/No, Short/Medium/Long

must be encoded appropriately.

▶ Binning or Discretization Convert continuous features into
discrete bins to capture patterns in ranges.

Comment: Sometimes Normalization, that is changing the distribution of

inputs to resemble the normal distribution, is mentioned. However, this step is

typically not essential for machine learning itself. However, it is important to

use statistical inference to test the significance of learned parameters.

41

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Train Model

Now the dataset has been cleaned; we may train a model.

Before training, we should split the dataset into

▶ training dataset on which the model will learn

▶ validation dataset on which we fine-tune hyperparameters

The resulting model is obtained after several iterations of the
above process.

43

Train Model

Now the dataset has been cleaned; we may train a model.

Before training, we should split the dataset into

▶ training dataset on which the model will learn

▶ validation dataset on which we fine-tune hyperparameters

The resulting model is obtained after several iterations of the
above process.

43

Evaluate Model

Here, we use the test set that we separated during data fetching.

In some cases, a brand new test set can be generated.
patients are examined regularly, creating new records continuously.

In some cases, it is tough to obtain new data.
For example, new expensive and difficult measurements are needed to obtain

new data.

Critical issue: Make sure that you are truly testing

exactly the whole inference process.

Often, just a model is tested, and the testing and production inference engines

are separated. This leads to truly nasty errors in the production!

We will discuss various generic metrics helpful in measuring the
quality of the resulting model.

44

Evaluate Model

Here, we use the test set that we separated during data fetching.

In some cases, a brand new test set can be generated.
patients are examined regularly, creating new records continuously.

In some cases, it is tough to obtain new data.
For example, new expensive and difficult measurements are needed to obtain

new data.

Critical issue: Make sure that you are truly testing

exactly the whole inference process.

Often, just a model is tested, and the testing and production inference engines

are separated. This leads to truly nasty errors in the production!

We will discuss various generic metrics helpful in measuring the
quality of the resulting model.

44

Deploy to Production
Deployment of machine learning models is a complex question,
application dependent.

The recently emerging area of MLOps is concerned with the
engineering side of the model deployment.

From the technical point of view, the typical issues solved by ML
Ops teams are
▶ how to extract/process data in real-time
▶ how much storage is required
▶ how to store/collect model (and data) artifacts/predictions
▶ how to set up APIs, tools, and software environments
▶ What the period of predictions (instantaneous or batch

predictions) should be
▶ how to set up hardware requirements (or cloud requirements

for on-cloud environments) by the computational resources
required

▶ how to set up a pipeline for continuous training and parameter
tuning

45

Deploy to Production
Deployment of machine learning models is a complex question,
application dependent.

The recently emerging area of MLOps is concerned with the
engineering side of the model deployment.

From the technical point of view, the typical issues solved by ML
Ops teams are
▶ how to extract/process data in real-time
▶ how much storage is required
▶ how to store/collect model (and data) artifacts/predictions
▶ how to set up APIs, tools, and software environments
▶ What the period of predictions (instantaneous or batch

predictions) should be
▶ how to set up hardware requirements (or cloud requirements

for on-cloud environments) by the computational resources
required

▶ how to set up a pipeline for continuous training and parameter
tuning

45

Deploy to Production

From the user’s point of view:
▶ How to get a sensible and valuable user output?

▶ AI researchers will be satisfied with tons of running text in
terminals.

▶ “Normal” people need a graphical interface with
understandable output.

▶ Experts working in other domains typically demand speed and
clarity at the extreme.

▶ How do you persuade users that the AI is working for them?
▶ Especially if safety is at stake, you need to have outstanding

arguments and explanations ready for end-users
▶ In many areas, the devices need to be certified (medicine,

automotive) for ML-based systems.

This complex subject will be only touched on in this course.

46

Deploy to Production

From the user’s point of view:
▶ How to get a sensible and valuable user output?

▶ AI researchers will be satisfied with tons of running text in
terminals.

▶ “Normal” people need a graphical interface with
understandable output.

▶ Experts working in other domains typically demand speed and
clarity at the extreme.

▶ How do you persuade users that the AI is working for them?
▶ Especially if safety is at stake, you need to have outstanding

arguments and explanations ready for end-users
▶ In many areas, the devices need to be certified (medicine,

automotive) for ML-based systems.

This complex subject will be only touched on in this course.

46

Monitor, collect Data

Deployed machine learning models must be constantly monitored.

Because of the influx of new data, ML models work in highly
dynamic environments.

For example, an image-processing medical diagnostic model suddenly

misdiagnosed a patient because a nurse marked the sample with a marker pen.

Every customer has a different infrastructure and may produce
data slightly differently.

Data for retraining and improvement should be stored.

Also, many areas allow the active learning where users provide
feedback for (continuous) retraining of the models.

47

Decision Trees

48

Decision Trees

▶ One of the most widely used methods for machine learning.

▶ Intuitively simple, directly explainable.

▶ Basis for random forests (a powerful model).

▶ We will consider the ID3 algorithm.

▶ A peek at the C4.5 algorithm.
(just an optimized version of ID3)

49

Consider the weather forecast for tennis playing. How would you
decide whether to play today?

Now, how do we obtain such a tree based on experience/data?
50

Learning Decision Trees

We start with trees on discrete datasets. That is, consider data
represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values D(A).

Examples are then vectors of values of all attributes:

x⃗ = (x1, . . . , xn) ∈ D(A1)× · · · × D(An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.

51

Example
The tennis problem:
▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ D(A1) = {Sunny ,Overcast,Rain}
▶ D(A2) = {Hot,Mild ,Cool}
▶ D(A3) = {High,Normal}
▶ D(A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ D(A1)× D(A2)× D(A3)×D(A4)

Then

A3(x⃗) = Humidity(x⃗) = Normal

A4(x⃗) = Wind(x⃗) = Weak

▶ C = {Yes,No}
52

Decision Trees

Consider (directed, rooted) trees (V ,E) where V is a set of nodes and
E ⊆ V × V is a set of directed edges.

Denote by Vleaf ⊆ V the set of all leaves of the tree and by Vint the set
V ∖ Z of internal nodes.

A decision tree is

▶ a tree (V ,E) where

▶ each leaf z ∈ Vleaf is assigned a class C (z) ∈ C ,

▶ each internal node h ∈ Vint is assigned an attribute A(h) ∈ A,

▶ and there is a bijection between edges from h and values of the
attribute A(h). Given an edge (h, h′) ∈ E we write D(h, h′) to
denote the value of the attribute A(h) assigned to the edge.

Inference: Given an input x⃗ ∈ D, we traverse the tree from the
root to a leaf, always choosing edges labeled with values of
attributes from x⃗ . The output is the class labeling the leaf.

53

Example

V = {O,H,W , z1, z2, z3, z4, z5}

Vleaf = {z1, z2, z3, z4, z5},Vint = {O,H,W }

E ={(O,H), (O,W), (H, z1), (H, z2),

(O, z3), (W , z4), (W , z5)}

A(O) = Outlook, A(H) = Humidity , A(W) = Wind

D(O,H) = Sunny , D(O, z3) = Overcast, D(O,W) = Rain
D(H, z1) = High, D(H, z2) = Normal
D(W , z4) = Strong , D(W , z5) = Weak

Inference: For (Rain,Hot,High,Strong) we reach z4, yielding No.

54

Training Dataset

Consider a training dataset

T = {(x⃗ (k), c(k)) | k = 1, . . . , p}

Here x⃗ (k) ∈ D(A1)× · · · × D(Ak) and c(k) ∈ C for every k .

55

Index Outlook Temperature Humidity Wind PlayTennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

T ={((Sunny ,Hot,High,Weak),No),

((Sunny ,Hot,High,Strong),No)

· · ·
((Rain,Mild ,High,Strong),No)} 56

Learning Decision Trees

The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset T .

▶ If there is just a single class in T , create a single node
decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in T . For every v ∈ D(A) we obtain

Tv = {x⃗ | x⃗ ∈ T ,A(x⃗) = v}

We aim to have each Tv as pure as possible, that is, ideally, to
contain examples of just a single class.

▶ Finally,
▶ create a root node h of a decision tree,
▶ assign the attribute A to h,
▶ for every v ∈ D(A) introduce an edge (h, h′) assigned v ,
▶ recursively construct a subtree using Tv , attach its root to h′.

57

1: procedure ID3(dataset T , attribute set A)
2: Create a root node h for the tree
3: if all examples in T are of the same class c then
4: Return the single-node tree, where h is assigned c
5: else if Attributes set A is empty then
6: Return the single-node tree where h is assigned

the most common class in T
7: else
8: Choose attribute A ∈ A best classifying examples in T
9: Set the decision attribute for h to A

10: for each value v ∈ D(A) such that Tv ̸= ∅ do
11: Add a new edge (h, h′) assigned v ,
12: Attach the subtree ID3(Tv ,A∖ {A}) to h′

13: end for
14: end if

return Root
15: end procedure

For illustration, see the green board...

58

What is the Best Classifying Attribute?
There are several measures used in practice.

The most common are information gain and Gini impurity.

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training set T and a class c ∈ C we denote by pc the
proportion of examples with class c in T .

▶ We define the entropy of T by

Entropy(T) =
∑
c∈C

−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(T ,A) = Entropy(T)−
∑

v∈D(A)

|Tv |
|T |

Entropy(Tv)

Bleh?!?
59

Information Gain
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the ”uncertainty” of the class:

▶
∑

v∈D(A)
|Tv |
|T | Entropy(Tv) is weighted uncertainty of classes in

each Tv (weighted by the relative size of Tv).
▶ Gain(T ,A) measures reduction in uncertainty of classes by

dividing T according to A.

60

Gini Impurity
▶ We define Gini index of T by

Gini(T) = 1−
∑
c∈C

p2c

▶ The information gain of an attribute A is then defined
similarly to the gain in the entropy case

Gain(T ,A) = Gini(T)−
∑

v∈D(A)

|Tv |
|T |

Gini(Tv)

What is the intuition behind Gini(T) ?

Assume we randomly independently choose objects from T .

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.
61

Continuous-Valued Attributes
What if values of Ak come from a ”continuous” variable?
Such as temperature, size, time, etc.

Then consider an internal node v ∈ V assigned an attribute A with
outgoing edges e1, . . . , ei .
Each of these edges ej is assigned a value vj ∈ D(A), assume that
the values satisfy

v1 < v2 < · · · < vi

When considering an example x⃗ in the node v , we follow the edge

▶ e1 if A(x⃗) ≤ v1
▶ e2 if v1 < A(x⃗) ≤ v2
▶ · · ·
▶ ei if vi < A(x⃗)

▶ ≤ 5 ⇒ leftmost edge

▶ > 5 & ≤ 10 ⇒ second left

▶ · · ·
62

Iris Example

Attributes
Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

Classes (Variety)
Setosa, Versicolor, Virginica

63

Iris Example
The dataset (150 examples):

Sepal.Length Sepal.Width Petal.Length Petal.Width Variety

5.5 3.5 1.3 0.2 Setosa
6.8 2.8 4.8 1.4 Versicolor
6.7 3.1 4.7 1.5 Versicolor
6.9 3.1 5.1 2.3 Virginica
7.3 2.9 6.3 1.8 Virginica
5.4 3.7 1.5 0.2 Setosa
4.6 3.4 1.4 0.3 Setosa
6.2 2.8 4.8 1.8 Virginica
5.4 3.0 4.5 1.5 Versicolor
4.7 3.2 1.6 0.2 Setosa
6.7 3.3 5.7 2.1 Virginica
5.0 3.4 1.5 0.2 Setosa
5.0 3.0 1.6 0.2 Setosa
4.4 2.9 1.4 0.2 Setosa
6.0 3.4 4.5 1.6 Versicolor
5.1 3.5 1.4 0.2 Setosa
6.6 3.0 4.4 1.4 Versicolor
5.9 3.2 4.8 1.8 Versicolor
5.6 2.8 4.9 2.0 Virginica
· · ·

Table: Summary of iris dataset measurements.

64

Iris Example

65

Iris Example - Decision Tree

66

Iris Example - Decision Tree Boudaries

If the leaves are split further, the Depth = 2 boundary would be
added.

67

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

Decision trees can cope with continuous and categorical values
directly (i.e., no encoding necessary)

68

Intermezzo on Over/Under Fitting

Both overfitting and underfitting are best avoided. But how do I
find out?

69

Hyperparameter Tuning for Decision Trees
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and test sets.

The too-large difference implies an improperly fitting model.
70

Hyperparameter Tuning for Decision Trees
Usual hyperparameters:

▶ Maximum depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum samples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of features.

▶ Minimum impurity decrease
Small impurity decrease means that the split does not contribute too

much to the classification (their proportions after split are similar to

proportion before split). However, keep in mind that it is weighted

average impurity after the split.

▶ · · ·
71

Hyperparameters Tuning Example

See the overfitting on the left. The model on the right has been
regularized by restricting the minimum number of samples in
leaves.

72

Advantages of Decision Trees

▶ Simple to understand and interpret; trees can be visualized.

▶ Requires little data preparation, unlike other techniques
requiring normalization, dummy variables, or blank value
removal.

▶ Cost of using the tree is logarithmic in the number of data
points used to train it.

▶ Handles numerical and categorical data.

▶ Capable of handling multi-output problems.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Allows for model validation using statistical tests, accounting
for model reliability.

▶ Performs well even when the true model somewhat violates its
assumptions.

73

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

▶ Difficulty expressing certain concepts, Such as XOR, parity, or
multiplexer problems.

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

74

Axis Sensitivity

Decision makes divisions along particular axes:

That is, rotated data may result in a completely different model.

That is why decision trees are often preceded by the principal
component analysis (PCA) transformation, which aligns data along
the axes of maximum data variance.

75

Comment on Regression Trees

Decision trees can also be used to approximate functions. Assign a
function value to the leaves instead of classes.

Here ”mse” is the mean-squared-error. We get to this notion later
in connection with linear models and neural networks.

76

Comment on Regression Trees

Intuitively, for every subinterval of x1 the value (the red line) is at
the average y over the subinterval.

How are the subintervals being set? We will answer this question
later once we master the mean-squared error.

77

