
Automated Annotations of Epithelial Cells

and Stroma in Hematoxylin-Eosin Stained

Whole Slide Images Using Cytokeratin

Restaining

Tomáš Brázdil1, Matej Gallo1, Rudolf Nenutil2, Martin Toufar1, and

Petr Holub ∗3

1Faculty of Informatics, Masaryk University

2Masaryk Memorial Cancer Institute

3Institute of Computer Science, Masaryk University

August 14, 2020

Abstract

Diagnostics of solid tumors of epithelial origin—carcinomas—represents very impor-

tant part of workload in histopathology. Carcinoma consists of malignant epithelial cells

arranged in more or less cohesive clusters of very variable size and shape. In between

them there is stroma, comprised by fibroblastic cells, variable amount of extracellular

matrix, blood vessels and inflammatory cells of different types. Distinguisting stroma
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from epithelium has been already demonstrated to bring critical advantage to artificial

intelligence (AI) methods developed to detect carcinomas. In this paper we propose a

novel automated workflow that enables large-scale guidance of AI methods. The work-

flow is based on restaining existing formalin-fixed paraffin-embedded (FFPE) material us-

ing panoptic hematoxylin-eosin staining followed by immunohistochemistry to visualize

cytokeratins—a cytoskeleton components highly specific to epithelial cells. Compared to

existing methods, the currently available hematoxylin and eosin (H&E) stained material

can be reused and no additional material, such as consecutive slides, is needed. Based on

specifics of the particular stainingmethod, we have developed a robust method to align the

restained slides and automatically generate the masks denoting cytokeratin-rich regions,

using positions of cell nuclei visible in both original and restained slide. The alignment

method has been compared to state-of-the-art method for alignment of consecutive slides

and shown that despite being simpler, while still providing sufficient accuracy. The paper

also demonstrates how the automatically generated masks can be practically used to train

modern AI image segmentation based on U-Net, resulting in very reliable detection of the

epithelial regions in the original H&E slides.

1 Introduction

Recently, we can see a rapid onset of deep learning applications in pathology. Despite the

real potential of artificial intelligence (AI) assisted histopathology is yet to be determined, the

research in this area is expanding and promising. The progress in digitization of histological

samples, resulting into virtual slides, so called whole slide images (WSIs). Together with the

trend to digitize the whole laboratory workflow, this may change substantially the whole pro-

fession, especially if some really useful AI assistance could be implemented. Unfortunately,

the development of AI algorithms currently requires a large volume of learning and validation

data. For supervised learning these are to be created mostly by manual annotation of histo-

logical images, requiring a lot of time and effort from qualified pathologist—the commodities

which very often are not readily available.
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The solid tumors of epithelial origin (carcinomas) represent a vast and very important part of

workload in diagnostic histopathology. The carcinoma tissue is a mixed structure. It consists

of malignant epithelial cells arranged in more or less cohesive clusters of very different size

and shape. In between them there is stroma, comprised by fibroblastic cells, variable amount

of extracellular matrix, blood vessels and inflammatory cells of different types. Some of in-

flammatory cells also intrude into epithelial islands. The manual annotation of carcinoma as a

”whole”, can be relatively easy and fast. The information including stroma is very important

and data created this way may be useful in some AI applications, especially in diagnosis of ma-

lignancy as such, tumor typing and prognostication. From the other side, there are potential

AI assistance applications, e.g., counting of mitoses, nuclear morphometry or counting of in-

traepithelial or stromal lymphocytes, requiring a precise delimitation of epithelial islands and

stroma inside the carcinoma, resulting into ”epithelial mask”, representing the actual annota-

tion. Due to complexity of carcinoma structure, the manual creation of precise epithelial mask

is practically impossible, if the representative area of tumor is to be covered for substantial

number of carcinoma cases. Differentiating epithelial cancer cells from stroma and inflam-

matory cells has been already recognized as an important problem, to which solutions using

staining consecutive slices of tissue have been proposed [1, 2]. Recent paper [3] demonstrated

approach to manual annotations supervised by the cytokeratin mask based on restaining the

hematoxylin and eosin (H&E) stained slides using a immunohistochemistry visualize cytoker-

atins – a cytoskeleton components highly specific to epithelial cells.

The idea behind our project is to develop a working procedure, able to create the epithelial

mask in H&E stained carcinoma WSI. The method presented in this paper aims at automating

thewhole process of epithelium/stroma detection, by (a) developing amethod for restaining the

slides, which can be automated in staining automata for reproducibility reasons, (b) automated

method aligning the restained images in spite of shifts and non-linear tissue transformations

that may happened as a consequence of the restaining, (c) automated mask generation based

on thresholding. As a demonstrator of the use of the method, it has been applied to guide
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machine learning to detect epithelium in the H&E stained tissue microarray (TMA) slides. The

use of TMA, the compound histological blocks, containing tens of tumor cores, collected from

routine bioptical cases should ensure coverage of adequate number of cases, processed under

uniform conditions.

2 Material and Methods

2.1 Material

The sections used for sequential staining represented a leftover material from immunohisto-

chemistry quality control procedure, performed in TMAs containing ten cases of breast carci-

noma each. The cases included the most frequent histological patterns, starting from dissoci-

ated lobular carcinomas, through trabecular and solid to medullary growth. The cores 2mm

in diameter were bored from routine formalin-fixed paraffin-embedded (FFPE) blocks, manu-

ally arranged and embedded as a new block. The source material originated from diagnostic

cases evaluated at Department of Pathology, MMCI. All patients provided a written consent to

use the leftover material for research. The H&E stained WSI used to evaluate the performance

of trained network are part of routine case documentation in the tissue collection at MMCI

Biobank. They were selected randomly.

2.2 Restaining protocol

The 5µm thick sections, cut to distilled water were collected on positively charged slides for

immunohistochemistry (TOMO, Matsunami Glass IND LTD, Osaka Japan). The routine H&E

staining protocol was performed using Leica autostainer XL5000, followed by routine cover

glass mounting using Solakryl BMX (Draslovka, Kolín, Czech Republic) medium using Leica

CV500 mounting machine. The details are given in Supplementum Section S1. The slides were

left for one hour to dry and then scanned using Pannoramic®MIDI (3DHistech, Budapest, Hun-

gary) with objective 20 at resolution 0.172 µm/pixel. The WSI were uncompressed, in PNG in-

4

supplementum.pdf{}{}{}#section.1{}{}{}


side Mirax format. After that the slides were placed into xylene overnight and left the coverslip

to drop off. The another day the immunohistochemistry with cocktail of anticytokeratin anti-

bodies was performed in Dako Autostainer Link 48 (Agilent Santa Clara, United States) using

standard staining procedure including deparaffinisation and antigen retrieval. The antibody

binding was detected with 3,3’-Diaminobenzidine (DAB) and after repeated nuclear counter-

staining with hematoxylin, the slides were dehydrated a mounted in a usual way. The details

are given in Supplementum Section S1.

2.3 Data set access

The data set is available as raw files stored in Mirax MRXS format1 compatible with OpenSlide

library [4]. The annotations for the evaluation are available as XML files compatible with

ASAP.2 The data set is pseudonymized and access to it can be requested via BBMRI-ERIC Eu-

ropean Research Infrastructure, by following it’s access policy3; the request should be placed

via BBMRI-ERIC Negotiator platform4 to Masaryk Memorial Cancer Institute.

2.4 Automated alignment of cytokeratin mask on H&E slides

The original H&E-stained TMA slides as well as restained TMA are scanned as WSIs using

any of the state-of-the-art scanner. No additional visual cues were needed nor assumed by the

methods. Automated generation of aligned cytokeratin mask works in the following steps: (1)

the H&E and the restained slide are split into individual tissue cores from the TMA (as shown

in Figure 1), (2) cores are registered (aligned) using one of the two methods described below, (3)

the resulting mask is created using adaptive thresholding with subsequent noise filtering. The

registration method developed by us for the step (2) utilizes specific properties of the restaining

to achieve robust results: it uses cell nuclei centroids as reference points, which are visible in

both H&E and restained tissue thanks to repeated nuclear counterstaining with hematoxylin.
1 https://openslide.org/formats/mirax/
2 https://computationalpathologygroup.github.io/ASAP/
3 https://www.bbmri-eric.eu/services/access-policies
4 https://negotiator.bbmri-eric.eu/
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(a) (b) (c) (d)

Figure 1: Pairs of tissue cores extracted from the corresponding TMA scans.

The developed method has been compared to the state-of-the-art registration system designed

for alignment of consecutive slides and found more robust.

Nuclei-based registration. We developed a simple yet robust alignment method based on

isolation of cell nuclei marked by haematoxylin in both H&E slides as well as restained cytoker-

atin slides. This method takes the advantage of the cytokeratin restaining protocol introducing

the hematoxylin again, thus enabling to identify cell nuclei effectively in both stains. Descrip-

tion of the algorithm refers to the functions defined in Algorithm 1; full pseudocode of the

algorithm is available in the Supplementum Section S2.

• The image starts with decomposition of the image into haematoxylin, eosine, and 3,3’-

Diaminobenzidine (DAB) channels [5, 6] for both images respectively. For optimization

of separation of the 3,3’-Diaminobenzidine (DAB) and haematoxylin channel, the Sparse

Non-negative Matrix Factorization (SNMF) method was used [7].

• Cell nuclei centroids are identified in the haematoxylin channel (DETECT-NUCLEI func-

tion), taking into account both roundness of the shape and the minimum/maximum size

of the nuclei pre-specified for the given resolution.

• The matching of the nuclei centroids in both images is done based searching for mini-

mum square error when doing rigid transformations (TRANSLATION and ROTATION

functions) with the gradient descent, and applying k = 1 nearest neighbor match.
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• Once the best possible match is identified, the pairs of nuclei are used to determine shift

vectors for the non-rigid transformation of the image, which is then performed using

warp transformation.

1 Function DETECT-NUCLEI(img, numberOfNuclei):
2 Segment img using quickshift algorithm, assign each pixel in segment average

value in segment and separate hematoxylin channel hem;
3 for thr in set of evenly spaced numbers over interval (min(hem),max(hem)) do
4 Create binary mask of hem with threshold thr;
5 Find objects in mask with shape and size of nucleus and compute their

centroids;
6 end
7 return set of nuclei centroids, with size larger than numberOfNuclei, created from

mask with highest threshold, if does not exitst return largest set;
8 Function ROTATION(sPts, tPts, rotationCenter):
9 Generate angles as a set of evenly spaced numbers over interval

(−minAngle,maxAngle);
10 For each angle rotate sPts around rotationCenter and compute average ℓ2 distance to

nearest-neighbour in tPts;
11 return angle where average ℓ2 distance is minimal;
12 Function TRANSLATION(sPts, tPts, distance):
13 Generate set of grids G = {X × X, X is a set of evenly spaced numbers over interval

(−2i, 2i),i ∈ {minDistance, … , distance}};
14 Iterate over grids with decreasing size. For each grid compute all translations, select

translation where average ℓ2 distance from translated sPts to nearest-neighbour in
tPts was minimal. Translate sPts with selected translation and add selected
translation to finalTranslation.;

15 return finalTranslation
Algorithm 1: Functions used in nuclei-based registration algorithm.

Whole tissue registration. Automatic alignment of consecutive slides using different stain-

ing has been tackled by the ANHIR challenge5 in 2019 [8] and evaluated using landmark vali-

dation [9]. This competition did not provide any additional assumptions on the stainings and

was based on consecutive slides being restained and not the same slides being restained. Hence

the methods had to be more general without being able to use the presumptions on matching

5 https://anhir.grand-challenge.org/
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cell nuclei which we were able to make. One of the top 3 ranking methods, and the only one

which has been published as open-source6 [10], has been used as a basis for comparison of our

own method proposed in this paper.

The algorithm combines several methods and proceeds in two stages. First, the initial align-

ment based on rigid or similarity transformations is computed, then non-rigid transformations

finish the registration. For the initial alignment, the system automatically selects between

two methods. The first one uses feature detection algorithms (SURF, SIFT, ORB) followed by

RANSAC for calculating similarity transformations between features. The second one, related

to our algorithm, computes centroids in binary versions of both images (obtained by Li thresh-

olding) and uses them to iteratively compute the desired rotation. For the non-rigid transfor-

mation, the system automatically chooses between four methods: local affine transformation

with local brightness and contrast corrections, two methods based on Thirion’s demons al-

gorithm [11], and a thin plate interpolation applied to all the good matches from the initial

alignment procedure.

Automation of cytokeratin mask generation We have tested various methods of thresh-

olding and the isodata method [12, 13] and minimum method [14, 15] provided the best results

based on comparison with the pathologists expert knowledge, which is consistent with the

surveys of thresholding methods [16–18]. The resulting binary mask has been filtered for ob-

jects smaller than fixed threshold (smaller than 60 pixels area in case of our images), which are

considered noise.

Due to the different shrinkage of the tissue in the fixation step, shrinkage artifacts often oc-

cur; this naturally caused by removing water from the tissue. In our experience, the shrinkage

is less for 3,3’-Diaminobenzidine (DAB) restained sample than the original H&E stained sam-

ple, because of the immunohistochemistry includes the antigen retrieval step, based on partial

hydrolysis of section at high temperature and high pH. This results in the situation where the

generated masks are slighly larger than they should be on the H&E staining. Hence we em-
6 https://github.com/lNefarin/ANHIR_MW
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ploy erosion as the last step of the mask generation. However, as discussed in Section 3.1,

the whole-tissue-based registration aligns also to tissue edges and thus the shrinkage has been

found non-uniform and thus erosion is only applied to nuclei-based registration.

Two representative areas of two different cores have been selected and the border of the

epithelium has been carefully marked by experienced pathologist in the H&E staining as a

series of precisely placed points – these became reference points. The ℓ2 distance between the

nearest border point of the automatically computed mask from each of the reference points

was taken as a metric of alignment. Pairing of the nearest point and the reference point was

also inspected visually.

(a) (b)

Figure 2: Testing images with reference points. Two different growth patterns of breast car-
cinoma. Trabecular – dissociated (a) and micropapillary – solid (b).

2.5 Automation of stroma detection in H&E stained tissues

In order to show feasibility and utility of the automated annotation generation, we have devel-

oped a simple AI pipeline designed to detect cytokeratin-rich regions in H&E slides.

We used 18 slides to train a classifier: 16 for training, 1 for validation and 1 for testing. Each

slide was 6,464 px wide and 6,592 px high. We used the window slide technique with a step

size of 128 px to cut the slide into 512 px × 512 px patches. To avoid extraction of patches from

background areas of the image we filtered out the background. First we converted the image
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from RGB to HSV representation and applied an Otsu’s thresholding on the saturation channel

of the image. After that we applied closing followed by an opening morphological operation

using a disk of size 10.

Before the patches are passed to the network, an image augmentation is applied randomly

on each patch. The following augmentations were used: horizontal and vertical flips with 50%

probability each; perturbations to brightness in the range [-64;64]; perturbations to hue and

saturation in ranges [−64;64] and [−10;10] respectively. Since there is no canonical orientation

for the tissue samples, we can use the flips to artificially increase the training dataset and thus

prevent overfitting. The random perturbations serve as a preventative measure against the

network relying on a specific colour palette of a slide.

We selected U-Net as our architecture of choice. The minimum number of channels was

64, the maximum was 1,024. The Adam optimizer with binary crossentropy loss function was

used to train the network. We initialized the learning rate to 3 × 10−6. During the training the

learning rate was reduced by a factor of 10 after every 4 epochs with no improvement. The

network was trained with a batch size of 1 for 30 epochs. In addition to image augmentations,

L2 regularization with parameter 1 × 10−3 was used to prevent overfitting.

3 Results and Discussion

We have measured both the accuracy and computational performance of cytokeratin mask

generation/registration for both the nuclei-based registration and the whole-tissue-based reg-

istration on two selected areas of two distinct cores.

3.1 Generation of masks

Accuracy. We have observed that the cytokeratin mask, extracted by thresholding, typi-

cally extends beyond the sample area (as discussed in Section 2.4 and illustrated by Figure 3).

Therefore, we have employed standard erosion operation to make the mask smaller so that the

proper areas are covered more precisely. We have evaluated the quality of the eroded mask
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registration for several sizes of the erosion kernel. The results are presented in Table 1 and

more extensive evaluation is provided in Supplementary Tables S3.1 and S3.2; because of non-

uniform shrinkage of the mask generated using whole-tissue-based registration, the erosion

is only applied to nuclei-based registration and the results for whole-tissue-based registration

are provided for reference only in the Supplementum. Note that the table lists only results for

small kernels, for larger ones the quality quickly deteriorates.

Erosion [px] Mean error [px] Median error [px] MSE

Tissue core 2

0 3.64 3.00 23.37
1 3.50 2.83 20.82
2 3.46 2.83 19.91
3 3.60 3.00 20.90
4 3.88 3.61 23.70
5 4.41 4.00 29.78

Tissue core 5

0 5.87 4.24 94.25
1 5.42 4.12 88.03
2 5.10 4.00 83.37
3 4.85 3.61 79.68
4 4.76 3.61 78.39
5 4.85 3.61 79.39

Table 1: Evaluation of mask erosion for nuclei-based registration. Optimum values are 2 px
and 4 px for tissue cores 2 and 5 respectively.

The resulting mean error is around 3 px to 6 px. The typical cell size is 15 µm to 20 µm, which

in our case roughly corresponds to 80 px to 120 px, and even the size of a nucleus is around

30 px to 40 px. Which means that the error is just a fraction of the size of nuclei. As our goal

is to identify groups of epithelial cells, the error is perfectly acceptable.

Note that even though the nuclei-based registration is slightly less precise than the whole-

tissue-based registration, the average difference is only around 1 px to 2 px. On the other hand,

the nuclei-based registration is straightforward and very easy to understand as opposed tomore

sophisticated non-linear methods. Hence it is also very consistent and robust. Even when the
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tissue is rather damaged during the cytokeratin restaining, the nuclei-based registration works

well as long as there is a sufficient amount of nuclei distributed throughout the tissue. On the

other hand, the whole-tissue-based registration, truly aligning the tissue borders, might get

completely confused as illustrated by Supplementary Figure S3.5.

For a more detailed comparison of the two methods, see the Figure 3. Apparently the whole-

tissue-based registration is able to align the mask over the tissue almost perfectly in the case

of a well-separated object. The nuclei-based registration is agnostic to the separation of the

borders and thus cannot take the advantage of well visible borders. However, once the borders

are fuzzy, as in the top part of Figures 3a and 3b, the error of the nuclei-based registration stays

consistent as opposed to the whole-tissue-based registration which suddenly distorts the mask

in a wrong way.

input : heImgPts points on the border of relevant cytokeratin-masked region in H&E
stained image, ctkMask aligned mask based on cytokeratin

output: μ mean distance from heImgPts to closest point on ctkMask
1 Let border be a set of coordinates where ctkMask and eroded ctkMask differ;
2 For each point in heImgPts find point in border with minimal ℓ2 distance;
3 return mean distance to closest point

Algorithm 2: Algorithm for alignment evaluation.

3.2 Results of H&E Stained Tissue Segmentation

We evaluated the performance of the network in two ways. Firstly, an automated evaluation

was performed by calculating the mean intersection over union (IoU) between the predicted

mask and the ground truth for every patch. However, the ground truth mask is not perfectly

aligned with the original image due to the restaining process used in its creation.

As such we selected 4 additional previously unseen slides. We applied the same preprocess-

ing steps as we did with the original 18 slides and predicted the mask for each patch using the

trained network. We then combined all of the patches to reconstruct the full mask. The over-

lapping regions of the patches were combined using arithmetic mean so the resulting borders
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(a) (b) (c)

Figure 3: Visualization of registrations and masks generated using the two methods discussed
in the paper in the crop of Figure 2b. Figures (a) and (b) show orinal H&E stained
slide, overlaid with registered slide with cytokeratin visualization using brown 3,3’-
Diaminobenzidine (DAB). Red lines are showing distance between each reference
point and nearest point on the generated mask. Figure (a) shows the nuclei-based
registration; note that the red lines are not touching the brown border of the 3,3’-
Diaminobenzidine (DAB) overlay as the final mask is eroded by 3 px as discussed
in the method. Figure (b) shows the whole-tissue-based registration. (c) shows dif-
ference between the two masks – cyan is generated using nuclei-based registration,
green is using whole-tissue-based registration.

are smoother. Lastly a thresholding was applied in which all pixels with combined activation

less than 0.5 were zeroed.

We have asked pathologists to manually annotate the four slides. Due to the complexity of

the annotation process, the pathologists randomly selected and annotated three sub-regions

within each slide while simultaneously avoiding section artifacts. Only these sub-regions have

been evaluated and results have been summarized in Table 2. The total average sensitivity

across all regions and all slides is 0.81 ± 0.19; and the total average specificity across all regions

and all slides is 0.73 ± 0.15.
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Table 2: Slide and sub-region evaluation
Slide Region Se Sp Avg. Se Avg. Sp

M007
1 0.7535 0.5546

0.7848 ±0.0435 0.7547 ±0.14372 0.8463 0.8858
3 0.7544 0.8236

M025
1 0.8787 0.8537

0.8768 ±0.0186 0.8907 ±0.03082 0.8531 0.9290
3 0.8985 0.8893

M029
1 0.2260 0.6985

0.6638 ±0.3099 0.7193 ±0.06202 0.8651 0.8034
3 0.9003 0.6559

M033
1 0.9324 0.4916

0.9311 ±0.111 0.5596 ±0.08102 0.9169 0.6734
3 0.9440 0.5136

4 Conclusions and Future Work

Detecting carcinomas is one of the focus points of applications of AI methods in digital pathol-

ogy and guidance of the AImethods by differentiating stroma from epithelium has been demon-

strated to significantly improve accuracy. This paper presents a novel method that allows

to overcome shortage of whole-slide images manually annotated to differentiate stroma from

epithelium. By integrated automated restaining procedure, scanning and image processing

pipeline (registration, color channel separation, and thresholding), the whole procedure has

potential to generate vast amounts of data suitable for machine learning. Another advantage is

that the method can reuse existing H&E stained biological material and hence existing pathol-

ogy collections can be reused without need for additional biological material. In this paper we

have also demonstrated viability of ingesting the resulting pixel-level annotated images into

the machine learning pipeline: we trained a U-Net-based image segmentation method to detect

epithelium directly in the H&E slides.

As the next step, the method of restaining will be applied to obtain masks from larger set of

breast carcinoma TMAs containing about 600 cases. The epithelial areas defined by cytokeratin

masks, applied to related H&E scans, will be used to train AI to recognize epithelial areas in
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(a) (b)

(c) (d)

Figure 4: Region 2 from slide M025: (a) H&E region (b) annotations made by a pathologist; (c)
predictions made by neural network; (d) heatmap denoting false positives by yellow,
false negatives by red, true positives and true negatives by blue

H&E scans more precisely. Once the AI is trained to do this, the sequential staining can be

used again in any breast carcinoma sample, but the marker detected by immunohistochemistry

can be of researcher‘s choice. In general this can be any marker, where the quantification

within different tissue compartments is of potential interest (e.g. Ki67, PD-L1, CD8). Of course,

this method can be applied for other diagnoses, e.g., colorectal carcinoma and many more.

The more simple potential application is the morphometric analysis in H&E stained sections,

e.g., more precise nuclear morphometry, the measurements of epithelial/stromal ratios and

epithelial surfaces.
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