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Data Science Example

You receive data from a medical researcher concerning a project
that you are eager to work on.

The data consists of a 1000 lines table with five columns:

012 232 33.5 0 10.7
020 121 16.9 2 210.1
027 165 24.0 0 427.6

· · ·

The aim is to predict the last field given the others.

The medical researcher does not elaborate further on the data, but
they seem to be pretty easy to work with, right?

After a few days, you have trained a model that predicts numbers
resembling the ones in the table.

You contact the medical researcher and discuss the results.
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Model Discussion

Researcher: So, you got the data for all the patients?

Data Miner: Yes. I haven’t had much time for analysis, but I do
have a few interesting results.
Researcher: Amazing. There were so many data issues with this
set of patients that I couldn’t do much.
Data Miner: Oh? I didn’t hear about any possible problems.
Researcher: Well, first, there is field 5, the variable we want to
predict. It’s common knowledge among people who analyze this
type of data that results are better if you work with the log of the
values, but I didn’t discover this until later. Was it mentioned to
you?
Data Miner: No.
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Model Dicsuccion

Researcher: But surely you heard about what happened to field
4? It’s supposed to be measured on a scale from 1 to 10, with 0
indicating a missing value, but because of a data entry error, all
10’s were changed into 0’s. Unfortunately, since some of the
patients have missing values for this field, it’s impossible to say
whether a 0 in this field is a real 0 or a 10. Quite a few of the
records have that problem.

Data Miner: Interesting. Were there any other problems?
Researcher: Yes, fields 2 and 3 are basically the same, but I
assume that you probably noticed that.
Data Miner: Yes, but these fields were only weak predictors of
field 5.
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Model Discussion

Researcher: Anyway, given all those problems, I’m surprised you
were able to accomplish anything.
Data Miner: True, but my results are really quite good. Field 1 is
a very strong predictor of field 5. I’m surprised that this wasn’t
noticed before.
Researcher: What? Field 1 is just an identification number.
Data Miner: Nonetheless, my results speak for themselves.
Researcher: Oh, no! I just remembered. We assigned ID numbers
after we sorted the records based on field 5. There is a strong
connection, but it isn’t very sensible. Sorry.

OK, what’s the point?

You have to

Understand the task you want to solve and the data!
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Data Objects

Data objects represent entities we work with (e.g., classify them).

For example, in cancer prediction, the data objects are patients. In
fruit classification, the data objects are individual fruits.

Data objects are described by attributes (or features or variables).

For example, the age, weight, genetic profile, and other patient
characteristics. Or the width and height of a fruit.
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Attributes vs Features vs Variables

The name differs from field to field.

So, the following names are usually used as synonyms:

▶ Attributes - used mostly by database and data mining experts.

▶ Features - used mostly by machine learning experts.

▶ Variables - used mostly by statisticians.

One may make some distinctions

▶ Attributes represent information about the object without any
additional assumptions.

▶ Features assume that their values are somewhat characteristic
of the object.

▶ Variables assume that there is some process behind them
(typically a random process in the case of statistics).
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Data Types - Categorical Attributes

Categorical attributes (nominal attributes) are symbols or names of
things.

▶ Each value represents some kind of category, code, or state.

▶ Values are not ordered and should not be used quantitatively
(in computer science, the values are known as enumerations).

▶ Examples:

hair color ∈ {black, brown, blond, red, auburn, gray,white}

marital status ∈ {single,married, divorced,widowed}

customer ID ∈ {0, 1, 2, . . .}

Even though the last one is usually expressed using numbers,
it should not be used quantitatively.

Binary attributes are categorical attributes with only two values.
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DataTypes - Ordinal Attributes

Ordinal attribute is an attribute with values that have a meaningful
order or ranking among them.

Examples:

drink size ∈ {small,medium, large}

grades ∈ {A,B,C,D,E,F}

It can also be obtained by discretizing numeric quantities into
series of intervals.

Ordinal attributes do not allow arithmetic operations.

Categorical and ordinal attributes are called qualitative attributes.

Next, we look at numeric, i.e., quantitative attributes.
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Data Types - Numeric Attributes

Numeric attributes are quantities represented by numbers.

Distinguish two types: Interval-scale and ratio-scale.

INTERVAL SCALE RATIO SCALE
Measurement

interval
Equal intervals between
consecutive points.

Equal intervals with
the presence of a true zero.

Absolute
zero

Lacks a true zero point.
Possesses a true

zero point.
Statistical
analysis

Limited to addition
and subtraction

Allows for meaningful
multiplication and division.

Meaningful
ratios

Ratios are not meaningful
due to the lack of zero.

Ratios are meaningful
due to the presence of zero.

Examples
IQ scores,

Celsius temperature,
NPS data, etc.

Height, weight,
income, etc.
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Discrete vs Continuous Attributes

Often, two kinds of numeric attributes are distinguished:

▶ Discrete
A finite or countably infinite range of values, i.e., integers may
represent the values.
Some (but not all) authors count the qualitative (categorical, ordinal)

attributes among the discrete attributes.

▶ Continuous
An uncountably infinite range of values, typically an interval.
There are several more or less formal definitions of continuous attributes

in the literature. For example:

▶ All non-discrete variables.
▶ Have an infinite number of values between any two values.
▶ Their values are measured (??).

Deeper characteristics of data (statistical properties, etc.) will be
examined at tutorials.
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Classifier Evaluation
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Classifier
Assume binary classification into two classes {0, 1}.

Consider a classification dataset:

{(x⃗k , ck) | k = 1, . . . , p}
Here x⃗k is a vector of attributes/features and ck ∈ {0, 1} for all k .

Consider a sequence of predictions generated by a classifier:

h1, . . . , hp ∈ {0, 1}
Here each hk has been predicted for the k-the example (x⃗k , ck).

How good are the predictions h1, . . . , hp w.r.t. c1, . . . , cp?

There are many possible metrics ...

I will call the class 1 positive and the class 0 negative.
Note that the class 0 is not negative in the numerical sense but in the absence

of something (e.g., predicted illness).
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Confusion Matrix for Binary Classifier
Predicted
1 0

Actual
1 TP FN
0 FP TN

▶ TP = number of correctly classified examples with actual class 1

TP = |{k | hk = 1 ∧ ck = 1}|

▶ TN = number of correctly classified examples with actual class 0

TN = |{k | hk = 0 ∧ ck = 0}|

▶ FP = number of incorrectly classified examples with actual class 0

FP = |{k | hk = 1 ∧ ck = 0}|

▶ FN = number of correctly classified examples with actual class 1

FN = |{k | hk = 0 ∧ ck = 1}|
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Example

Given a sample of 12 individuals, eight have been diagnosed with
cancer, and four are cancer-free.

Assume that we have trained a classifier with the following results:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 1 1 1 0 0 0 0

Predicted 0 0 1 1 1 1 1 1 1 0 0 0
Result FN FN TP TP TP TP TP TP FP TN TN TN

Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12
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Terminology
▶ TP aka hit

▶ TN aka correct rejection

▶ FP aka type I error, false alarm, overestimation

▶ FN aka type II error, miss, underestimation

Usually, TP, TN, FP, and FN are used to denote the individual
examples of a particular kind and the number of these examples.

In what follows, we also use

▶ P = TP + FN of all cases with the actual class 1

▶ N = TN+ FP of all cases with the actual class 0

▶ PP = TP + FP of all cases with the predicted class 1

▶ PN = TN + FN of all cases with the predicted class 0

Note that P + N is the number of all cases.

There is a large number of derived metrics. We consider some of
the most used in practice.
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There is a large number of derived metrics. We consider some of
the most used in practice.

16



Accuracy

Accuracy =
TP + TN

P + N

Intuitively, Accuracy is the proportion of correctly classified cases
w.r.t. all cases.

Example: Consider our cancer predictor with the confusion matrix

Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12

The Accuracy is

ACC =
TP + TN

P + N
=

6 + 3

12
=

3

4
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Accuracy - Imbalanced Classes

Accuracy can be misleading when the classes are imbalanced:

▶ Consider 100 cases, 90 in the class 0 and 10 in the class 1,

▶ consider a classifier that returns 1 for a single sample of class
1 and 0 for all other samples.

Actual Predicted
Pos Neg

Pos 1 9

Neg 0 90

Total 90 + 10 = 100

The Accuracy is 91/100 > 0.9. Pretty good, right?

However, the classifier is pretty bad in the positive cases.
In the case of cancer prediction, such a classifier would be a disaster.
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Precision & Recall

To mitigate the defect of the Accuracy, we may compute the
following metrics:

Precision =
TP

PP
(= how often is predicted positive actually positive)

Precision is also known as positive predictive value (PPV)

Recall =
TP

P
(= how often is actually positive predicted positive)

Recall is also known as true positive rate, sensitivity, hit rate, and power.
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Precision & Recall - Example

Example: In our cancer example:

Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12

▶ Precision measures how often is the patient predicted to be ill
truly ill (in our case, 6/7)

▶ Recall measures how often is an ill patient found to be ill (in
our case, 6/8)
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Precision & Recall - Imbalanced Classes

▶ Consider 100 cases, 90 in the class 0 and 10 in the class 1,

▶ consider a classifier that returns 1 for a single sample of class
1 and 0 for all other samples.

Actual Predicted
Pos Neg

Pos 1 9

Neg 0 90

Total 90 + 10 = 100

Precision = 1

Recall =
1

10

You can see that the predictor is very precise (on the class 1) but
useless due to the weak Recall.
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Precision & Recall - Relative Importance

Let us get back to our cancer example:

Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12

Consider Precision and Recall.
By now, you should remember what they measure.

Which of the two is more important in medicine?

Which of the two is more important for plagiarism detectors?

Can we get a single number summarizing both Precision and
Recall?
For example, to compare two classifiers.
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F1 Score
F1 score is the harmonic mean of Recall and Precision:

F1 =
2

Recall−1 + Precision−1
=

2TP

2TP + FP + FN

Compare the arithmetic (left) and harmonic (right) mean:

The harmonic mean prefers the two values closer to each other.
For example, the harmonic mean of 2/3 and 1/3 is (approx) 0.44444.
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F1 Score - Examples
Consider the cancer example:

Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12

Here F1 =
2TP

2TP+FP+FN = (2 · 6)/((2 · 6) + 1 + 2) = 0.8.

Our imbalanced example:

Actual Predicted
Pos Neg

Pos 1 9

Neg 0 90

Total 90 + 10 = 100

Here F1 =
2TP

2TP+FP+FN = (2 · 1)/((2 · 1) + 0 + 9) = 0.18.
Note that the average of Precision and Recall is 0.55, which would give us a

much less severe warning that the classifier is bad.
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Imbalanced Classes Once More
Note that the standard definitions of Precision and Recall for
binary classifiers reveal only part of the truth.

In particular, false negatives are not used in the definition of F1.

Consider

Actual Predicted
Pos Neg

Pos 90 0

Neg 9 1

Total 90 + 10 = 100

Precision = 90/99 Recall = 90/90

F1 =
2TP

2TP + FP + FN
= (2 · 90)/(2 · 90 + 9 + 0) = 0.95

All great, except that the classifier sucks on the negative cases.
If you are concerned with the negative cases, swap the classes and compute

another set of metrics.
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F1 Score

▶ F1 is often used as a summary score for binary classifiers
instead of Accuracy.
Works better with imbalanced classes.

▶ Criticised for giving Precision and Recall the same importance.

▶ Is not symmetric, ignores true negatives, i.e., is misleading for
some cases of imbalanced classes.

▶ Fowlkes-Mallows index is a geometric mean of Precision and
Recall (used in clustering).
The geometric mean is between the arithmetic and harmonic mean. For

example, the geometric mean of 2/3 and 1/3 is (approx) 0.4714.
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More Derived Metrics

You can see that the negative predictive value becomes the
Precision when we swap the classes (and vice versa).
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More Derived Metrics

Note that specificity becomes Recall when we swap the classes
(and vice versa).

For example, medical doctors communicate in terms of sensitivity
and specificity.

28



Actual condition Predicted condition
Cancer Non-cancer

Cancer TP = 6 FN = 2

Non-cancer FP = 1 TN = 3

Total 8 + 4 = 12

TPR = Sensitivity = Recall = TP/P = 6/8

How often is positive predicted positive?

TNR = Specificity = TN/N = 3/4

How often is negative predicted negative?

FPR = Prob. of false alarm = FP/N = 1/4

How often is negative predicted positive?

FNR = Miss rate = FN/P = 2/8

How often is positive predicted negative?
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Evaluating Multi-class Classifiers

30



Classification Into Multiple Classes
Assume classification into classes from a finite set C .

Consider a classification dataset:

{(x⃗k , ck) | k = 1, . . . , p}

Here x⃗k is a vector of attributes/features and ck ∈ C for all k .

Consider a sequence of predictions generated by a classifier:

h1, . . . , hp ∈ C

Here each hk has been predicted for the k-the example (x⃗k , ck).

How good are the predictions h1, . . . , hp w.r.t. c1, . . . , cp?

There are many possible metrics ...

Consider an arbitrary (finite) number of classes in C .
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Confusion Matrix

Assume that C = {1, . . . ,m}.

Now, given two classes i , j ∈ C we denote by Mij the number of
samples of class i classified into the class j .

Formally,

Mij = |{k | ck = i ∧ hk = j}|

Actual Predicted
1 · · · j · · · m

1 M11 · · · M1j · · · M1m
...

...
...

...
i Mi1 · · · Mij · · · Mim
...

...
...

...
m Mm1 · · · Mmj · · · Mmm
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Example

Actual Predicted
big big
big big
small big
medium medium
big small
big big
small small
small small
medium medium
medium small
small small
big big
medium small
small medium
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Example

Actual Predicted
big big
big big
small big
medium medium
big small
big big
small small
small small
medium medium
medium small
small small
big big
medium small
small medium

Actual Predicted
big medium small

big 5 0 1

medium 0 2 2

small 1 1 3

Note that the diagonal counts the
correctly classified samples.

The off-diagonal elements
correspond to misclassified samples.
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Metrics
We can easily generalize Accuracy, Precision, Recall, and F1-score
from the binary classification to multiple classes.

Notation
▶ Mi• =

∑m
j=1Mij

▶ M•j =
∑m

i=1Mij

▶ M•• =
∑m

i=1

∑m
j=1Mij

Now, the metrics:

Accuracy =

∑m
k=1Mkk

M••

For a given class i ∈ C :

Precision[i ] =
Mii

M•i
Recall[i ] =

Mii

Mi•

F1[i ] =
2 ∗ Precision[i ] ∗ Recall[i ]
Precision[i ] + Recall[i ]

Note that Precision, Recall, and F1 can be defined only for a given class!
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Metrics
We can easily generalize Accuracy, Precision, Recall, and F1-score
from the binary classification to multiple classes.
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Example

Actual Predicted
big medium small

big 5 0 1

medium 0 2 2

small 1 1 3

Compute the metrics.
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Example

Accuracy = (5+2+3)/15 = 0.66

Precision[big] = 5/6

Precision[medium] = 2/3

Precision[small] = 3/6

Recall[big] = 5/6

Recall[medium] = 2/4

Recall[small] = 3/5

Actual Predicted
big medium small

big 5 0 1
medium 0 2 2
small 1 1 3

F1[big] =
2 ∗ (5/6) ∗ (5/6)
(5/6) + (5/6)

= 5/6 = 0.83

F1[medium] = 0.57

F1[medium] = 0.54

How do you get a single number out of these? Average Precision, Recall, and

F1 are usually computed, but one needs to be careful about the variance.
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Machine learning/data mining is needed to understand the matrix.
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Probabilistic Classifier Evaluation

39



Binary Probabilistic Classifier

Assume binary classification into two classes {0, 1}.

Consider a classification dataset:

{(x⃗k , ck) | k = 1, . . . , p}

Here x⃗k is a vector of attributes/features and ck ∈ C for all k .

Consider a sequence of predictions generated by a classifier.
Now the classifier returns probability of class 1 for a given input:

h1, . . . , hp ∈ [0, 1]

Here each hk has been predicted for the k-the example (x⃗k , ck).

How to interpret the predictions h1, . . . , hp?

How good are the predictions h1, . . . , hp w.r.t. c1, . . . , cp?
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Probabilistic Classifier
Let us fix predictions h1, . . . , hp.

Given a threshold T ∈ [0, 1] we define

hTk =

{
1 if hk ≥ T

0 if hk < T

For every T we can compute all the metrics (Precision, Recall,
etc.)

Given a metric MET and a threshold T , we denote by MET[T ] the
metric MET evaluated on hT1 , . . . , h

T
p .

We obtain

TP[T ] = |{k | hTk = 1 ∧ ck = 1}|
and
TN[T ],FP[T ],FN[T ],Accuracy[T ],Precision[T ],Recall[T ],F1[T ], . . .

However, all metrics are now functions of the threshold T .
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Thresholded Classifier Metrics

Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 0 0 1 1 0 0 0

Predicted .98 .95 .9 .86 .66 .48 .42 .4 .36 .15 .1 .05

T=0.5 TP TP TP TP TP TN TN FN FN TN TN TN

T=0.42 TP TP TP TP TP FP FP TP FN TN TN TN

T=0.1 TP TP TP TP TP FP FP TP TP FP FP TN

For example, consider T = 0.42, then

TP[T ] = 6 FP[T ] = 2 FN[T ] = 1 TN[T ] = 3

Accuracy[T ] =
3 + 6

12
Precision[T ] =

6

6 + 2
Recall[T ] =

5

6 + 1

F1[T ] =
2 · 6/8 · 5/7
6/8 + 5/7

= 0.73
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Receiver Operating Characteristic (ROC)
Consider two metrics for a given T :

TPR[T ] =
TP[T]

P[T ]
(True Positive Rate)

FPR[T ] =
FP[T ]

N[T ]
(False Positive Rate)

ROC curve is then a function ROC : [0, 1] → [0, 1]2 defined by

ROC(T ) = (TPR[T ],FPR[T ])

Observe that

ROC(0) = (1, 1)

Because the classifier with T = 0 simply classifies everything as
positive, i.e., into the class 1.

Both TPR[T ] and FPR[T ] are non-increasing in T .
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Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 0 0 1 1 0 0 0

Predicted .98 .95 .9 .86 .66 .48 .42 .4 .36 .15 .1 .05

▶ 0.00 ≤ T ≤ 0.05: TPR = 1 and FPR = 1

▶ 0.05 < T ≤ 0.10: TPR = 1 and FPR = 4/5

▶ 0.10 < T ≤ 0.15: TPR = 1 and FPR = 3/5

▶ 0.15 < T ≤ 0.36: TPR = 1 and FPR = 2/5

▶ 0.36 < T ≤ 0.40: TPR = 6/7 and FPR = 2/5

▶ 0.40 < T ≤ 0.42: TPR = 5/7 and FPR = 2/5

▶ 0.42 < T ≤ 0.48: TPR = 5/7 and FPR = 1/5

▶ 0.48 < T ≤ 0.66: TPR = 5/7 and FPR = 0

▶ 0.66 < T ≤ 0.86: TPR = 4/7 and FPR = 0

▶ 0.86 < T ≤ 0.90: TPR = 3/7 and FPR = 0

▶ 0.90 < T ≤ 0.95: TPR = 2/7 and FPR = 0

▶ 0.95 < T ≤ 0.98: TPR = 1/7 and FPR = 0

▶ 0.98 < T ≤ 1.00: TPR = 0 and FPR = 0
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ROC
Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 0 0 1 1 0 0 0

Predicted .98 .95 .9 .86 .66 .48 .42 .4 .36 .15 .1 .05
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Iris Dataset - A Classifier

Example from the scikit-learn manual - SVM classifier trained in
Iris
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Using ROC and Threshold

Search for the best threshold at the elbow of the ROC curve.
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ROC - Explanation

The larger the area under the ROC curve (ROC-AUC), the better.

ROC-AUC ranges from 0 to 1. ROC-AUC ≈ 0.5 indicates random

guessing.
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ROC-AUC
Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 0 0 1 1 0 0 0

Predicted .98 .95 .9 .86 .66 .48 .42 .4 .36 .15 .1 .05

ROC-AUC = 0.8857
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Iris - ROC-AUC

ROC-AUC = 0.79
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ROC-AUC - Probabilistic Interpretation

How is the ROC-AUC connected with the samples?

Consider our cancer detection example:

Index 1 2 3 4 5 6 7 8 9 10 11 12
Actual 1 1 1 1 1 0 0 1 1 0 0 0

Predicted .98 .95 .9 .86 .66 .48 .42 .4 .36 .15 .1 .05

AUC has a probabilistic explanation:

Consider the following experiment:

▶ Choose randomly a patient i from positive patients
Each positive patient has the same probability of being chosen.

▶ Choose randomly a patient j from negative patients
Each negative patient has the same probability of being chosen.

▶ Check if hi ≥ hj .

The ROC-AUC is the probability of succeeding in the hi ≥ hj test.
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Summary

We have discussed various metrics that can be used to evaluate
the quality of a classifier.

The metrics summarize the results of evaluation on a given
dataset.

We have discussed metrics for evaluating

▶ binary classifiers,
Accuracy, Precision, Recall, F1, and few more

▶ multi-class classifiers,
Accuracy, Precision, Recall, F1

▶ probabilistic classifiers,
parametrized metrics, ROC-AUC

There are still several questions unanswered:

▶ When to use the metrics.

▶ How to estimate the influence of sampling the dataset.
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Use of Evaluation Metrics
In our case, the following scenarios are typical:

▶ Final test: Evaluate the model on the test set (separated at
the beginning of training) and then compute the metrics. May
inform the user about the quality of the model.

▶ Validation: Evaluate models on a separate validation set and
use the metrics to compare models.
There are (at least) two scenarios in which this happens:
▶ Hyperparameter fine-tuning.
▶ Comparison of different models (e.g., KNN and decision trees).

Keep in mind that the metrics are artificial, and the results of the
model are roughly summarized.

It would be best if you always strived to test the proper
functionality of your model in as natural conditions as possible.

For example, a model for medical diagnosis should be evaluated by medical

doctors who may observe many features of its behavior that are difficult to

express quantitatively.
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How to Estimate Significance

Machine learning models are typically trained on (pseudo) random
samples of data objects.
For example, a set of patients treated by the concrete hospital.

However, the purpose of testing/evaluation is to get information
about the whole population (i.e., all possible patients).

How do we estimate how much specific properties of the given
sample influence our model?

This is a challenging question; methods of inferential statistics are
needed to get the answer.

We will consider these issues in some later lecture. Concretely,

▶ Bias-variance tradeoff
▶ Statistical tests for testing

▶ significance of the metrics values,
▶ paired t-tests for comparing models.
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How to Compare Classifiers
Let us consider two classifiers. How do you compare them?

Accuracies and F1 scores can be compared easily (they are just
numbers).

How to compare (Precision1,Recall1) of the fist classifier with
(Precision2,Recall2) of the second classifier?

Thresholding
▶ Introduce a threshold 0 ≤ t ≤ 1
▶ Demand, one of the two metrics (typically the Recall), to be

at least t. That is

Recall1 ≥ t Recall2 ≥ t

▶ Compare the values of the other metric numerically. In our
case, decide whether

Precision1 ≥ Precision2

(Still need to be concerned about the statistical significance.)
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Example

Actual Predicted
condition condition

Canc. Non-canc.
Cancer 6 2

Non-canc. 1 3

Total 8 + 4 = 12

Actual Predicted
condition condition

Canc. Non-canc.
Cancer 5 3

Non-canc. 0 4

Total 8 + 4 = 12

Precision1 =
6

7
Recall1 =

6

8

Precision2 =
5

5
= 1 Recall2 =

5

8

Consider a threshold t on the Recall.

The second classifier is better if the threshold t is 5/8, then the
second classifier is better.

If the threshold t is 6/8, then the second classifier is unacceptable.
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