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A B S T R A C T   

Diagnostic histopathology faces increasing demands due to aging populations and expanding healthcare pro-
grams. Semi-automated diagnostic systems employing deep learning methods are one approach to alleviate this 
pressure. The learning models for histopathology are inherently complex and opaque from the user’s perspective. 
Hence different methods have been developed to interpret their behavior. However, relatively limited attention 
has been devoted to the connection between interpretation methods and the knowledge of experienced pa-
thologists. The main contribution of this paper is a method for comparing morphological patterns used by expert 
pathologists to detect cancer with the patterns identified as important for inference of learning models. Given the 
patch-based nature of processing large-scale histopathological imaging, we have been able to show statistically 
that the VGG16 model could utilize all the structures that are observable by the pathologist, given the patch size 
and scan resolution. The results show that the neural network approach to recognizing prostatic cancer is similar 
to that of a pathologist at medium optical resolution. The saliency maps identified several prevailing histo-
morphological features characterizing carcinoma, e.g., single-layered epithelium, small lumina, and hyper-
chromatic nuclei with halo. A convincing finding was the recognition of their mimickers in non-neoplastic tissue. 
The method can also identify differences, i.e., standard patterns not used by the learning models and new pat-
terns not yet used by pathologists. Saliency maps provide added value for automated digital pathology to analyze 
and fine-tune deep learning systems and improve trust in computer-based decisions.   

1. Introduction 

The increasing lifespan in developed countries inevitably leads to 
higher incidences of cancer due to the aging population. Expanding 
cancer screening programs and personalized medicine increases 
healthcare systems’ workload, including diagnostic specialties such as 
radiology and histopathology. This effect is partly compensated by 
progress in digitization, providing more efficient processing, archiving, 

and retrieval of medical records. The use of digitized medical images 
represents the next evolutionary step [1]. Radiology is more advanced in 
this respect, already routinely utilizing Picture Archiving and Commu-
nicating Systems. In contrast, comparable pathology systems utilizing 
whole slide images (WSIs) are currently being approved for diagnostic 
use [2] and introduced into routine workflows [3]. 

The availability of digitized WSI, and large scans of histopathological 
samples, typically sized from gigapixels to tens of gigapixels, provides 
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the basis for developing more advanced approaches. This includes using 
neural networks for image analysis to facilitate diagnostics and prog-
nostics or to assist pathologists in reducing their workload in routine 
tasks [4–6]. The detection of prostate cancer in core biopsies is one 
example of such an application. This represents a typical and often 
tedious part of a pathologist’s daily routine, where samples from pa-
tients identified as prostate-specific antigen-positive during screening 
are mostly negative. Nevertheless, all slides containing multiple tissue 
sections must be carefully evaluated for small cancer foci. Unsurpris-
ingly, some of the first deep learning applications in WSI analysis were 
dedicated to this problem, providing impressive results [7–9]. 

The deep learning approach is sometimes criticized for not providing 
insights into its internal mechanisms, which raises issues of trust by the 
pathologists and may hinder acceptance by regulatory authorities [10, 
11]. In addition, unraveling the precise features used by the system 
could provide additional information that would be useful for patholo-
gists and for further training in the machine learning process itself (see e. 
g., [12], where deep learning revealed new information not directly 
attributable to known histomorphological characteristics). As a result, a 
large amount of work has already been devoted to the development of 
interpretable machine-learning methods. For example, some of these 
methods use probability heatmaps to identify the histopathological 
features associated with adverse prognosis in glioma [13]. Interpretable 
AI has already been successfully applied in other areas of healthcare. An 
exhaustive survey [14,15] shows applications in Alzheimer’s disease 
detection, Parkinson’s disease detection, COVID-19 detection, pneu-
monia diagnosis, or ophthalmic disease detection. Still lacking is a sys-
tematic mapping of outputs from the methods interpreting a given 
model to the knowledge of pathologists. 

The main contribution of this paper is a method for comparing 
morphological patterns used by expert pathologists to detect cancer with 
the patterns identified as important for inference of learning models. 
The method starts with building a catalog of relevant morphological 
features pathologists use to recognize cancerous tissue. Intuitively, we 
measure how close the reasoning of the learning model is to that of 
pathologists. More specifically, we have estimated the proportion of 
morphological features important for the model that also belong to the 
catalog to all morphological features important for the model. The 
method allows us to decide whether a statistically significant portion of 
patterns is employed by both pathologists and learning models, thus 
enhancing the trustworthiness of the learning models. It can also iden-
tify differences, i.e. standard patterns not used by the learning models 
and new patterns not yet used by pathologists. 

As a use case, we focus on prostate carcinoma. From the pathologist’s 
point of view, the morphological criteria of malignancy in the prostate 
are well-established and relatively reproducible [16]. To demonstrate 
the method, we have trained a model based on VGG16 [17] using a 
dataset of cases from Masaryk Memorial Cancer Institute, Brno. The 
model is applied to the WSIs patch-wise, with a patch size of 512 px ×
512 px at the resolution of 0.468 µm/px. The model predicts 256 px 
×256 px center of each patch; hence, the patches overlap to cover a 
tissue on the WSI completely. The model shows the state-of-the-art 
performance of 98% AUC for patch-wise prediction and 100% 
slide-level AUC score. This shows that VGG16 is capable of high-quality 
patch-based segmentation on data from a single source. 

To identify important morphological features, an Occlusion Sensi-
tivity Analysis (OSA) [18] is utilized for WSI, where the explanations are 
stitched from explanations of individual patches which overlap in the 
case of our use case model. The advantage of the occlusion is that it is 
easily explainable even to the users of learning models without a deep 
understanding of their inner workings: Parts of the input images are 
systematically hidden from the model, and we observe how the pre-
dictions of the model change. OSA results are evaluated both by an 
expert as well as by automated metrics such as Causal Insertion and 
Causal Deletion [19], Area over Perturbed Curve [20], Sensitivity-n 
[21], and Effective Heat Ratios [22]. Using the automated metrics, OSA 

are also compared with other well-known, more advanced methods for 
generating saliency maps. We evaluate against Input*Gradient (I*G) 
[23], Guided Backpropagation (GB) [24], Deep Taylor Decomposition 
(DTD) [25], LRP-ε [26], DeconvNet [18], and Integrated Gradients (IG) 
[27]. 

We analyze the model’s behavior using the method described above 
and conclude that most morphological features designated as important 
for our trained VGG16 model by OSA are also important for pathologists. 
The analysis method shows that the VGG16 model effectively utilizes all 
the features that the pathologist can recognize, given patch size and 
resolution. 

1.1. Related work 

Processing entire raw WSIs spanning hundreds of thousands of pixels 
in height and width with three or four channels would be memory 
inefficient. Nearly all methods utilize a patch-based approach [28–45] in 
which a WSI is converted into a set of equal-sized patches that are only 
the fraction of a size of the original WSI. The WSI is then represented as 
either a set of patches [27–31,34–37,39–44] or further processed to 
emphasize spatial relationships between patches and represented as a 
graph [34,39]. 

Stained tissue often varies greatly in color due to the type of scanner 
being used or due to a chemical preparation of a slide. Some authors 
have reported better results when these variations are minimized using 
stain normalization [42,46–50]. 

The scarcity of well-annotated datasets has resulted in a shift from 
supervised learning utilizing fully annotated datasets to self-supervised 
learning [33,36,37] utilizing partially annotated datasets and 
weakly-supervised multiple-instance learning (MIL) [28,43,44] utilizing 
only WSI-level information about the presence or absence of tumors. 

1.1.1. Explainability methods 
Recently, more emphasis has been placed on how models reach their 

decisions. Some models contain a built-in mechanism as part of their 
architectures called attention to guide the analysis of input data [32,35, 
38–40,51]. These can be examined to determine the most influential 
parts of the input features. Different techniques had to be developed for 
other models to assign importance scores to input. 

Saliency maps are the most straightforward way of presenting such 
scores for images. Each pixel is assigned a score, called attribution, 
quantifying its contribution to the final prediction. Gradient-based 
methods (I*G [23], IG [27], Expected Gradients (EG) [52], Grad-CAM 
[53], SmoothGrad [54], GB [24]) use gradients to calculate the impor-
tance scores; perturbation-based methods (Shapley Additive Explana-
tions (SHAP) [55–58], Local Interpretable Model-Agnostic Explanations 
(LIME) [59], CXPlain [60], Randomized Input Sampling for Explana-
tions (RISE) [19], Prediction Difference Analysis (PDA) [61], OSA [18], 
Anchors [62]) produce saliency maps by perturbing the input image, 
usually by deactivating—e.g., zeroing—pixels [63,64]; 
propagation-based methods (DTD [25], Layer-Wise Relevance Propa-
gation (LRP) [26]) use rules to redistribute the output score among the 
input features; and other explanation methods utilizing concepts 
(Testing with Concept Activation Vectors (TCAV) [65]), deconvolution 
(DeconvNet [18]), activation comparison (DeepLIFT [66]), special 
neural networks (Neural Additive Models (NAMs) [67]). 

For graph neural networks, modifications exist of previously 
mentioned algorithms [68] such as GNN-LRP [69] and GraphLIME [70], 
as well as novel methods specifically designed to work with relational or 
graph structures (RelEx [71], GNNExplainer [72,73], XGNN [74], Sub-
GraphX [75], SE-GNN [76], and ProtGNN [77]). Explanations based on 
related patches can be presented in the form of subgraphs. 

1.1.2. Explainability evaluation 
Evaluation of generated explanations is challenging [78], mainly 

because they are subjective, and their quality depends on factors such as 
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Fig. 1. Network training and patch saliency map generation. Section 1 shows the overall training and generation process; Section 2 illustrates how input patches 
overlap as a consequence of including surrounding contextual information (the whole patch) around the label-relevant central region (denoted by dotted squares); 
Section 3a) illustrates the systematic occlusion of individual patches and resulting occlusion patch saliency map for individual patches; Section 3b) shows how the 
final occlusion saliency map on a WSI is obtained by averaging the overlapping occlusion patch saliency maps. 
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the user’s experience and goals. The authors of [79] presents an entire 
typology of explanations based on an explained system, the method by 
which it is being explained, and the relationship between the two. A 
good explanation should meet several criteria, such as interpretability 
(easy to understand) and fidelity/faithfulness (accurately describe 
explained model). Due to the subjective nature of the explanations, a 
common approach is to present the explanations to domain experts and 
subsequently gather feedback via questionnaires or interviews. A survey 
conducted in [80] suggests caution when selecting the form in which the 
AI results are presented to the user. Authors demonstrate how different 
forms of presentation, e.g., via saliency maps or counter-examples, may 
impact an AI system’s perceived usefulness and trustworthiness. While 
our work also evaluates the explanations from the point of view of the 
pathologist, it is not done by means of interviews or questionnaires. 

However, several automated methods exist to measure the soundness 
of explanations [81,82]. Many of these are based on systematic 
attribution-based input perturbations and subsequent observation of 
performance degradation (Causal deletions and Causal insertions [19], 
Area over the Perturbed Curve (AOPC) [20], Sensitivity-n [21], and 
RemOve And Retrain (ROAR) [83]). Effective Heat Ratios (EHR) [22] 
measure the overlap between the saliency maps and ground truth 
annotations. 

Several studies have been conducted analyzing the overall impact of 
AI-assisted diagnosis. In [84], the authors demonstrate an AI solution 
that performs at a level equal to pathologists. In some cases, such as 
detecting Gleason pattern four types of prostate cancer, it even surpasses 
the pathologists’ detection rate. They also demonstrated that patholo-
gists, with the help of an AI, achieved higher labeling consistency and a 
significant reduction of time spent on each slide. 

2. Material and methods 

2.1. Material 

To train and test deep learning models, we use the dataset of WSIs 
stained with hematoxylin/eosin (containing 3–5 tissue core sections 
each) that are part of the digital archive at the Department of Pathology, 
Masaryk Memorial Cancer Institute, Brno. They were scanned using a 
Pannoramic® MIDI scanner (3DHistech, Budapest, Hungary) with a 20x 
objective lens at a 0.172 µm/pixel resolution. The WSIs were stored in 
MIRAX format as uncompressed PNG images. Each WSI is a large image 
of dimensions 105,185 px ×221,772 px. The dataset consists of the 
following:  

1. Training WSIs, obtained from 157 consecutive core biopsies (104 
patients with carcinoma, 53 negative. The distribution of WHO grade 
groups was as follows: 1: 38, 2: 31, 3: 16, 4: 9, 5: 10); in total, 264 
WSIs with cancer and 436 without cancer.  

2. Test WSIs, obtained from 10 patients with cancer, selected from 
additional consecutive cases to represent different Gleason patterns 
and types of infiltration; in total, 37 WSIs with cancer and 50 without 
cancer. The distribution of WHO grade groups was as follows: 1: 5, 2: 
1, 3: 1, 4: 1, 5: 2. 

Details are given in supplementary data (Supplementary Table S1.1). 
The WSIs were checked in the Automated Slide Analysis Platform 

(ASAP) (https://computationalpathologygroup.github.io/ASAP/) [85], 
and all biopsy cores containing carcinoma were manually annotated in 
ASAP for further analysis. Annotations were performed as polygons 
containing carcinoma areas. The whole process is presented as a flow-
chart in Fig. 1. 

2.1.1. Dataset access 
The dataset is available as raw files stored in Mirax MRXS format 

(https://openslide.org/formats/mirax/) compatible with the OpenSlide 
library [86]. Annotations used for the evaluation stage are available as 

Fig. 2. Example of the WSI workflow. a) Original WSI; b) WSI manually an-
notated by the pathologist; c) WSI for validation, comparing model inference 
with manual annotation. 
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XML files compatible with ASAP [85]. The dataset is pseudonymized, 
and access can be requested via BBMRI-ERIC European Research Infra-
structure by following its access policy (https://www.bbmri-eric.eu/s 
ervices/access-policies); the request should be placed via BBMRI-ERIC 
to Masaryk Memorial Cancer Institute. (Potential requesters can use 
https://directory.bbmri-eric.eu/\#/collection/bbmri-eric:ID:CZ_MMCI: 
collection:LTS and add that to the selected collections and proceed to 
request samples via BBMRI-ERIC Negotiator platform.). 

2.2. Machine learning models 

The training set consists of WSI annotated with a pixel-level seg-
mentation of cancerous tissue (see Fig. 2). Note that even though the 
labeling is pixel-level, the precision of tumor tissue delineation cannot 
be as precise due to the inherent difficulty of finding exact borders of 
cancerous tissue. We train a neural network to do such segmentation 
more coarsely. 

We proceed according to the well-established approach used in 
several papers on deep learning and WSIs, e.g., [28–32,38–45,87]. A 
given WSI is cut into overlapping patches of size 512 px × 512 px with 

stride 256 px (see Fig. 1, step 2). We concentrate on the following 
problem. 

Problem statement: Classify patches according to the presence/ 
absence of cancer in their central square area of size 256 px ×256 px. 

More precisely, patches serve as inputs for a binary classifier that 
decides whether a given patch’s central area intersects the cancerous 
areas of the tissue. Outputs for all patches of a given WSI can be orga-
nized into a coarse heatmap segmenting the tumorous tissue in the WSI 
with a precision of 256 px (see Fig. 2). See Section S1.1 of supplementary 
data for more detailed description of our model training. 

2.3. Explainability analysis 

2.3.1. Explainability using occlusion sensitivity analysis 
To demonstrate our method for evaluation of explainability, a simple 

method of OSA is employed, which highlights regions of the WSI having 
a large impact on the output value of the model. The analysis results in 
an occlusion saliency map with the same dimensions as the input WSI. For 
each point, it specifies its attribution, i.e., numerically, how significant 
its impact is on the model’s output. 

Fig. 3. Network predictions and occlusion saliency map overlays. The prediction layer (yellow) labels the focus of Gleason pattern 3 carcinoma. The explanatory 
layer (green and red) labels those parts of the image critical for estimating carcinoma probability using OSA. Regions with positive attributions, i.e., supporting the 
classification of a patch as malignant, are green; while those with negative attribution, i.e., suppressing such a classification, are red. The details below show parts of 
a WSI with carcinoma (right) and without carcinoma (left). 
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OSA is applied on a per patch basis, giving an occlusion patch sa-
liency map for each patch. The resulting patch maps are combined into a 
single occlusion saliency map for the whole WSI. We assume that each 
patch P has its own local coordinates relative to coordinates in the WSI. 
Concretely, assume that P is a patch whose upper left corner lies at 
position (u, v) in the WSI. Now considering i, j ∈ {0, ...,511} the local 
position (i, j) in the patch P corresponds to the "global" position 
(u+i, v+j) in the WSI. 

2.3.2. Generating occlusion patch saliency maps 
Let us consider an input patch P of size 512 px ×512 px, as described 

in the previous section. Intuitively, OSA is based on systematically 
covering (occluding) square regions of P by setting their values to zero 
and recording the changes in the output value of the model. The idea is 
summarized in Fig. 1, step 3a. 

Concretely, we occlude square regions of size 55 px ×55 px with a 
stride of 25 px. That is, for every pair of indices i, j ∈ {0, ..., 19}, we 
consider an input patch Pij obtained from P by zeroing out the square 
region of size 55 px ×55 px with the upper left corner at the position (i ∗
25, j ∗ 25) in P. 

Now consider a function F computed by our model, i.e., given the 
input patch P, the value F(P) is the probability of a tumor present in P. 
Assume that F(P) = σ(f(P)) where σ is a logistic sigmoid (our output 
activation function) and f returns the logit output of the last layer. 

The effect of perturbing P to Pij can be measured using the difference 
f(P) − f(Pij). However, note that using just this difference would result 
in wildly different scales of values for different patches. Conversely, 
taking the difference F(P) − F(Pij) might result in too small differences 
due to saturation at the sigmoid. The aim is to combine the occlusion 
patch saliency maps into a single occlusion saliency map on the WSI, so 
the differences need to be normalized into (roughly) the same range. 

Our solution is to apply the logistic sigmoid to the difference. 
Formally, for all patches P, define the occlusion patch saliency map OP 

by 

OP
ij = σ(f (P) − f (Pij)) for i, j ∈ {0, ..., 19}

By upsampling the occlusion patch saliency map OP, using the 
nearest-neighbor upsampling method, we obtain an occlusion patch 
saliency map MP of size 512 px × 512 px for each patch P. Given k,l ∈ {0,
...,255}, we write MP

kl to denote the value of the map at the position (k,l). 
Finally, each occlusion patch saliency map is linearly scaled from 

[0,1] to [− 1, 1] range (using the transform 2(MP − 1
2)) so that negative 

values correspond to evidence against cancer, and positive values 
correspond to evidence for cancer. Zero represents no effect on the 
output. 

2.3.3. Generating occlusion saliency maps for WSI 
The occlusion saliency map for the whole WSI is obtained by 

stitching the occlusion patch saliency maps MP for individual patches P 
(Fig. 3) The problem is that the patches overlap, so each pixel in the WSI 
belongs to up to 9 different patches. This problem is solved simply using 
averaging. For illustration, see Fig. 1, step 3b. 

The final occlusion saliency map M is defined as follows. Consider a 
point at the position (u, v) in the input WSI. This point is covered by 
patches P1,...,Pn. For each patch, Pi, the point at position (u, v) in the WSI 
corresponds to a local position (ki, li) in Pi. We define Muv by 

Muv =
1
n
∑n

i=1
MPi

kili 

As observed in our experiments, this averaging has a reasonably 
strong smoothing effect giving more homogeneous regions of similar 
values corresponding to known tissue patterns (see Saliency map 
evaluation). 

2.3.4. Other explainability methods compared 
The following methods were compared visually and by automated 

metrics presented earlier against OSA: Input*Gradient (I*G), Guided 
Backpropagation (GB), Deep Taylor Decomposition (DTD), Layer-Wise 
Relevance Propagation (LRP), Deconvolution (DeconvNet), and Inte-
grated Gradients (IG). 

The I*G [23] method calculates the derivative of the output given the 
input and multiplies the resulting gradients with the input image. 
Similarly, the GB [24] method computes the gradients of the output 
given the input using gradient backpropagation. However, only the 
positive gradients can pass through the ReLU activations while the 
gradients are propagated through the network. DTD [25] and LRP-ε [26] 
both redistribute relevancy on a layer-by-layer basis to the input fea-
tures. DeconvNet [18] is based on applying transposed convolution to 
the feature maps and upsampling the results to the input resolution. IG 
[27] first samples several points in the input image space lying on the 
line segment connecting the input image x and a fixed reference image 
xR (completely black patch in our case) and calculates the gradients of 
model output for each sampled point. The final feature attributions are 
obtained by summing the gradients. 

We use concrete implementations of the above methods from the 
package iNNvestigate [88]. The saliency maps for all methods have been 
obtained: the same test set and the trained model described earlier were 
used. The analyzer from the iNNvestigate package retrieved patch sa-
liency maps for each patch. Similarly to the approach described in 
Explainability using occlusion sensitivity analysis, the WSI-level 
saliency maps were stitched from patch-level saliency maps and the 
overlapping areas averaged. For each method, the saliency maps were 
scaled to the [− 1, 1] range where − 1 represents strong evidence 
against the patch containing the pixel being classified as cancer, and 1 
represents strong evidence in favor of classifying the patch as cancer. 

2.4. Manual evaluation of saliency maps 

Our main contribution is an evaluation procedure measuring the 
quality of explanations by comparing the saliency map with the labeling 
of relevant morphological features by pathologists. 

2.4.1. Explanation points of interest 
To evaluate a given saliency map, we identify its explanation points 

of interest (xPOIs). Roughly speaking, xPOI is a point in the saliency map 
surrounded by sufficiently large positive/negative attributions. The 
xPOIs identify locations in the input WSI with a large positive/negative 
impact on the model output. Note that the higher attributions around 
xPOIs are demanded, the fewer xPOIs we get. Hence, there is a need to 
strike a balance between how high the attributions have to be in order 
for the explanations to be reliable and how well the xPOIs cover the 
input WSI. 

In the case of the occlusion saliency map, the xPOIs are defined as 
follows: A point in the map is an xPOI iff it is the center of a square 
region of dimensions 15 px ×15 px, where the absolute difference be-
tween the mean positive and mean negative attributions is greater than 
0.55. The threshold 0.55 has been selected experimentally to achieve a 
reasonable coverage of patches with evenly spaced xPOIs (see Sampling 
xPOIs). 

The difference between the mean positive and mean negative attri-
butions can be either positive or negative, which gives positive xPOI and 
negative xPOI, respectively. 

2.4.2. Classification of xPOIs 
xPOIs are classified in two ways: based on the surrounding biologi-

cally relevant morphological features and whether they lie within a 
cancerous epithelium. 

Pathologists recognize tumorous tissue using various forms of 
morphological features [3]. We have collected many of these features in 
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Table 8 (pro-cancer features) and Table 9 (non-cancer features). Most of 
these morphological features can be recognized based on their compo-
sition of simple patterns, such as single chains of nuclei (indicating 
single-layer epithelium) or small holes (indicating small lumina). 

Now visual analysis of occlusion saliency maps around some xPOIs 
revealed explainability attributions forming continuous regions of size 

about 50 µm. The corresponding tissue regions highlighted by these 
attributions contained morphological structures matching the simple 
patterns (Fig. 5). We have identified seven prominent patterns, four 
typically forming pro-cancer morphological features and three typical 
for non-cancer tissue. These seven simple patterns are termed the 
explained patterns or, in brief, xPatterns ( Fig. 6). 

Fig. 4. Catalogue of selected morphological features, characterizing prostate cancer and non-cancerous tissue in core biopsies. The non-cancerous tissue (A1, C4) 
usually has a regular lobular architecture with isolated glands and a relatively balanced epithelium/stroma ratio or stromal predominance (A1). The glandular 
epithelium is two-layered. The cells have uniform smaller nuclei, and the nucleoli are not visible (C4). The luminal cells are highly polarized with abundant 
cytoplasm (C4). Conversely, carcinoma (A2 to A4, B1 to B4, C1 to C3) is characterized by distorted gland architecture. In Gleason grade 3 (B2, C1, C3) the small 
caliber and relatively uniform glands consist of single-layered epithelium (A3, C3), which may have periglandular clefts (C3) and can infiltrate in between normal 
glands (C1, B4). Tumor glands have rigid, sharp lumina (C1, A3, C3), which may contain blue mucin (A3), or crystalloids (C3). Gleason grade 4 (A2, A3, B4, C2) 
exhibits poorly formed fused cribriform or glomeruloid glands (A2), solid sheets, cords, medium or large nests with rosettes (B2, C2), and high nuclear density (B2). 
Gleason grade 5 (A4, C2, B3) exhibits infiltrative single cells and small cell groups (A4) or a large amount of necrotic debris within glands (B3). In most cancers, the 
cells are cuboidal to low cylindrical with modest cytoplasm (A3, C3) and have enlarged hyperchromatic nuclei (B4). 
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An xPOI is said to lie within a given xPattern if it lies within an 
instance of the xPattern, i.e., within a specific morphological structure in 
the tissue that can be classified as the given xPattern. It is shown that 
most of the xPOIs lie within instances of xPatterns. 

Four pro-cancer xPatterns are found:  

1. Single chain of nuclei (single-layered epithelium)  
2. Small round hole (small lumina)  
3. High nuclear density (high cellular density)  
4. Larger nucleus with perinuclear halo (hyperchromatic nuclei with 

halo) 

Likewise, three non-cancer xPatterns are found:  

1. Two-layered chain of nuclei (two-layered epithelium)  
2. Areas of low nuclear density with eosinophilic background (stromal 

predominance)  
3. Chain of nuclei with abundant slightly eosinophilic neighborhood 

(highly polarized epithelium) 

Finally, each xPOI is classified based on its corresponding xPattern 
and its relative position to cancerous epithelium:  

• Given a positive xPOI lying within the xPattern Pi, the xPOI is said to 
be  
o true positive with Pi (TPi) if it lies within the cancer epithelium  
o false positive with Pi (FPi) if it lies outside the cancer epithelium  

• Given a negative xPOI lying within an xPattern NI, the xPOI is said to 
be  
o true negative with Ni (TNi) if it lies outside the cancer epithelium  
o false negative with Ni (FNi) if it lies within the cancer epithelium  

• We have found that no positive xPOI lies within any xPattern Ni, and 
no negative xPOI lies within any Pi.  

• Given an xPOI that does not lie within any xPattern, such an xPOI is 
said to be undefined. 

Thus, to evaluate the saliency map, the number of xPOIs in each 
category is counted: TPi, FPi, TNi, FNi, and undefined (see Table 7). The 
more xPOIs belong to TPi and TNi, the better. Note that xPOIs counted as 
FPi and FNi correspond to mimickers – xPOIs lying within xPatterns 
contradicting the tumor annotation (Fig. 7). 

2.4.3. Sampling xPOIs 
As delineating all occurrences of the xPatterns in all testing slides 

would be too burdensome for the pathologist, we have decided to use 
statistical evaluation and identify xPatterns only in randomly sampled 

Fig. 5. Overview of occlusion saliency maps in prostate cancer and non-cancerous tissue. The explanatory layer comprises labeling attributions of diameter around 
50 µm. The visual analysis of these attributions reveals they are located above some repeating image patterns related to morphological features, e.g., small round 
holes, high nuclear density, single chain of nuclei, and hyperchromatic nuclei with perinuclear halo (in green, favoring cancer) or areas of low nuclear density with 
eosinophilic background, two-layered chains of nuclei or chain of nuclei with abundant slightly eosinophilic neighborhood (in red, favoring non-cancer). The feeling 
that the location of labels is not stochastic is supported by the recognition of some morphological mimickers of attributions favoring cancer in non-cancerous tissue 
(C2, A3, B3, C3). Note a small blood vessel with activated endothelium in A3 and C3. This structure is often labeled cancerous due to the simulation of a small round 
hole or single chain of nuclei patterns. Additional examples of these patterns in the broader tissue context can be found in Supplementary Fig. S2.1. 
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Fig. 6. Examples of identified xPatterns from occlusion saliency map xPOIs. a) single chain of nuclei, b) small round hole, c) high nuclear density, d) larger nucleus 
with perinuclear halo, e) two-layered chain of nuclei, f) chain of nuclei with abundant slightly eosinophilic neighborhood, g) areas of low nuclear density with 
eosinophilic background. The benign structures are vessels, reactive glands, or dense benign epithelium with slight nuclear enlargement. Detailed discussion of the 
identified xPatterns is in Manual evaluation of occlusion saliency maps. 
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xPOIs. Random sampling tries to cover the whole tissue figure evenly, i. 
e., intuitively, avoiding clusters of xPOIs if other parts of the tissue are 
not covered yet. The sampled xPOIs are subsequently classified, and the 
classification is statistically evaluated. 

The sampling of xPOIs is performed as follows. For each WSI, we 
consider intersection points of a coordinate grid of 280 px increment in 
both x and y dimensions. Considering only xPOIs on the intersections of 
the grid, 0.33% of intersections met the requirements of a valid xPOI, 
with 0.11% being positive and 0.22% negative. The sampling population 
consists of all intersection points that are also xPOIs from all 87 test WSIs 
(37 with cancer and 50 without cancer). During the actual sampling, the 
maximum number of samples is limited from a single WSI to 20. The 
mean sample count for a single slide is approximately 7.5, with extremes 
being 20 samples from one slide and one sample in the case of two slides. 

2.5. Automated evaluation of saliency maps 

To compare OSA method with the other explainability methods 
presented in Other explainability methods compared, the following 
metrics are employed measuring the faithfulness and clarity of saliency 
maps: Causal Deletion and Causal Insertion [19], Area over Perturbed 
Curve [20], Sensitivity-n [21], and Effective Heat Ratios [22]. 

Sensitivity-n is based on correlating the output deviation in response 
to perturbing n randomly selected input pixels with the sum of the 
pixels’ attributions. Causal Insertion measures changes in the model’s 
sensitivity in response to progressively adding pixels in the order of their 
attribution. The metric itself is the area under the curve plotting the 
sensitivity against the number of added pixels. Causal Deletion is the 
same, except that the pixels are removed. AOPC is similar to Causal 
Deletion, except that the result is an average of output deviations in 
response to the progressively perturbed input images. In the present 
case, the Effective Heat Ratios method gives the number of pixels with 
high enough attribution within the tumor annotation divided by the 
total number of pixels with high enough attribution. 

3. Results 

3.1. Results for classification 

Table 1 presents the patch-wise evaluation of the model on our 
prostate test set and a reference CAMELYON16 [89] test set. (Note that 
we do not evaluate tumor-level metrics (such as free-response receiver 
operating characteristic (FROC) [80]) as our main aim is the patch-level 
segmentation and optimizing FROC typically involves non-trivial 
post-processing of model outputs.) To obtain precision and recall, the 
output of the model is thresholded at 0.5. Table 2 presents a comparison 
of the model to other contemporary architectures. 

For completeness, the slide-level performance of the model was 
evaluated using a simple max-pooling strategy over the patch-wise 
predictions (each slide receives a score equal to the maximum score of 

Fig. 7. Examples of FN misclassification (low network response). Part of Gleason pattern 4 + 5 carcinoma with sparse tumor islands infiltrating fibromuscular 
stroma. Although carcinoma foci are labeled correctly, the strong and frequent negative labels in stroma seem to push the decision to negativity. (Cancer predictions 
in yellow; manual annotations in blue; positive and negatively contributing regions in green and red, respectively.). 

Table 1 
Patch-wise evaluation metrics on test set for Prostate and CAMELYON16 
datasets.  

Metric Precision Recall AUC Specificity 

Camelyon  0.793  0.960  0.988  0.979 
Prostate  0.823  0.925  0.981  0.952  

Table 2 
Comparison of patch-level performance on CAMELYON16 test set.  

Method Precision Recall AUC Specificity 

VGG16  0.793  0.960 0.988 0.979 
SAMIL[82]  0.921  0.972 0.953 - 
DeepGAT[83]  0.951  0.930 - 0.994 
ResNet50[83]  0.888  0.819 - 0.987 
DenseNet[83]  0.889  0.837 - 0.989 
YOLOv4-GCPANet[84]  0.936  0.680 - - 
Spatial-ResNet34[85]  0.957  0.917 - -  
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its patches). Interestingly, the model achieved a 100% slide-level area 
under curve (AUC) score on the Prostate test set and a 98% slide-level 
AUC score on the CAMELYON16 test set. 

Note that even though VGG16 is a very simple and relatively old 
model, its results are still competitive, especially in situations with 
limited data and computational power. Our findings are in line with 
[64]. This means that for illustrating our model-agnostic evaluation of 
saliency maps, the VGG16 is sufficiently robust. 

3.2. Saliency map evaluation 

3.2.1. Automated saliency map evaluation 
In this section, the different explainability methods introduced in 

Other explainability methods compared are compared using metrics 
introduced in Automated evaluation of saliency maps. 

3.2.1.1. Causal insertion/deletion. Note that a high Causal Insertion 
score suggests important pixels have received high attributions. 
Conversely, for Causal Deletion, a low score indicates that the attribu-
tions express importance correctly. Due to the method relying on 
sensitivity, negative patches do not influence the final score and were 
excluded from the calculations during the experiments. Table 3 shows 
the results for the tested methods on the Prostate test set. 

3.2.1.2. Area over the perturbed curve (AOPC). The results obtained on 
the Prostate test set are summarized in Table 4. Unlike the Causal 
Insertion/Deletion, negative patches are included in its calculation. 

3.2.1.3. Sensitivity-n. For our evaluation, 16 equally spaced values of n 
from 0.1 to 1.0 are considered, representing the fraction of pixels in the 
patch to be removed. Results are summarized in Table 5. 

3.2.1.4. Effective heat ratios. Similarly to Causal Insertion/Deletion, this 
metric cannot be used to assess the quality of saliency maps for negative 
slides as these slides have no ground truth annotations. 

3.2.1.5. Discussion of the automated explainability evaluation. Most of 
the presented metrics utilize the occlusion principle. Visual inspection of 
the saliency maps reveals a strong similarity between DTD and OSA 
(Fig. 8). These two methods tend to (positively) highlight larger ho-
mogeneous regions roughly corresponding to morphological structures 
in the image. GB assigns positive attributions to spaces around nuclei, 
while the nuclei themselves are systematically assigned negative attri-
butions. The remaining methods are much noisier; thus, deciding 
whether the underlying tissue region is positive or negative evidence is 
much more challenging. 

As seen in the following section, OSA and DTD mainly highlight 
structures relevant to cancer detection; the spaces around nuclei high-
lighted by GB bear little to no relevance in the context of cancer 

classification; and the gradient-based methods highlight large structures 
that are irrelevant to cancer classification (Supplementary Figure S4.6). 

Causal Insertion (Table 3), Sensitivity-n (Table 5), and I (Table 6) all 
assigned higher scores to the less noisy methods – DTD and OSA. 

Note the Causal Deletion and Insertion (Table 3) scores for GB. Also, 
note that the highlighted regions around nuclei by GB are the first to be 
changed by these methods. A detailed view of the results reveals that 
deletion in these areas greatly influences the model’s output, while 
insertion has little impact. Hence, it is concluded that the highlighted 
areas do not contain sufficient evidence in isolation. This is further 
corroborated by the negative Sensitivity-n score (Table 5) assigned to 
GB. This result may likely be attributed to the GB assigning high positive 
scores mainly to white areas around the nuclei. 

Of particular interest are the results using the AOPC metric (Table 4). 
Evaluation on positive patches only (AOPC+) yields similar results for all 
methods. Including negative patches (AOPC*) significantly affects all 
but two methods (DTD and OSA). Judging from scores obtained using 
only negative patches (AOPC− ), it is believed these big changes may be 
attributed to the methods highlighting irrelevant areas, as mentioned 
earlier in this section. The I scores (Table 6) agree with this conjecture 
since I awards a higher score to saliency maps in which positive attri-
butions are concentrated within annotated regions. 

3.2.2. Manual evaluation of occlusion saliency maps 
The results of the evaluation are presented in Table 7. Overall, of 646 

sample xPOIs, 253 (39.1%) were evaluated as true positive (TP1–TP4), 
107 (16.5%) as false positive (FP1–FP4), 273 (42.2%) as true negative 
(TN1–TN3), and 0 (0.0%) as false negative (FN1–FN3). The 13 (2%) 
sample xPOIs where it was unclear what information was highlighted by 
the saliency map were labeled as “Undefined”. A single chain of nuclei 
represents the predominant true positive morphological xPattern (132, 
i.e., 52.2% of true positive xPOIs and 20.4% of total xPOIs), followed by 
small round hole (22.5% of true positive xPOIs) and high nuclear density 
(19.0% of true positive xPOIs). 

Note the change of morphological pattern distribution related to the 
Gleason score in carcinoma tissue (inside the border) (Table 7, under-
lined, in italics), showing a shift from a single chain of nuclei and a small 
round hole, xPatterns P1 and P2, to a high nuclear density and a larger 
nucleus with perinuclear halo, xPatterns P3 and P4, which represents 
some internal control of reading validity. There is no apparent pre-
dominance among the false positive patterns, but due to the similarity to 
true positives, they provide much more information regarding explain-
ability. In true negatives, areas of low nuclear density with eosinophilic 
background, in most cases related to the predominant stromal compo-
nent (TN2, 25.1% of total xPOIs, 57.2% of all negative sample xPOIs), is 
the prevailing xPattern followed by a two-layered chain of nuclei (TN1, 
11.1% of total sample xPOIs, 25.4% of all negative sample xPOIs). The 
false negative samples are too rare to provide any reasonable explain-
ability information, and no such case was present in sampled xPOIs. The 
undefined morphological patterns represent 2% of total sampled 

Table 3 
Causal Deletion score (C-) and Causal Insertion score (C+) for the selected 
methods.  

ExAI 
Method 

I*G GB DTD LRP- 
ε 

OSA DeconvNet IG 

C- AUC  0.037  0.013  0.089  0.040  0.166  0.022  0.030 
C+ AUC  0.131  0.094  0.852  0.128  0.837  0.164  0.209  

Table 4 
AOPC on the entire dataset (AOPC*), on positive patches only (AOPC+), and on negative patches only (AOPC-).  

ExAI Method I*G GB DTD LRP- ε OSA DeconvNet IG 

AOPC*  -0.211  -0.211  0.029  -0.208  0.028  -0.256  -0.192 
AOPC+ 0.121  0.201  0.194  0.122  0.177  0.206  0.129 
AOPC-  -0.272  -0.280  0.005  -0.269  0.009  -0.333  -0.252  

Table 5 
AUC of Pearson Correlation Coefficient (PCC) over different values of n on the 
entire dataset.  

ExAI 
Method 

I*G GB DTD LRP- 
ε 

OSA DeconvNet IG 

PCC AUC  0.164  -0.305  0.703  0.161  0.566  0.125  0.396  
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attributions across all categories. 
Table 8 and Table 9 break down morphological features of cancer 

and non-cancer prostatic tissue into recurring patterns recognized by 

OSA. Fig. 4 displays examples of morphological features, while Fig. 6 
shows examples of recognized recurring patterns comprising the 
abovementioned features. 

In subfigures a) through d) of Fig. 6 are presented the main 
morphological patterns underlying explainability attributions respon-
sible for the classification of patches as malignant (first column, true 
positivity) and their mimickers in non-cancer tissue (another two right 
columns, false positivity). The explainability overlay (green) is provided 
in the bottom part. Note also some red labeled attributions representing 
true negativity. The “single chain of nuclei” can also be represented with 
an activated endothelium (subfigure a) third column). A small round 

Fig. 8. Visual comparison of saliency maps produced by different methods. Gleason pattern 3 carcinoma with smaller glands infiltrating in between non-tumor 
glands. a) Input*Gradients, b) Guided Backpropagation, c) Deep Taylor Decomposition, d) LRP-ε, e) Occlusion Sensitivity Analysis, f) DeconvNet, g) Integrated 
Gradients, h) Original image. Channel-wise histogram equalization was applied on all methods except OSA to make the colors more visible. 

Table 6 
AUC of EHR ratios over quantiles on the entire dataset.  

ExAI 
Method 

I*G GB DTD LRP- 
ε 

OSA DeconvNet IG 

EHR AUC  0.203  0.301  0.606  0.214  0.542  0.245  0.251  

M. Gallo et al.                                                                                                                                                                                                                                   



New BIOTECHNOLOGY 78 (2023) 52–67

64

vessel also can represent “small round hole” attributions (subfigure b) 
second column). In subfigures e), f), and g) are presented the main 
patterns under explainability attributions, important for classifying a 
patch as non-cancer. They have no significantly occurring mimickers. 

Out of 23 patterns, 14 can be detected by OSA, out of which 3 
(denoted by an asterisk in the tables) are detected indirectly (distorted 
gland architecture, small uniform glands infiltrate, and regular lobular 
architecture with isolated glands or stroma predominant). 6 features are 
not recognized, 3 of which due to incompatible WSI resolution used for 
patches. The remaining three undetected patterns are blue mucin, 
eosinophilic amorphous secretions, and crystalloids, primarily repre-
sented by acellular areas. 

4. Discussion 

The histopathological diagnosis of prostate carcinoma is based on a 
relatively consistent set of morphological features (Table 8). At low 
magnification (20x–50x), this is mainly the abnormal density and shape 
of glands. Cancers of Gleason pattern 4 (predominantly areas of fused 
glands with high epithelial density) and 5 (complete loss of glandular 
pattern with dissociated or medullary growth, sometimes cells with 
hyperchromatic nuclei and vacuoles) can be usually diagnosed at this 
resolution level. Gleason pattern 3 (tubular growth) can be diagnosed at 
lower magnification if infiltration is extensive enough to change gland 
architecture noticeably. In case of doubt, suspect areas can be checked at 
medium magnification (100x–200x) for the absence of basal cells (i.e., 
the presence of single-layered epithelium), which represents another 
hallmark of prostate cancer. This is especially useful for recognizing 
small foci of Gleason pattern 3 carcinomas. High magnification 
(400x–600x) can reveal additional cell details, namely the presence of 
nucleoli that confirm the diagnosis of carcinoma in some cases. 

Our results demonstrate that a neural network trained to detect 
prostate carcinoma in core biopsies uses similar morphological charac-
teristics to pathologists at low and medium optical magnification. The 
neural network applies the same features – especially the presence of 
small glands (typical for Gleason patterns 3 and 4), single chain of nuclei 
(typical in Gleason pattern 3), high nuclear density, and rosettes 
(characteristic for most cases in Gleason pattern 4 and 5), and larger 
nuclei with perinuclear halo (often seen in Gleason pattern 4 and 5) to 
label areas suspicious of being cancerous. Consistent with the available 
resolution, the features of nuclear detail (e.g., presence of nucleoli, 

chromatin structure) were not used, as they are not clearly visible in the 
scans. 

Compared to an experienced pathologist, our neural network was 
less effective when considering the tissue context, such as gland density 
and shape. This may be attributable to the patch size used for training 
and analysis and should be further explored. Typical failures are rep-
resented by labeling of small vessels with prominent endothelium as 
suspect due to similarity to small tubules of Gleason pattern 3 or 4 
carcinoma, by poor interpretation of tangential sections in the non- 
cancerous epithelium, resulting in false recognition of high nuclear 
density, typical for Gleason patterns 4 and 5 carcinoma, or in labeling 
neural tissue and some stromal cells because of larger nuclei with per-
inuclear halo, confused with atypical cells found in Gleason pattern 4 
and 5 cancers. Not surprisingly, in the above sense, admixed colon 
mucosa was labeled as cancer (Supplementary Figure S2.2). On the 
other hand, the most frequent mimickers of Gleason pattern 3 cancer in 
core biopsies (i.e., atrophy, partial atrophy, and post-atrophic hyper-
plasia) were recognized as suspect with only low probability, similar to a 
pathologist. 

It Is Important to note that our consecutive datasets did not contain 
rare carcinoma types, e.g., foamy cells or pseudohyperplastic tumors, 
and inflammatory lesions were under-represented. However, the main 
task of this study was not to develop a screening tool but to discover a 
method for identifying, visualizing, and analyzing the specific features 
that are important for the decision-making of neural networks—to 
pierce its black box. It was an important finding that the analysis of 
tissue patterns selected by occlusion saliency maps according to their 
contribution to the classification requires not only truly positive but also 
negative tissues containing morphological mimickers. This should be 
considered when planning similar studies. 

The conducted experiment also confirmed the usefulness of negative 
patches during automated evaluation. Additionally, it revealed that DTD 
performed similarly to OSA and produced visually similar saliency maps 
with large continuous regions. In contrast, the remaining compared 
methods produced mostly noisy saliency maps with no clear separation 
of positive and negative morphological structures. 

5. Conclusion 

The occlusion saliency maps pointing to critical structures represent 
a valuable tool for fine-tuning and optimizing neural networks in 

Table 7 
Distribution of morphological patterns under sampled explainability attributions in the test of WSIs. Detailed discussion of the results in the table is in Manual 
evaluation of occlusion saliency maps.  

Morphological pattern under attribution WSIs w/ carcinoma WSIs w/o carc. 
(N = 50) 

Tot. % 

Gleason Total 
(N ¼ 37) 

3 + 3 (N =

14) 
3 + 4 
(N = 3) 

4 + 3 
(N = 11) 

4 + 4 
(N = 5) 

4 + 5 
(N = 4) 

Single chain of nuclei (TP1) 52 7 65 6 2 132 - 132 
(20.4%) 

Small round hole (TP2) 12 2 24 11 8 57 - 57 (8.8%) 
High nuclear density (TP3) 2 1 17 17 11 48 - 48 (7.4%) 
Larger nucleus with perinuclear halo (TP4) 1 0 6 1 8 16 - 16 (2.5%) 
Undefined 1 0 0 0 0 1 - 1 (0.2%) 
Single chain of nuclei (FP1) 5 0 0 1 0 6 29 35 (5.4%) 
Small round hole (FP2) 4 0 0 0 0 4 35 39 (6.0%) 
High nuclear density (FP3) 5 3 0 2 0 10 8 18 (2.8%) 
Larger nucleus with perinuclear halo (FP4) 0 1 2 0 0 3 12 15 (2.3%) 
Undefined 1 0 0 0 0 1 1 2 (0.3%) 
Two-layered chain of nuclei (TN1) 13 2 11 11 6 43 29 72 

(11.1%) 
Areas of low nuclear density with eosinophilic 

background (TN2) 
23 6 4 2 2 37 125 162 

(25.1%) 
Chain of nuclei with abundant slightly 

eosinophilic neighborhood (TN3) 
5 0 1 1 2 9 30 39 (6.0%) 

Undefined 4 1 0 2 0 7 3 10 (1.5%)  
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histopathology, and potentially for identifying previously unrecognized 
morphological features related to histopathological diagnosis, prog-
nosis, and prediction [90,91]. Finally, unraveling the large quantity of 
features within the network and exposing the key elements will help to 
promote trust in these and similar AI-based methods in pathology, 
enhancing the opportunities for incorporation into clinical use. 
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