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Explainable Al and the criteria for evaluating their quality. Starting from a structural view of how explananuns can be
XAl g constructed, i.e., in terms of an explanandum (what needs to be lained), multiple expl ia ((
Bxplanations clues, or parts of information that explain), and a relationship linking explanandum and explanantia, we
Abstract Teonoey propose an explanandum-based typology and point to other posible pologies based on how expl. ia are

Artificial intelligence

. - : . . : . Machine learni presented and how they relate to explanandia. We also hlghllghl two broad and complememary perspectives
In the meantime, 3 w1de‘ vaflety of terminologies, .rnqtlvatlons, ap- achine learning for defining possble quality critera for assesing explainabil logical and psychological (cogniti
proaches, and evaluation criteria have been developed within the research These definition attempts aim to support the three main functions that we believe should attract the interest
field of explainable artificial intelligence (X AI) . With the amount of XAI and further research of XAI scholars: clear inventories, clear verification criteria, and clear validation methods.
methods vastly growing, a taxonomy of methods is needed by researchers
as well as practitioners: To grasp the breadth of the topic, compare meth- 1. Introduction

legal proceedings, where the output of a black box Al system could

ods, and to select the “ght XAI method based on traits rEqulred by & It is well-known and easily verifiable that the interest in artifi- pose severe risks and consequences for the involved users.

specific use-case context. Many taxonomies for XAI methods of vary- cial intelligence has grown almost exponentially both in academic However, in this contribution we will not speculate about the con-
ing level of detail and depth can be found in the literature. While they research and professional practice (Johnson, Albizri, Harfouche, &  cept of explainability: for the sake of argument, here we simply intend
often have a different focus, they also exhibit many points of overlap. Fosso-Wamba, 2022). This is also mirrored by the increasing number lainability as the requi (and related capability) to associate a

of articles that mention this broad expression in the last 10 years. A proper explanation to the output of an Al system. This requirement can
similar trend can be observed as for the number of articles that talk  virtually be addressed by anyone, the so called explainer, but it is
about a specific feature of Al systems, that is explainability (see Fig. 1).  usually assigned to the Al system itself (or to one of its components,

search. In a structured literature analysis and meta-study, we identified This is probably due to the fact that the computational paradigm usually called explanator Vilone & Longo, 2021), which then becomes
X AT methods metrice and method traits After stimmarizine them in a

This paper unifies these efforts and provides a complete taxonomy of
XAI methods with respect to notions present in the current state of re-




Number of Surveys

N

N

[

Surveys of XAl

5 - 17.5 Length
o 15.0 - BN short (=6 p.)

0- ) B medium (7-15 p.)
¢ 12,5+ B long (16-50 p.)
> 9 P

5 - 2 100 W very long (=50 p.)
o
g

oy £
>
z

. I-I

2011 2012 2014 2016 2017 2018 2019 2020 2021 %)o"'
Year «°

Category

A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts, Schwalbe and Finzel, Data Mining and Knowledge Discovery, 2023



XAl overview

Requirements

formulation:
Use case

@Spects ] (1) Problem definition:
Specifying the explanation.

(2) Explanator:
Generating the explanation.
XAI method
aspects

(3) Metrics:
Evaluating the explanation.



[ Task type \

e classification

e detection

e semantic / instance
segmentation

e clustering

\ e regression /

Requirements
formulation:
Use case

aspects (1) Problem definition:
Specifying the explanation.

/ Data type \

e tabular (numerical, categorical,
binary, ordinary)

o text (natural or formal)

e images, point clouds

e temporal resolution

e audio

\ e graph /

/ Intrinsically / inherently\ / \

e decomposable
e algorithmically

Type of
Explanandum:
Model
interpretability

e decision tables / rules

e decision tree

e Bayesian networks and
3 naive Bayes

e linear / logistic model

e SVM with simple kernel
e general linear model

interpretable

simulatable (size- or
computation-based)

transparent 5
e general additive model
Blended models ] ¢ gra'phs
¢ finite state automata
.. e simple clustering amd
Self-explaining

nearest neighbors

Post-hoc

explanations

>\ e diagrams /<

e disentangled
representation
e capsule nets
e attention maps
e textual explanations )




Required input Mathematical explanator

constraints

e model

o data (see task) linearity

o user feedback e monotonicity

e context o satisfiability

>—< e number of iterations

Portability o size (sparsity, tree

. width/depth)
« model-agnostic Interactivity

o partly to fully

3 e interaction task in human-
model-specific

Al system
(e.g. explorative, corrective)
o explanation process
(sequential analysis,
2
»: global (how?) users' capabilities, context)
o local (why?), on ‘\

Locality

single or group of

predictions

—

(2) Explanator:
Generating the explanation.

Input

Object of explanation

representation
(layers, units, vectors)
processing

(decision boundary, feature
attribution)
training

e data
uncertainty

Privacy awareness

Presentation

Presentation form Level of abstraction

visual
/ Explanator output type \ o verbal Accessibility
(textual, .
e by example (e.g. closest other formal) e simple
samples, word cloud) o auditive . comple?( &
e contrastive / counterfactual / near e combinations symbolic

miss example (e.g. adversarial ex.)
prototype (e.g. generated, concept
vector)

feature importance

rule-based (e.g. if-then, binary, m-
of-n, hyperplane) semantic feature
dimension reduction abstract semantic
dependence plots feature

graph with or without
diagrams interactions

combinations /

Information units

raw feature

derived feature

.

4

XAl Explanator
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e model
o data (see task)
e user feedback
e context
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How the algorithm produced \
the output

Why the algorithm
produced the output

(Justificatory)  Why the output s right

Computational

Explanandum
: The thing or What is the phenomenon
T causing the output
: explained What the output entails Validation
S A
: What is the output's uncertainty J
5 : Classifications )

:.' EXpl?nator : 4 Epistemological Bona fide explanationg
s relationship

explanandum
Persuasion ) Trust )—( Aligning Explanations)

Similar cases )

Explanation O Relationship that Understanding ) ( Knowledge) Motivating Explanations)
. holds between the
'-.' explanans and the Cognitive Motivation Confidence )—(Reassuring Explanations)

Instance- or Sample-based Opposite cases )

Feature-based
Distribution-or Morphology—based

Text-based

% v
~  Explanans
. The thing that
explainsandis
perceived by users

Counterfactual case9




Computer Literacy

Knowledge and Expertise in Medicine / Molecular Biology

oA

o Software

S Developer / Al

> 3

B Sl Researcher in

the Field of Data
Tochnical Science/Al
Support
| Solution Provider ‘
Quality Customer
Assurance Staff | Notified Body I
IVDR/MDR
Expert
Al Laboratory
Technician
Staff responsible for
Quality Assurance in
Pathology Institute
Researcher in
Medicine/Biology/
i Biochemistry
Requirement
Analyst
Sales & Pathologist in
Marketing Staff Diagnostics
g
Low Advanced



Image Model Explainability workflow

Input Image

Black-box deep
learning solution

Concept Learning
Models

Case-Based
Models

Counterfactual
Explanation

Concept Attribution

Evaluation in Clinical
Setting

Language
Description

Evaluation using Imaging
Biomarkers

Latent Space
Interpretation

Evaluation against
Adversarial Perturbations

Attribution Map

Quantitative Evaluation for
Trustworthy Explanations

Anatomical Prior

Internal Network
Representation

Interpretability
methods

Evaluation of
Interpretability
methods

Clinically acceptable
deep learning
solution



Attribution Map

Post-hoc explanations are
provided by highlighting the
regions of the input image
that the model considers
important.

No information is provided
on how the relevant regions
contribute to the prediction,
multiple classes can have the
same regions highlighted.



Attribution maps

“
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Grad-CAM Occlusion Integrated Gradient
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Image Patch LIME KernelShap Guided

Backpropogation

Input x Gradient

Guided
Grad-CAM

Layerwise Relevance
Propagation (LRP)

Class Activation Maps (CAM)
Gradient-Class Activation Maps

(Grad-CAM)

Integrated Gradient (IG)

Occlusion

Local Interpretable Model-
agnostic Explanations (LIME)

kernel SHAP (Linear
LIME+Shapley values)

Trainable Attention

SmoothGrad

Guided BackPropagation (GBP)

DeepLIFT (Learning Important

FeaTures)

Deep SHAP (DeepLIFT+Shapley
values)

Deep Taylor Decomposition
(Deep Taylor)

Multi-Layer Class Activation
Maps (MLCAM)

Expected Gradients

Contextual Decomposition

Explanation Penalization (CDEP)

[15]
[35]
[16]
[104]
[101]
[137]
[150]

[64]

[139]
[93]

[122]
[161]
[171]
[154]
[156]
[59]

[44]

[102]

[51]

[89]

[62]
[107]

[127]

57]

[28]

[109]

Alzheimer's disease classification

Multiple Sclerosis diagnosis

Oral cancer classification

Automatic brain tumor grading

Detection of COVID-19 from Chest X-ray and CT scans
Diabetic Retinopathy (DR) prediction

Multiple Sclerosis classification

Diagnosis of age-related macular degeneration and

diabetic macular edema in OCT images

Diagnosis of Alzheimer's disease

Parkinson's disease detection

Congestive heart failure prediction

Skin cancer detection

Lung nodule classification

Melanoma recognition

Classification of breast cancer microscopy images
Organ segmentation in 3D abdominal CT scans

Identification of cardiac structure, estimation of
cardiac function and prediction of systemic
phenotypes from Echocardiography

Classification of estrogen receptor status from breast
MRI

Lung adenocarcinoma classification

Diagnosis of Multiple Sclerosis

Breast lesion classification, lung lesion classification
COVID and Pneumonia classification from chest X-rays

Content-based image retrieval for pleural effusion

condition in Chest X-Ray images

Feature localization for Confocal Laser

Endomicroscopy Glioma images
COVID-19 detection

Skin Lesion Classification



Attribution maps

a)
b)
C)
d)
e)
f)
9)
h)

I*G

Guided Backprop

Deep Taylor Decomposition
LRP

Occlusion sensitivity
DeconvNet

Integrated Gradients
Original Image

Computed using

https://github.com/albermax/innvestigate




Attribution maps

a)
b)
C)
d)
e)
f)
g)
h)

I*G

Guided Backprop

Deep Taylor Decomposition
LRP

Occlusion sensitivity
DeconvNet

Integrated Gradients
Original Image

Computed using

https://github.com/albermax/innvestigate




Internal Network Representation

Visualization of features The structures and patterns
learned by different filtersin ~ that different filters learn to
a CNN. identify are hard to interpret

in medical images.



Filter visualization




Internal Network Representation




Internal Network Representation - clustering

Cluster pixels according to
feature maps activated
“above” them.




Latent Space Interpretation

The latent space is used to
uncover the salient factors of
variation learned in the data
with respect to the clinical
knowledge. Visualization of
high-dimensional latent
space in two dimensions to
identify similarities and
outliers.

Loss of information when the
high-dimensional feature
space is projected to two
dimensions. The similarity in
latent space does not always
translate to the similarity in
terms of
human-interpretable
features.



Latent Space Interpretation - tissue segmentation

e  Patch based tissue
segmentation (brain)

e 13-classes (white/grey
matter, blioma, etc.)

e  Simple multiclass
network on 1024x1024
patches

b Normal Tissue Nonlesional Tissue Lesional Tissue
White Gray Cerebellar Surgical CNS CNS
Matter Matter Cortex Dura Necrosis Material Blood Lesions Lesions

PR P
{ :

Deep Convolutional Network
(CNN-VGG19)

Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction, Han, BMC Bioinformatics, 2018



Latent Space Interpretation - tissue segmentation

2D t-SNE a
visualization of
the final hidden
layer features

blank

white matter
gray matter
glioma
meningioma
metastasis
lymphoma
necrosis
blood
surgical material
schwannoma
dura
cerebellum




Concept Attribution

Global explanations to
quantify the influence of
high-level image
concepts/features on the
model predictions.

Difficult to annotate
high-level clinical concepts,
features used for
interpretability may not be
reproducible.



TCAV

e Linear classifier in the latent
space - distinguish latent
representation of the
concept vs random input

e Derivative of the output
w.r.t. the normal vector of
the linear classifier

Concept Activation
Vector Analysis

—» Concept patches
pathologist Random patches

" ey Y BN
X v, AL
JOONE B S a 5
- f ?
» SO .

SO e

Known-class
patches

Measure sensitivity of
known-class prediction
probability to concept
activation: TCAV Scores

Linear classifier
on activations

i

Determining breast cancer biomarker status and associated morphological features using deep learning, Gamble et al, NComms, 2021
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Counterfactual Explanation

Input images are perturbed
in a realistic manner to
generate the opposite
prediction.

Possibility of unrealistic
perturbations to the input
images, the resolution of the
generated counterfactual
images is limited.



Counterfactuals - Using Generative Models

Real X-ray Ground truth images - Ground truth KL grade

e Trained generator from
A § >3 latent w to images
ok 5 % e Take latent
— representation w’ of a
real image
e Consider w'+aD where D
is the direction of
increasing/decreasing
model output

Reconstructed images with increased knee osteoarthritis severity

Using Stylegan for Visual Interpretability of Deep Learning Models on Medical Images, Schutte et al, https://arxiv.org/abs/2101.07563, 2021


https://arxiv.org/abs/2101.07563

Language Description

Textual justifications are Structured diagnostic reports
provided along with the require more annotation
predictions. efforts, duplication of

training sentences during
testing.



Language Description

Training data:
Image labels (tumor)

e Patches 1024 x 1024
e Pixel-level labels of tumor

Textual descriptions

e  Microscopic findings - 5
types of cellular features

e  Vocabulary size 112
(21,265 image-report
pairs)

e  Feature aware attention
(indicates what it sees
when generating the text)

Nuclear features show moderate pleomorphism. mild crowding
of the nuclei can be seen. polarity is not completely lost toward
the surface urothelium. mitosis is rare throughout the tissue.
the nuclei have inconspicuous nucleoli. High grade.

Pathologist-level interpretable whole-slide cancer diagnosis with deep learning, Zhang et al, Nature learning machines, 2019



Concept Learning Models

High-level clinical concepts
are first predicted and the
final classification is made
using these concepts.

Additional annotation cost,
learned concepts may encode
information beyond the
intended clinical concepts
due to information leakage.



Concept Learning Models

Clinical Concepts

Malignancy
= ‘-\ - - ? Prediction

Input
Image

e Can be misleading as the learned encoding contains information in addition to
the concept representation (cheating)

DO CONCEPT BOTTLENECK MODELS LEARN AS INTENDED?, Margeloiu, ICLR 2021



Case-Based Models

Class discriminative
prototypes are learned and
the final classification is
performed by comparing
features extracted from input
images with the prototypes.

Susceptibility to corruption
by noise and compression
artefacts, difficult to train.



Case-Based Models - ProtoPNet

Black footed albatross

Indigo bunting

Cardinal

Clay colored sparrow

2617 Common yellowthroat

Similarity score
A A A J

3] Al Al A
Convolutional layers f Prototype layer g, Fully connected layer A Output logits



Case-Based Models - ProtoPNet - Mammogram

,_-......_......_..._.._..._____......_...__....._....___......._.....__..._.._~\

.
\~—————-—-—————-——-————-————-———————-——-—-—--——f’

Non-cancer and cancer
prototypes

Similarity heatmaps to the
prototypes

prototypes can be corrupted
due to the semantic gap
between similarity in latent
space and in input space

Is ProtoPNet Really Explainable? Evaluating and Improving the Interpretability of
Prototypes, Huang et al, https:/arxiv.ora/abs/2212.05946, 20222



https://arxiv.org/abs/2212.05946

Anatomical Prior

Task-specific structural Specialized clinical
information is incorporated knowledge may be required,
in the design process of the anatomical prior cannot be

network. utilized for all problems.



Shape Stream

g

Priors e
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UNet for
segmentation

1 E
AR

Add shape stream
incorporating shape

E1 E2 —.D2 DI
loss (length of
boundary, area)
E3 Dense Block
Skip Connection
E4 D4 Dual Attention Block

Conv. 3x3 - BN - ReLU

= 2 . Upsample

Texture Stream Conv. 1x1

SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation, Sun et al, https:/arxiv.ora/pdf/2001.07645v3.pdf, 2020


https://arxiv.org/pdf/2001.07645v3.pdf
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The explainability paradox

mixed-methods study of user interaction with samples of state-of-the-art Al
explainability techniques for digital pathology

How are state-of-the-art xAl approaches interpreted and evaluated by expert
users in a typical diagnostic setting?

How do these interpretations and evaluations inform principles for the
development of safe and effective xAl?

Evaluation of five explanation generating methods

Saliency maps, concept attribution, prototype, counterfactual, trust score
Al-assisted Ki-67 quantification was chosen as a representative task from the
slide examination step of the digital pathology workflow



Saliency Map
(Global)

Show the most relevant
pixels for the positive
classifications within this
region of interest

Concept Attribution

Show the most important
features attributed to
positive classifications

Prototypes

Show prototypical
positively and negatively
classified annotations
within this region




Counterfactuals
(One-axis)

Counterfactuals
(Two-axis)

Show generated examples
interpolating between
positive and negative
examples, showing model
classifications for each

Show generated examples
changing in two principal
factors of variation,
showing model
classifications for each

Trust Scores

Display low-confidence
annotations for review




Most important regions
for selected annotation:

g
P e

pee

Ki-67 nuclear positivity:
1 Whole slide: 33.7% (11231, 23144)
This region: 41.6% (32, 45)

I . TR TR

Hide explanation

Local saliency map

Show the most relevant pixels for the classification of a selected annotation

| find the explanation intuitively understandable *

Stronglydisagree 1 2 3 4 5 6 7 Strongly agree

The explanation helps me to understand factors relevant to the algorithm *

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

The explanation helps me to decide whether | can trust the generated annotations

Stronglydisagree 1 2 3 4 5 6 7 Strongly agree

The explanation provides me with valuable information for my work *

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Additional comments

Page 5 of 9

Previous




Evaluation

e Questionnaire for 25 respondents

e individuals holding professional roles in pathology or neuropathology
o consultant (12)
o researcher (6)
o pathologist in training (4)
o technician (3)



Trust Scores:

I find the explanation intuitively understandable
The explanation helps me to understand factors relevant to the algorithm
The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work

0% 20%

100% 80%

Counterfactuals (One-axis):

I find the explanation intuitively understandable
The explanation helps me to understand factors relevant to the algorithm
The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work

Concept Attribution:

I find the explanation intuitively understandable
The explanation helps me to understand factors relevant to the algorithm
The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work

20%

<
3
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Counterfactuals (Two-axis):

I find the explanation intuitively understandable
The explanation helps me to understand factors relevant to the algorithm
The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work

Prototypes:

I find the explanation intuitively understandable

The explanation helps me to understand factors relevant to the algorithm -

The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work

Saliency map (Global):

I find the explanation intuitively understandable
The explanation helps me to understand factors relevant to the algorithm
The explanation helps me to decide whether I can trust the generated annotations

The explanation provides me with valuable information for my work
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