
IB031 Úvod do strojového učeńı
Tomáš Brázdil

1

Course Info

Resources:

▶ Lectures & tutorials (the main source)

▶ Many books, few perfect for introductory level
One relatively good, especially the first part:
A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. O’Reilly Media; 3rd edition, 2022

▶ (Almost) infinitely many online courses, tutorials, materials,
etc.

2

Evaluation

The evaluation is composed of three parts:

▶ Mid-term exam: Written exam from the material of the first
half of the semester.

▶ End-term exam: The ”big” one containing everything from
the semester (with possibly more stress in the second half).

▶ Projects: During tutorials, you will work on larger projects (in
pairs).

Each part contributes the following number of points:

▶ Mid-term exam: 25

▶ End-term exam: 50

▶ Project: 25

To pass, you need to obtain at least 60 points.

3

Distinguishing Properties of the Course

▶ Introductory, prerequisites are held to a minimum

▶ Formal and precise: Be prepared for a complete and
“mathematical” description of presented methods.

I assume that you have basic knowledge of

▶ Elementary understanding of mathematical notation
(operations on sets, logic, etc.)

▶ Linear algebra: Vectors in Rn, operations on vectors
(including the dot product). Geometric interpretation!

▶ Calculus: Functions of multiple real variables, partial
derivatives, basic differential calculus.

▶ Probability: Notion of probability distribution, random
variables/vectors, expectation.

4

Distinguishing Properties of the Course

▶ Introductory, prerequisites are held to a minimum

▶ Formal and precise: Be prepared for a complete and
“mathematical” description of presented methods.

I assume that you have basic knowledge of

▶ Elementary understanding of mathematical notation
(operations on sets, logic, etc.)

▶ Linear algebra: Vectors in Rn, operations on vectors
(including the dot product). Geometric interpretation!

▶ Calculus: Functions of multiple real variables, partial
derivatives, basic differential calculus.

▶ Probability: Notion of probability distribution, random
variables/vectors, expectation.

4

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

What Is Machine Learning?

Machine learning is the science (and art) of programming
computers so they can learn from data.

Here is a slightly more general definition:

Arthur Samuel, 1959
Machine learning is the field of study that allows computers to
learn without being explicitly programmed.

And a more engineering-oriented one:

Tom Mitchell, 1997
A computer program is said to learn from experience E concerning
some task T and some performance measure P if its performance
on T , as measured by P, improves with experience E .

5

Example
In the context of spam filtering:

▶ The task T is to flag spam in new emails.

▶ The experience E is represented by a set of emails labeled
either spam or ham by hand (the training data).

▶ The performance measure P could be the accuracy, which is
the ratio of the number of correctly classified emails and all
emails.
There are many more performance measures; we will study the basic ones

later.

In the context of housing price prediction:

▶ The task T is to predict prices of new houses based on their
basic parameters (size, number of bathrooms, etc.)

▶ The experience E is represented by information about existing
houses.

▶ The performance measure P could be, e.g., an absolute
difference between the predicted and real price.

6

Example
In the context of spam filtering:

▶ The task T is to flag spam in new emails.

▶ The experience E is represented by a set of emails labeled
either spam or ham by hand (the training data).

▶ The performance measure P could be the accuracy, which is
the ratio of the number of correctly classified emails and all
emails.
There are many more performance measures; we will study the basic ones

later.

In the context of housing price prediction:

▶ The task T is to predict prices of new houses based on their
basic parameters (size, number of bathrooms, etc.)

▶ The experience E is represented by information about existing
houses.

▶ The performance measure P could be, e.g., an absolute
difference between the predicted and real price.

6

Examples (cont.)
In the context of game playing:

▶ The task T is to play chess.

▶ The experience E is represented by a series of self-plays where
the computer plays against itself.

▶ The performance measure P is winning/losing the game.
Here, the trick is to spread the delayed and limited feedback about the

result of the game throughout the individual decisions in the game.

In the context of customer behavior:

▶ The task T is to group customers with similar shopping habits
in an e-shop.

▶ The experience E consists of lists of items individual
customers bought in the shop.

▶ The performance measure P?
Measure how ”nicely” the customers are grouped.
(whether people with similar habits, as seen by humans, fall
into the same group).

7

Examples (cont.)
In the context of game playing:

▶ The task T is to play chess.

▶ The experience E is represented by a series of self-plays where
the computer plays against itself.

▶ The performance measure P is winning/losing the game.
Here, the trick is to spread the delayed and limited feedback about the

result of the game throughout the individual decisions in the game.

In the context of customer behavior:

▶ The task T is to group customers with similar shopping habits
in an e-shop.

▶ The experience E consists of lists of items individual
customers bought in the shop.

▶ The performance measure P?
Measure how ”nicely” the customers are grouped.
(whether people with similar habits, as seen by humans, fall
into the same group).

7

Comparison of Programming and Learning
How to code the spam filter?
▶ Examine what spam mails typically contain: Specific words

(”Viagra”), sender’s address, etc.
▶ Write down a rule-based system that detects specific features.
▶ Test the program on new emails and (most probably) go back

to look for more spam features.

8

Comparison of Programming and Learning
The machine learning way:
▶ Study the problem and collect lots of emails, labeling them

spam or ham.
▶ Train a machine learning model that reads an email and

decides whether it’s spam or ham.
▶ Test the model and (most probably) go back to collect more

data and adjust the model.

9

ML Solutions are Adaptive

Spam filter: Authors of spam might and will adapt to your spam
filter (possibly change the wording to pass through).

ML systems can be adjusted to new situations by retraining on
new data (unless the data becomes ugly).

10

ML for Human Understanding

Spam filter: A trained system can be inspected for notorious spam
features.
Some models allow direct inspection, such as decision trees or linear/logistic

regression models.

11

Usage of Machine Learning

Machine learning suits various applications, especially where
traditional methods fall short. Here are some areas where it excels:

▶ Solving complex problems where fine-tuning and rule-based
solutions are inadequate.

▶ Tackling complex issues that resist traditional problem-solving
approaches.

▶ Adapting to fluctuating environments through retraining on
new data.

▶ Gaining insights from large and complex datasets.

In summary, machine learning offers innovative solutions and
adaptability for today’s complex and ever-changing problems,
(sometimes) providing insights beyond the reach of traditional
approaches.

12

Types of Learning

There are main categories based on information available during
the training:

▶ Supervised learning

▶ Unsupervised learning

▶ Semi-supervised learning

▶ Self-supervised learning

▶ Reinforcement learning

13

Supervised Learning

Labels are available for all input data.

Typical supervised learning tasks are

▶ Classification where the aim is to classify inputs into (typically
few) classes
(e.g., the spam filter where the classes are spam/ham)

▶ Regression where a numerical value is output for a given input
(e.g., housing prices)

14

Supervised Learning

Labels are available for all input data.

Typical supervised learning tasks are

▶ Classification where the aim is to classify inputs into (typically
few) classes
(e.g., the spam filter where the classes are spam/ham)

▶ Regression where a numerical value is output for a given input
(e.g., housing prices)

14

Unsupervised Learning

No labels are available for input data.

Typical unsupervised learning tasks are
▶ Clustering where inputs are grouped according to their

features
(e.g., clients of a bank grouped according to their age, wealth, etc.)

▶ Association where interesting relations and rules are
discovered among the features of inputs
(e.g., market basket mining where associations between various types of

goods are being learned from the behavior of customers)

▶ Dimensionality reduction reduce high-dimensional data to few
dimensions (e.g., images to few image features)

15

Unsupervised Learning

No labels are available for input data.

Typical unsupervised learning tasks are
▶ Clustering where inputs are grouped according to their

features
(e.g., clients of a bank grouped according to their age, wealth, etc.)

▶ Association where interesting relations and rules are
discovered among the features of inputs
(e.g., market basket mining where associations between various types of

goods are being learned from the behavior of customers)

▶ Dimensionality reduction reduce high-dimensional data to few
dimensions (e.g., images to few image features)

15

Semi-Supervised Learning

Labels for some data.

For example, Medical data, where elaborate diagnosis is available
only for some patients.

Combines supervised and unsupervised learning: e.g., clusters all
data and labels the unlabeled inputs with the most common labels
in their clusters.

16

Semi-Supervised Learning

Labels for some data.

For example, Medical data, where elaborate diagnosis is available
only for some patients.

Combines supervised and unsupervised learning: e.g., clusters all
data and labels the unlabeled inputs with the most common labels
in their clusters.

16

Self-Supervised Learning

Generate labels from (unlabeled) inputs.

The goal is to learn typical features of the data.

It can be later modified to generate images, classify, etc.

17

Reinforcement Learning

Learn from performing actions and getting feedback from environment.
18

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)

▶ Machine translation, image captioning
▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)

▶ Various ”table” data processing in finance, management, etc.
▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML Applications Highlights
▶ ChatGPT (and similar generative models)

▶ The basis forms a generative language model, i.e., a
text-generating model trained on texts in a self-supervised way

▶ Currently extended to multimodal versions (text, image, sound)
▶ Machine translation, image captioning

▶ Google translate, etc.
▶ Typically (semi)-supervised learning,

▶ Various image recognition and processing tasks
▶ In medicine where it is slowly making its way into hospitals as

assistance tools
▶ Automotive, advertising, quality control etc., etc., etc.

▶ Science
▶ Chemistry & biology: E.g., prediction of features of chemical

compounds (Alpha-fold)
▶ Various ”table” data processing in finance, management, etc.

▶ Often straightforward methods (linear/logistic regression)
▶ Essential but not fancy

▶ Game playing: More fancy than useful, learning models
beating humans in several difficult games.

19

ML in Context

20

Supervised Learning

21

Example - Fruit Recognition

The goal: Create an automatic
system for fruit recognition,
concretely apple, lemon, and
mandarin.

Inputs: Measures of height and
width of each fruit.

Suppose we have a dataset of
dimensions of several fruits labeled
with the correct class.

22

Data

Use similarity to solve the problem.

23

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Where is the machine learning?

24

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Among the five closest:

▶ M = 4 mandarins

▶ A = 1 apples

▶ L = 0 lemons

Where is the machine learning?

24

KNN Classification

Given a new fruit.
What is it?

Find five closest
examples

Among the five closest:

▶ M = 4 mandarins

▶ A = 1 apples

▶ L = 0 lemons

It is a mandarin!

Where is the machine learning?

24

Learning in Fruit Classification with KNN

Learning:

Inference:

25

Fruit Classification Algorithm

Input: A fruit F with dimensions height, width
Output: mandarin, lemon, apple
1: Find K examples {E1, . . . ,EK} in the dataset whose

dimensions are closest to the dimensions of the fruit F
2: Count the number of examples of each class in {E1, . . . ,EK}

M mandarins in {E1, . . . ,EK}
L lemons in {E1, . . . ,EK}
A apples in {E1, . . . ,EK}

3: if M ≥ L and M ≥ A then return mandarin
4: else if L ≥ A then return lemon
5: else return apple
6: end if

Does it work?

26

Testing the Model for Fruit Classification

Consider a test set of new instances (K = 5, d is Euclidean):

Perfect classification of new data! Just deploy and sell!!

27

K Nearest Neighbors
. . . on ideal data

28

Learning and Inference

Two crucial components of machine learning are the following:

Learning:
Creating model

Inference:
Using model

29

Training Data

Assume table training data, i.e., of the form

x11 x12 · · · x1n c1
x21 x22 · · · x2n c2
...

...
. . .

...
...

xp1 xp2 · · · xpn cp

Formally, we define training dataset

T = {(x⃗k , ck) | k = 1, . . . , p}

Here each x⃗k ∈ Rn is an input vector and
ck ∈ C is the correct class.

T = {(4.0, 6.5),M),

(4.47, 7.13),M),

(6.49, 7.0),A),

. . .}

30

KNN: Learning

Consider the training set:

T = {(x⃗k , ck) | k = 1, . . . , p}

and memorize it exactly as it is.

Store in a table.

Possibly use a clever representation allowing fast computation of nearest

neighbors such as KDTrees (out of the scope of this lecture).

Also,

▶ determine the number of neighbors K ∈ N,
▶ and the distance measure d .

31

Inference in KNN
Assume a KNN ”trained” by memorizing
T = {(x⃗k , ck) ∈ Rn × C | k = 1, . . . , p}, a constant K ∈ N and
a distance measure d .
For d , consider Euclidean distance, but different norms may also be used to

define different distance measures.

Input: A vector z⃗ = (z1, . . . , zn) ∈ Rn

Output: A class from C
1: Find K indices of examples X = {i1, . . . , iK} ⊆ {1, . . . , p} with

minimum distance to z⃗ , i.e., satisfying

max
{
d(z⃗ , x⃗ℓ) | ℓ ∈ X

}
≤ min

{
d(z⃗ , x⃗ℓ) | ℓ ∈ {1, . . . , p}∖X

}
2: For every c ∈ C count the number #c of elements ℓ in X such

that cℓ = c
3: Return some

cmax ∈ argmax
c∈C

#c

A class cmax ∈ C which maximizes #c.

32

Inference in KNN
Assume a KNN ”trained” by memorizing
T = {(x⃗k , ck) ∈ Rn × C | k = 1, . . . , p}, a constant K ∈ N and
a distance measure d .
For d , consider Euclidean distance, but different norms may also be used to

define different distance measures.

Input: A vector z⃗ = (z1, . . . , zn) ∈ Rn

Output: A class from C
1: Find K indices of examples X = {i1, . . . , iK} ⊆ {1, . . . , p} with

minimum distance to z⃗ , i.e., satisfying

max
{
d(z⃗ , x⃗ℓ) | ℓ ∈ X

}
≤ min

{
d(z⃗ , x⃗ℓ) | ℓ ∈ {1, . . . , p}∖X

}
2: For every c ∈ C count the number #c of elements ℓ in X such

that cℓ = c
3: Return some

cmax ∈ argmax
c∈C

#c

A class cmax ∈ C which maximizes #c.

32

The resulting model

What exactly constitutes the model? The model consists of

▶ The trained parameters: In this case the memorized training
data.

▶ The hyperparameters set “from the outside”: In this case, the
number of neighbors K and the distance measure d .

Note that different settings of K lead to different classifiers (for
the same d):

33

The resulting model

What exactly constitutes the model? The model consists of

▶ The trained parameters: In this case the memorized training
data.

▶ The hyperparameters set “from the outside”: In this case, the
number of neighbors K and the distance measure d .

Note that different settings of K lead to different classifiers (for
the same d):

33

In Practice

. . . to get an efficient solution:

▶ Deal with issues in the data
▶ Data almost always comes in weird formats, with

inconsistencies, missing values, wrong values, etc.
▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

. . . to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.

▶ Deal with issues in the model
▶ In KNN, the training memorizes the example, but at least the

K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

. . . to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

. . . to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

In Practice

. . . to get an efficient solution:
▶ Deal with issues in the data

▶ Data almost always comes in weird formats, with
inconsistencies, missing values, wrong values, etc.

▶ Data rarely have the ideal form for a given learning model.

We need to ingest, validate, and preprocess the data.
▶ Deal with issues in the model

▶ In KNN, the training memorizes the example, but at least the
K can be tuned.

We need to tune the model.

▶ Deal with the wrong model by testing and validation in as
realistic conditions as possible.

▶ Deal with deployment - real-world application issues involving,
e.g., implementation in embedded devices with limited
resources.

34

Models Considered in This Course

Throughout this course, we will meet the following models:

▶ KNN (already did)

▶ Decision trees

▶ (Naive) Bayes classifier

▶ Clustering: K-means and hierarchical

▶ Linear and logistic regression

▶ Support Vector Machines (SVM)

▶ Kernel linear models

▶ Neural networks (light intro to feed-forward networks)

▶ Ensemble methods + random forests

▶ (maybe some reinforcement learning)

. . . but first, let us see the whole machine learning pipeline.

35

Models Considered in This Course

Throughout this course, we will meet the following models:

▶ KNN (already did)

▶ Decision trees

▶ (Naive) Bayes classifier

▶ Clustering: K-means and hierarchical

▶ Linear and logistic regression

▶ Support Vector Machines (SVM)

▶ Kernel linear models

▶ Neural networks (light intro to feed-forward networks)

▶ Ensemble methods + random forests

▶ (maybe some reinforcement learning)

. . . but first, let us see the whole machine learning pipeline.

35

Machine Learning Pipeline

36

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data
Always start with

▶ The problem formulation & understanding.
For example, diagnosis of diabetes from medical records. What info is

(possibly) sufficient for such a diagnosis?

▶ Find data sources.
In our example, the sources are hospitals. It would be best to persuade

them to give you the data and sign a contract.

▶ Collect the data.
In our example, the data is possibly small (just tables with results of

tests). But for other diagnoses, you may include huge amounts of data

from MRI, CT, etc. Then, the collection itself might be a serious

technical problem.

▶ Integrate data from various sources.
A serious diagnostic system must be trained/tested on data from many

hospitals. You must blend the data from various sources (different

formats, etc.).

37

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Fetch Data

For simple “toy” machine learning projects, you may fetch
prepared datasets from various databases on the internet.

The data should be stored in an identified location and versioned.
You will probably keep adding data and training models on the ever-changing
datasets. You have to be able to keep track of the changes and map training
data to particular models.

Tools such as ML Flow or Weights & Biases might be helpful.

Data Separation
At this point, you should randomize the ordering of the data and
select a test set to be used in model evaluation!
The test data are supposed to simulate the actual conditions, i.e., they should

be “unseen”.

Data Exploration
Compute basic statistics to identify missing values, outliers, etc.

38

Clean Data
The cleaning usually comprises the following steps:
▶ Fix or remove incorrect or corrupted values.
▶ Identify outliers and decide what to do with them.

Outliers may harm some training methods and are not “representative”.

However, sometimes, they naturally belong to the dataset, and expert

insight is needed.

▶ Fix formatting.
For example, the Date may be expressed in many ways, and a simple

Yes/No answer.

▶ Resolve missing values (by either removing the whole
examples or imputing)
Many methods have been developed for missing values imputation. It is a

susceptible issue because new values may strongly bias the model.

▶ Remove duplicates.

The above steps often affect the training and need expertise in the application

domain.

Later in this course, we will discuss techniques for data cleaning.
39

40

Prepare Data

Unlike cleaning, which is application-dependent, data
preparation/transformation is model-dependent. This usually subsumes:

▶ Scaling: Settings values of inputs to a similar range.

Some models, especially those utilizing distance, are sensitive to large

differences between input sizes.

▶ Encoding: Encode non-numeric data using real-valued vectors.

Many models, especially those based on geometry, work only with

numeric data. Non-numeric data such as Yes/No, Short/Medium/Long

must be encoded appropriately.

▶ Binning or Discretization Convert continuous features into
discrete bins to capture patterns in ranges.

Comment: Sometimes Normalization, that is changing the distribution of

inputs to resemble the normal distribution, is mentioned. However, this step is

typically not essential for machine learning itself. However, it is important to

use statistical inference to test the significance of learned parameters.

41

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Prepare Data

▶ Feature selection Throw out input features that are too “similar”
to other features.

For example, if the temperature is measured both in Celsius and in

Kelvin, keep one of them. The relationship can, of course, be a more

complex (non-linear) correlation.

▶ Dimensionality reduction Transforming data from Rn to Rm

where m << n.

Growing dimension means growing difficulty of training for all models.

Some models cease to work for high-dimensional data. The reduction

typically searches for a few important characteristic features of inputs.

▶ Feature aggregation Introducing new features using operations on
the original ones.

We will see kernel transformations later in this course, allowing simple

models to solve complex problems.

42

Train Model

Now the dataset has been cleaned; we may train a model.

Before training, we should split the dataset into

▶ training dataset on which the model will learn

▶ validation dataset on which we fine-tune hyperparameters

The resulting model is obtained after several iterations of the
above process.

43

Train Model

Now the dataset has been cleaned; we may train a model.

Before training, we should split the dataset into

▶ training dataset on which the model will learn

▶ validation dataset on which we fine-tune hyperparameters

The resulting model is obtained after several iterations of the
above process.

43

Evaluate Model

Here, we use the test set that we separated during data fetching.

In some cases, a brand new test set can be generated.
patients are examined regularly, creating new records continuously.

In some cases, it is tough to obtain new data.
For example, new expensive and difficult measurements are needed to obtain

new data.

Critical issue: Make sure that you are truly testing

exactly the whole inference process.

Often, just a model is tested, and the testing and production inference engines

are separated. This leads to truly nasty errors in the production!

We will discuss various generic metrics helpful in measuring the
quality of the resulting model.

44

Evaluate Model

Here, we use the test set that we separated during data fetching.

In some cases, a brand new test set can be generated.
patients are examined regularly, creating new records continuously.

In some cases, it is tough to obtain new data.
For example, new expensive and difficult measurements are needed to obtain

new data.

Critical issue: Make sure that you are truly testing

exactly the whole inference process.

Often, just a model is tested, and the testing and production inference engines

are separated. This leads to truly nasty errors in the production!

We will discuss various generic metrics helpful in measuring the
quality of the resulting model.

44

Deploy to Production
Deployment of machine learning models is a complex question,
application dependent.

The recently emerging area of MLOps is concerned with the
engineering side of the model deployment.

From the technical point of view, the typical issues solved by ML
Ops teams are
▶ how to extract/process data in real-time
▶ how much storage is required
▶ how to store/collect model (and data) artifacts/predictions
▶ how to set up APIs, tools, and software environments
▶ What the period of predictions (instantaneous or batch

predictions) should be
▶ how to set up hardware requirements (or cloud requirements

for on-cloud environments) by the computational resources
required

▶ how to set up a pipeline for continuous training and parameter
tuning

45

Deploy to Production
Deployment of machine learning models is a complex question,
application dependent.

The recently emerging area of MLOps is concerned with the
engineering side of the model deployment.

From the technical point of view, the typical issues solved by ML
Ops teams are
▶ how to extract/process data in real-time
▶ how much storage is required
▶ how to store/collect model (and data) artifacts/predictions
▶ how to set up APIs, tools, and software environments
▶ What the period of predictions (instantaneous or batch

predictions) should be
▶ how to set up hardware requirements (or cloud requirements

for on-cloud environments) by the computational resources
required

▶ how to set up a pipeline for continuous training and parameter
tuning

45

Deploy to Production

From the user’s point of view:
▶ How to get a sensible and valuable user output?

▶ AI researchers will be satisfied with tons of running text in
terminals.

▶ “Normal” people need a graphical interface with
understandable output.

▶ Experts working in other domains typically demand speed and
clarity at the extreme.

▶ How do you persuade users that the AI is working for them?
▶ Especially if safety is at stake, you need to have outstanding

arguments and explanations ready for end-users
▶ In many areas, the devices need to be certified (medicine,

automotive) for ML-based systems.

This complex subject will be only touched on in this course.

46

Deploy to Production

From the user’s point of view:
▶ How to get a sensible and valuable user output?

▶ AI researchers will be satisfied with tons of running text in
terminals.

▶ “Normal” people need a graphical interface with
understandable output.

▶ Experts working in other domains typically demand speed and
clarity at the extreme.

▶ How do you persuade users that the AI is working for them?
▶ Especially if safety is at stake, you need to have outstanding

arguments and explanations ready for end-users
▶ In many areas, the devices need to be certified (medicine,

automotive) for ML-based systems.

This complex subject will be only touched on in this course.

46

Monitor, collect Data

Deployed machine learning models must be constantly monitored.

Because of the influx of new data, ML models work in highly
dynamic environments.

For example, an image-processing medical diagnostic model suddenly

misdiagnosed a patient because a nurse marked the sample with a marker pen.

Every customer has a different infrastructure and may produce
data slightly differently.

Data for retraining and improvement should be stored.

Also, many areas allow the active learning where users provide
feedback for (continuous) retraining of the models.

47

Decision Trees

48

Decision Trees

▶ One of the widely used methods for machine learning.

▶ Intuitively simple, directly explainable.

▶ Basis for random forests (a powerful model).

▶ We will consider the ID3 algorithm.
Quinlan, 1979

▶ Various adjustments that appear in C4.5, CART, etc.

49

Decision Trees

▶ One of the widely used methods for machine learning.

▶ Intuitively simple, directly explainable.

▶ Basis for random forests (a powerful model).

▶ We will consider the ID3 algorithm.
Quinlan, 1979

▶ Various adjustments that appear in C4.5, CART, etc.

49

Consider the weather forecast for tennis playing. How would you
decide whether to play today?

Now, how do we obtain such a tree based on experience/data?

50

Consider the weather forecast for tennis playing. How would you
decide whether to play today?

Now, how do we obtain such a tree based on experience/data?

50

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.

51

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.

51

Learning Decision Trees
Consider data represented as follows:

▶ A finite set of attributes A = {A1, . . . ,An}.
▶ Each attribute A ∈ A has its set of values V (A).

We start with trees on discrete datasets, that is assume V (A)
finite for all A ∈ A.

Objects to be classified are described by vectors of values of all
attributes:

x⃗ = (x1, . . . , xn) ∈ V (A1)× · · · × V (An)

Given x⃗ and an attribute Ak we denote by Ak(x⃗) the value xk of
the attribute Ak in x⃗ .

Consider a set C of classes.
We consider a multiclass classification in general, i.e., C is an arbitrary finite

set.
51

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

52

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

52

Example

The tennis problem:

▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

52

Example

The tennis problem:
▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

Then

A3(x⃗) = Humidity(x⃗) = Normal

A4(x⃗) = Wind(x⃗) = Weak

52

Example

The tennis problem:
▶ The attributes are:

A1 = Outlook,A2 = Temperature,A3 = Humidity ,A4 = Wind

▶ The sets of values of the attributes:
▶ V (A1) = {Sunny ,Overcast,Rain}
▶ V (A2) = {Hot,Mild ,Cool}
▶ V (A3) = {High,Normal}
▶ V (A4) = {Strong ,Weak}

▶ Consider

x⃗ = (Overcast,Hot,Normal ,Weak)

∈ V (A1)× V (A2)× V (A3)× V (A4)

Then

A3(x⃗) = Humidity(x⃗) = Normal

A4(x⃗) = Wind(x⃗) = Weak

▶ C = {Yes,No}
52

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

53

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

53

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

53

Decision Trees

Consider (directed, rooted) trees T = (T ,E) where T is a set of nodes
and E ⊆ T × T is a set of directed edges.

Denote by Tleaf ⊆ T the set of all leaves of the tree and by Tint the set
T ∖ Tleaf of internal nodes.

A decision tree is

▶ a tree T = (T ,E) where

▶ each leaf τ ∈ Tleaf is assigned a class C (τ) ∈ C ,

▶ each internal node τ ∈ Tint is assigned an attribute A(τ) ∈ A,
▶ and there is a bijection between edges from τ and values of the

attribute A(τ). Given an edge (τ, τ ′) ∈ E we write V (τ, τ ′) to
denote the value of the attribute A(τ) assigned to the edge.

Inference: Given an input x⃗ , we traverse the tree from the root to
a leaf, always choosing edges labeled with values of attributes from
x⃗ . The output is the class labeling the leaf.

53

Example

T = {O,H,W , z1, z2, z3, z4, z5}

Tleaf = {z1, z2, z3, z4, z5},Tint = {O,H,W }

E ={(O,H), (O,W), (H, z1), (H, z2),

(O, z3), (W , z4), (W , z5)}

C (z1) = C (z3) = No,C (z2) = C (z4) = Yes

A(O) = Outlook, A(H) = Humidity , A(W) = Wind

D(O,H) = Sunny , D(O, z3) = Overcast, D(O,W) = Rain
D(H, z1) = High, D(H, z2) = Normal
D(W , z4) = Strong , D(W , z5) = Weak

Inference: For (Rain,Hot,High,Strong) we reach z4, yielding No.

54

Training Dataset

Consider a training dataset

D = {(x⃗k , ck) | k = 1, . . . , p}

Here x⃗k ∈ V (A1)× · · · × V (Ak) and ck ∈ C for every k.

Technically D can be a multiset containing several occurrences of the same

vector.

55

Index Outlook Temperature Humidity Wind PlayTennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

D ={((Sunny ,Hot,High,Weak),No),

((Sunny ,Hot,High,Strong),No)

· · ·
((Rain,Mild ,High,Strong),No)} 56

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.

▶ If there is just a single class in D, create a single node
decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,

▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,

▶ for every v ∈ V (A), recursively construct a decision tree with
a root τv using Dv ,

▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,

▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

Learning Decision Trees
The learning algorithm ID3 works as follows:

▶ Start with the whole training dataset D.
▶ If there is just a single class in D, create a single node

decision tree that returns the class.

▶ Otherwise, identify an attribute A ∈ A which best classifies
the examples in D. For every v ∈ V (A) we obtain

Dv = {x⃗ | x⃗ ∈ D,A(x⃗) = v}

We aim to have each Dv as pure as possible, that is, ideally,
to contain examples of just a single class.

▶ Finally,
▶ create a root node τ of a decision tree,
▶ assign the attribute A to τ ,
▶ for every v ∈ V (A), recursively construct a decision tree with

a root τv using Dv ,
▶ for every v ∈ V (A) introduce an edge (τ, τv) assigned v .

57

1: function ID3(dataset D, attribute set A)
2: Create a root node τ for the tree
3: if D = ∅ then
4: Return the single node τ assigned with a default class.
5: else if all examples in D are of the same class c then
6: Return the single-node tree, where τ is assigned c
7: else if set of attributes A is empty then
8: Return the single-node tree where τ is assigned

the most common class in D
9: else

10: Choose attribute A ∈ A best classifying examples in D.
11: Set the decision attribute for τ to A
12: for each value v ∈ D(A) do
13: Compute a decision tree ID3(Dv ,A∖ {A}) with root τv ,
14: add a new edge (τ, τv) assigned v .
15: end for
16: end if
17: return τ
18: end function

58

Best Classifying Attribute

How to choose an attribute that best classifies examples in D?

There are several measures used in practice.

The most common are

▶ information gain

▶ Gini impurity decrease

59

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

Bleh?!?

60

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

Bleh?!?

60

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

Bleh?!?

60

Information Gain

The information gain is based on the notion of entropy.

We need some notation:

▶ Given a training dataset D and a class c ∈ C we denote by pc
the proportion of examples with class c in D.

▶ We define the entropy of D by

Entropy(D) =
∑
c∈C
−pc log2 pc

▶ The information gain of an attribute A is then defined by

Gain(D,A) = Entropy(D)−
∑

v∈V (A)

|Dv |
|D|

Entropy(Dv)

Bleh?!?

60

Information Gain
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).

▶ Gain(D,A) measures reduction in uncertainty of classes by
splitting D according to A.

61

Information Gain
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).

▶ Gain(D,A) measures reduction in uncertainty of classes by
splitting D according to A.

61

Information Gain
▶ Consider C = {0, 1} and p the proportion of examples of

class 1. p measures the “uncertainty” of the class:

▶
∑

v∈V (A)
|Dv |
|D| Entropy(Dv) is weighted uncertainty of classes

in each Dv (weighted by the relative size of Dv).

▶ Gain(D,A) measures reduction in uncertainty of classes by
splitting D according to A.

61

Gini Impurity
▶ We define Gini impurity of D by

Gini(D) = 1−
∑
c∈C

p2c

▶ The impurity decrease of an attribute A is then defined
similarly to the gain in the entropy case

ImpDec(D,A) = Gini(D)−
∑

v∈V (A)

|Dv |
|D|

Gini(Dv)

What is the intuition behind Gini(D) ?

Assume we randomly independently choose objects from D.

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.

62

Gini Impurity
▶ We define Gini impurity of D by

Gini(D) = 1−
∑
c∈C

p2c

▶ The impurity decrease of an attribute A is then defined
similarly to the gain in the entropy case

ImpDec(D,A) = Gini(D)−
∑

v∈V (A)

|Dv |
|D|

Gini(Dv)

What is the intuition behind Gini(D) ?

Assume we randomly independently choose objects from D.

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.

62

Gini Impurity
▶ We define Gini impurity of D by

Gini(D) = 1−
∑
c∈C

p2c

▶ The impurity decrease of an attribute A is then defined
similarly to the gain in the entropy case

ImpDec(D,A) = Gini(D)−
∑

v∈V (A)

|Dv |
|D|

Gini(Dv)

What is the intuition behind Gini(D) ?

Assume we randomly independently choose objects from D.

1−
∑

c∈C p2c is the probability of choosing two objects of different
classes in two consecutive independent trials.
Indeed, pc is the probability of choosing an object of class c, p2

c the probability

of choosing objects of the class c twice, and
∑

c∈C p2
c the probability of

choosing two objects of the same class.
62

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.

63

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.

63

Example
Consider our tennis example (see the table).

▶ Consider the whole dataset D.
▶ pYes = 9/14
▶ pNo = 5/14
▶ Gini(D) = 1− (9/14)2 − (5/14)2 = 0.45918

▶ For A = Outlook we get
▶ Gini(DSunny) = 1− (2/5)2 − (3/5)2 = 0.48
▶ Gini(DOvercast) = 1− 12 − 02 = 0
▶ Gini(DRain) = 1− (3/5)2 − (2/5)2 = 0.48

Thus

ImpDec(D,Outlook) =
0.459− (5/14) · 0.48− (4/14) · 0− (5/14) · 0.48
= 0.117

▶ ImpDec(D,Temperature) = 0.018
▶ ImpDec(D,Humidity) = 0.091
▶ ImpDec(D,Wind) = 0.030

So the largest information gain is given by the Outlook.
63

Example

Going further on, consider D = DSunny . We get

▶ ImpDec(D,Temperature) = 0.279

▶ ImpDec(D,Humidity) = 0.48

▶ ImpDec(D,Wind) = 0.013

The best choice attribude after Sunny in Outlook is Humidity .

Now consider D = DRain.

▶ ImpDec(D,Temperature) = 0.013

▶ ImpDec(D,Humidity) = 0.013

▶ ImpDec(D,Wind) = 0.48

The best choice attribude after Rain in Outlook is Wind .

64

Example

Going further on, consider D = DSunny . We get

▶ ImpDec(D,Temperature) = 0.279

▶ ImpDec(D,Humidity) = 0.48

▶ ImpDec(D,Wind) = 0.013

The best choice attribude after Sunny in Outlook is Humidity .

Now consider D = DRain.

▶ ImpDec(D,Temperature) = 0.013

▶ ImpDec(D,Humidity) = 0.013

▶ ImpDec(D,Wind) = 0.48

The best choice attribude after Rain in Outlook is Wind .

64

Continuous-Valued Attributes
What if values of Ak come from a “continuous” variable?
Such as temperature, size, time, etc.

Then consider an internal node τ ∈ Tint assigned an attribute A
with outgoing edges e1, . . . , ei .
Each of these edges ej is assigned a value vj ∈ V (A), assume that
the values satisfy

v1 < v2 < · · · < vi

When considering an example x⃗ in the node τ , we follow the edge

▶ e1 if A(x⃗) ≤ v1
▶ e2 if v1 < A(x⃗) ≤ v2
▶ · · ·
▶ ei if vi < A(x⃗)

▶ ≤ 5 ⇒ leftmost edge

▶ > 5 & ≤ 10 ⇒ second left

▶ · · ·

65

Continuous-Valued Attributes
What if values of Ak come from a “continuous” variable?
Such as temperature, size, time, etc.

Then consider an internal node τ ∈ Tint assigned an attribute A
with outgoing edges e1, . . . , ei .

Each of these edges ej is assigned a value vj ∈ V (A), assume that
the values satisfy

v1 < v2 < · · · < vi

When considering an example x⃗ in the node τ , we follow the edge

▶ e1 if A(x⃗) ≤ v1
▶ e2 if v1 < A(x⃗) ≤ v2
▶ · · ·
▶ ei if vi < A(x⃗)

▶ ≤ 5 ⇒ leftmost edge

▶ > 5 & ≤ 10 ⇒ second left

▶ · · ·

65

Continuous-Valued Attributes
What if values of Ak come from a “continuous” variable?
Such as temperature, size, time, etc.

Then consider an internal node τ ∈ Tint assigned an attribute A
with outgoing edges e1, . . . , ei .
Each of these edges ej is assigned a value vj ∈ V (A), assume that
the values satisfy

v1 < v2 < · · · < vi

When considering an example x⃗ in the node τ , we follow the edge

▶ e1 if A(x⃗) ≤ v1
▶ e2 if v1 < A(x⃗) ≤ v2
▶ · · ·
▶ ei if vi < A(x⃗)

▶ ≤ 5 ⇒ leftmost edge

▶ > 5 & ≤ 10 ⇒ second left

▶ · · ·

65

Continuous-Valued Attributes
What if values of Ak come from a “continuous” variable?
Such as temperature, size, time, etc.

Then consider an internal node τ ∈ Tint assigned an attribute A
with outgoing edges e1, . . . , ei .
Each of these edges ej is assigned a value vj ∈ V (A), assume that
the values satisfy

v1 < v2 < · · · < vi

When considering an example x⃗ in the node τ , we follow the edge

▶ e1 if A(x⃗) ≤ v1
▶ e2 if v1 < A(x⃗) ≤ v2
▶ · · ·
▶ ei if vi < A(x⃗)

▶ ≤ 5 ⇒ leftmost edge

▶ > 5 & ≤ 10 ⇒ second left

▶ · · ·
65

Iris Example

Attributes
Sepal.Length, Sepal.Width, Petal.Length, Petal.Width

Classes (Variety)
Setosa, Versicolor, Virginica

66

Iris Example
The dataset (150 examples):

Sepal.Length Sepal.Width Petal.Length Petal.Width Variety

5.5 3.5 1.3 0.2 Setosa
6.8 2.8 4.8 1.4 Versicolor
6.7 3.1 4.7 1.5 Versicolor
6.9 3.1 5.1 2.3 Virginica
7.3 2.9 6.3 1.8 Virginica
5.4 3.7 1.5 0.2 Setosa
4.6 3.4 1.4 0.3 Setosa
6.2 2.8 4.8 1.8 Virginica
5.4 3.0 4.5 1.5 Versicolor
4.7 3.2 1.6 0.2 Setosa
6.7 3.3 5.7 2.1 Virginica
5.0 3.4 1.5 0.2 Setosa
5.0 3.0 1.6 0.2 Setosa
4.4 2.9 1.4 0.2 Setosa
6.0 3.4 4.5 1.6 Versicolor
5.1 3.5 1.4 0.2 Setosa
6.6 3.0 4.4 1.4 Versicolor
5.9 3.2 4.8 1.8 Versicolor
5.6 2.8 4.9 2.0 Virginica
· · ·

Table: Summary of iris dataset measurements.

67

Iris Example

68

Iris Example - Decision Tree

69

Iris Example - Decision Tree Boudaries

If the leaves are split further, the Depth = 2 boundary would be
added.

70

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

71

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

71

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

71

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

71

Attribute Importance Computation
How important are attributes for the trained tree T ? Depends on
▶ how close they are to the root of T ,
▶ how large information gain/decrease in impurity they give.

There are several formulae for computing the importance.

One example is mean decrease impurity defined as follows:

Consider a decision tree T trained on a dataset D using the ID3.

For every node τ of T , denote by D[τ] the subset of D which was
used in the ID3 procedure when the node τ was created (line 2).

Consider an attribute A and denote by T [A] ⊆ Tint the set of all
nodes of T assigned the attribute A by ID3 (line 11).

Then define the importance as the average decrease in Gini
impurity (i.e., average ImpDec) in the nodes of T [A]:

GiniImportance(A) =
∑

τ∈T [A]

|D[τ]|
|D|

ImpDec(D[τ],A)

71

Decision Trees

Practical Issues

72

Practical Issues

▶ Data preprocessing

▶ Model tunning (overfitting and underfitting)

▶ Sensitivity to changes in data/hyperparameters

▶ Learning representation problems (the XOR)

73

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

74

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

74

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

74

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

74

Data Preprocessing

Little preprocessing is needed for decision trees.

Of course, ideally, clean up the data, but

▶ Missing values are not such a big issue
(considering a concrete example, exclude the attributes with
missing values)

▶ Outliers are not such a big issue either; the division of nodes
is done based on relative counts, not concrete values.

▶ Decision trees can cope with continuous and categorical
values directly (i.e., no encoding necessary)

Imbalanced classes might cause problems because of small
information gain/impurity decrease in splitting.

74

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

75

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

75

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

75

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.

75

Imbalanced Classes
Consider a dataset D where
▶ there are two classes, C = {0, 1},
▶ 106 examples have the class 1,
▶ 100 examples have the class 0.

Then
▶ p1 = 106/(106 + 100) ≈ 1 and p0 = 100/106 ≈ 0,
▶ thus the Gini impurity 1− p21 − p20 ≈ 0.

Consider an attribute A with V (A) = {a, b}.

Splitting D according to A gives to sets Da and Db.

What is the impurity decrease caused by the attribute?

ImpDec(D,A) = Gini(D)− |Da|
|D|

Gini(Da)−
|Db|
|D|

Gini(Db)

For small |Da| (say ≤ 1000) we have small |Da|/|D|

For not so small Da we have Gini(Da) ≈ 0.

In both cases, the impurity decrease is very small.
75

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems to be good (but still needs to be tested
on fresh data).

76

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems to be good (but still needs to be tested
on fresh data).

76

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems to be good (but still needs to be tested
on fresh data).

76

Model Tuning - Over/Under Fitting

The behavior of the model on the training set:

▶ The left one is strongly overfitting. It would possibly not work
well on new data.

▶ The right one is strongly underfitting. It would probably give
poor classification results.

▶ The middle one seems to be good (but still needs to be tested
on fresh data).

76

Model Tuning - Oerfittning in Decision Trees

See the overfitting on the left and the ”nice” model on the right.

Both overfitting and underfitting are best avoided. But how do we
find out?

77

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.

78

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.

78

Model Tuning (In General)
Recall from the first lecture:

The validation should be done on a validation set separated from
the training set.
We will discuss more sophisticated techniques later.

What hyperparameters to set? (see the next slide)

What to observe? In the case of decision trees, one should observe
the difference between performance measures (e.g., classification
accuracy) on the training and validation sets.

The too-large difference implies an improperly fitting model.
78

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning where recent history shows

a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

79

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning where recent history shows

a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

79

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning where recent history shows

a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

79

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning where recent history shows

a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

79

How to Fit Decision Trees?
There are several approaches available for decision trees.

Generally, the overfitting can be either prevented or resolved.

▶ Pre-pruning: Build the tree so it does not overfit by restricting
its size.

▶ Post-pruning: Overfit with a large tree and remove subtrees to
make it smaller.

▶ Ensemble methods: Fit several different trees and let them
classify together (e.g., using majority voting).

The post-pruning approach has been more successful in practice
than the pre-pruning because it is usually hard to say when to stop
growing the tree.
We shall meet this controversy also in deep learning where recent history shows

a similar phenomenon.

The ensemble methods will be covered later when we discuss
random forests.

79

Pre-Prunning - Hyperparamaters

Hyperparameters controlling the size of the tree:

▶ Maximum depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

80

Pre-Prunning - Hyperparamaters

Hyperparameters controlling the size of the tree:

▶ Maximum depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

80

Pre-Prunning - Hyperparamaters

Hyperparameters controlling the size of the tree:

▶ Maximum depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

80

Pre-Prunning - Hyperparamaters

Hyperparameters controlling the size of the tree:

▶ Maximum depth
The deeper the tree, the more complex models you can create ⇒
overfitting. Low depth may restrict expressivity.

▶ Minimum number of examples to split a node
Higher values prevent a model from learning relations specific only for a

few examples. Too high values may result in underfitting.

▶ Minimum number of examples required to be in a leaf
Similar to the previous one. A higher number means we cannot have very

specific branches concerned with particular combinations of values.

▶ Minimum information gain/impurity decrease
A small impurity decrease means that the split does not contribute too

much to the classification (their proportions after a split are similar to

proportions before a split). However, keep in mind that it is weighted

average impurity after the split.

80

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .

81

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .

81

Post-Pruning - Reduced Error Pruning
Train a large tree and then remove nodes that make classification worse
on the validation set.

Given a decision tree T and its internal node τ ∈ Tint , we denote by T−τ

the tree obtained from T by removing the subtree rooted in τ , i.e., τ is a
leaf of T−τ .

1: Train T to maximum fit on the training dataset.
2: while true do
3: Err [T]← the error of T on the validation set.
4: for τ ∈ Tint do
5: Err [T−τ]← the error of T−τ on the validation set.
6: end for
7: if Err [T] ≤ min{Err [T−τ] | τ ∈ Tint}] then return T
8: else
9: T ← argmin{Err [T−τ] | τ ∈ Tint}

10: end if
11: end while

The error Err [T] can be any measure of the “badness” of the decision

tree T . For example, 1− Accuracy .
81

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree, they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al (1984) defined Err(T) to
be the misclassification rate on the training dataset and |T | is
the number of nodes of the tree T .

82

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree, they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al (1984) defined Err(T) to
be the misclassification rate on the training dataset and |T | is
the number of nodes of the tree T .

82

Other Pruning Methods
There are more pruning methods.

▶ Rule Post-Pruning:
▶ Transform the tree into a set of rules.

Rules correspond to paths in the tree, they have a form of

implication: Specific values of attributes imply a class.
▶ Remove the attribute conditions from the premises of the

implications.

This gives a more refined pruning: Instead of removing the whole subtree,

each path of the subtree can be pruned individually.

▶ Using cost complexity measure: Evaluate trees not only based
on the classification error but also based on their size.

Typically introduce regularization into the error functions:
Given a decision tree T

Errα(T) = Err(T) + α|T |
The original paper by Breiman et al (1984) defined Err(T) to
be the misclassification rate on the training dataset and |T | is
the number of nodes of the tree T .

82

Sensitivity to Small Changes and Randomness

▶ Decision trees are sensitive to small changes in data and
hyperparameters.
Several attributes may provide (almost) identical information gain but

divide the training dataset very differently.

▶ Some implementations choose attributes partially in random
(sci-kit-learn). You may get completely different trees.

A solution is to train an ensemble of many decision trees and then
use majority voting for classification.

This is the fundamental idea behind random forests (see later
lectures).

83

Sensitivity to Small Changes and Randomness

▶ Decision trees are sensitive to small changes in data and
hyperparameters.
Several attributes may provide (almost) identical information gain but

divide the training dataset very differently.

▶ Some implementations choose attributes partially in random
(sci-kit-learn). You may get completely different trees.

A solution is to train an ensemble of many decision trees and then
use majority voting for classification.

This is the fundamental idea behind random forests (see later
lectures).

83

Iris - Illustration

Decision trees trained on the Iris dataset.

Iris setosa is perfectly separated by many choices for the first split.
84

Axis Sensitivity

The decision makes divisions along particular axes:

That is, rotated data may result in a completely different model.

That is why decision trees are often preceded by the principal
component analysis (PCA) transformation, which aligns data along
the axes of maximum data variance.

85

XOR Training Problem
Consider the following training dataset:

An ideal decision tree would look like this:

86

XOR Training Problem
Consider the following training dataset:

An ideal decision tree would look like this:

86

Attempts at Training on XOR
Max depth = 2:

The problem: Both information gain and decrease in impurity
consider only the relationship of a single attribute and the class.

However, there is no relationship between a single attribute and
the class, both attributes need to be considered together!

87

Attempts at Training on XOR
Max depth = 2:

The problem: Both information gain and decrease in impurity
consider only the relationship of a single attribute and the class.

However, there is no relationship between a single attribute and
the class, both attributes need to be considered together!

87

More Attempts at Training on XOR

Max depth = 3:

Better but still fails occasionally.

88

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

89

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

89

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

89

Advantages of Decision Trees
▶ Simple to understand and interpret; trees can be visualized.

▶ Uses a white box model, where conditions are easily explained
by boolean logic.

▶ Can approximate an arbitrary (reasonable) boundary and
capture complex non-linear relationships between attributes.

▶ Capable of handling multi-class problems.

▶ Little data preparation, unlike other techniques requiring
normalization, dummy variables, or missing value removal.

▶ Handles numerical and categorical data.

▶ Not sensitive to outliers since the splitting is based on the
proportion of examples within the split ranges and not on
absolute values.

▶ The cost of using a well-balanced tree is logarithmic in the
number of data points used to train it.

89

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

90

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

90

Disadvantages of Decision Trees

▶ Overfitting: Trees can be over-complex and not generalize
well, needing pruning or limits on tree depth.

▶ Instability: Small data variations can result in very different
trees. This is mitigated in ensemble methods.

▶ Non-smooth predictions: Decision trees make piecewise
constant approximations, which are not suitable for
extrapolation.

▶ Difficulty expressing certain concepts, such as XOR, parity, or
multiplexer problems (see the next slide).

▶ Bias in trees: Decision trees can create biased trees if some
classes dominate. Balancing the dataset is recommended.

▶ Learning optimal trees is NP-complete: Heuristic algorithms
like greedy algorithms are used, which do not guarantee
globally optimal trees. Ensemble methods can help.

90

History of Decision Trees

▶ Hunt and colleagues use exhaustive search decision-tree
methods (CLS) to model human concept learning in the
1960’s.

▶ In the late 70’s, Quinlan developed ID3 with the information
gain heuristic to learn expert systems from examples.

▶ Simultaneously, Breiman, Friedman, and colleagues develop
CART (Classification and Regression Trees), similar to ID3.

▶ In the 1980’s a variety of improvements were introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

▶ Quinlan’s updated decision-tree package (C4.5) released in
1993.

91

Comment on Regression Trees

Decision trees can also be used to approximate functions. Assign a
function value to the leaves instead of classes.

Here ”mse” is the mean-squared-error. We get to this notion later
in connection with linear models and neural networks.

92

Comment on Regression Trees

Intuitively, for every subinterval of x1 the value (the red line) is at
the average y over the subinterval.

How are the subintervals being set? We will answer this question
later once we master the mean-squared error.

93

