
Chapter 4

The probabilistic method

Exercise 1

Consider an instance of SAT with m clauses, where every clause has exactly k
literals.

(a) Give a Las Vegas algorithm that finds an assignment satisfying at least
m(1− 2−k) clauses and analyze its expected running time.

(b) Give a derandomization of the randomized algorithm using the method of
conditional expectations.

Answer of exercise 1

(a) Assign values independently and uniformly at random to the variables. The
probability that the ith-claus with k literals is satisfied is (1−2−k). Let Nc

be the random variable indicating the number of satisfied clauses. Then

E[Nc] =

m∑
i=1

(1− 2−k) = m(1− 2−k).

Let p = Pr(Nc ≥ m(1− 2−k)), and observe that Nc ≤ m. It then follows
that

m(1− 2−k) = E[Nc]

=
∑

i≤m(1−2−k)−1

iPr(Nc = i) +
∑

i≥m(1−2−k)

iPr(Nc = i)

≤ (1− p)(m(1− 2−k)− 1) + pm,

which implies that

p ≥ 1

1 +m2−k
.
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Therefore, the expected number of samples before finding an assignment
satisfying at least m(1− 2−k) clauses is 1/p, which is at most 1 +m2−k.
Testing to see if (Nc ≥ m(1− 2−k)) can be done in O(km) time. As such
the algorithm can be done in polynomial time.

(b) Assign values to the variables deterministically – one at a time – in any
order x1, x2, . . . , xn. Suppose that we have assigned the first k variables.
Let y1, y2, . . . , ykbe the corresponding assigned values. We compute the
the quantities;

(i) E[Nc|x1 = y1, x2 = y2, . . . , xk = yk, xk+1 = T]

(ii) E[Nc|x1 = y1, x2 = y2, . . . , xk = yk, xk+1 = F].

and then choose the setting with the larger expectation.

Exercise 2

(a) Prove that, for every integer n, there exists a coloring of the edges of the
complete graph Kn by two colours so that the total number of monochro-
matics copies of K4 is at most

(
n
4

)
2−5.

(b) Give a randomized algorithm for finding a colouring with at most
(
n
4

)
2−5

monochromatic copies of K4 that runs in expected time polynomial in n.

(c) Show how to construct such a colouring deterministically in polynomial
time using the method of conditional expectations.

Answer of exercise 2

(a) X is the random variable denoting the number of monochromatics copies
of K4. The probability that a certain 4-subset forms a monochromatic K4

is 2.2−6 – where 2 is for the two different colours. Then

E[X] =

(
n

4

)
︸︷︷︸

choose 4 vertices from n

.2..2−6 =

(
n

4

)
2−5.

(b) Colour edges independently and uniformly. Let p = Pr(X ≤
(
n
4

)
2−5).

Then, we have(
n

4

)
2−5 = E[X]

=
∑

i≤(n
4)2−5

iPr(X = i) +
∑

i≥(n
4)2−5

iPr(X = i)

≥ p+ (1− p)(
(
n

4

)
2−5 + 1),
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which implies that
1

p
≤
(
n

4

)
2−5.

Thus, the expected number of samples is at most
(
n
4

)
2−5. Testing this to

see if X ≤
(
n
4

)
2−5 can be done in O(n4) time. As such the algorithm can

be done in polynomial time.

(c) Follow the solution method in 1(b).

Exercise 3

Given an n-vertex undirected graph G = (V,E), consider the following method
of generating an independent set. Given a permutation σ of the vertices, define a
subset S(σ) of the vertices as follows: for each vertex i, i ∈ S(σ) iff no neighbour
j of i precedes i in the permutation σ.

(a) Show that each S(σ) is an independent set in G.

(b) Suggest a natural randomized algorithm to produce σ for which you can
show that the expected cardinality of S(σ) is

n∑
i=1

1

di + 1
,

where di denotes the degree of vertex i.

(c) Prove the G has an independent set of size at least
∑n

i=1
1

di+1 .

Answer of exercise 3

(a) For any edge (i, j), if i ∈ S(σ) then it implies that (σ(i) < σ(j)). If j ∈ S(σ),
then it implies that (σ(j) < σ(i)). But it is impossible that these two cases
occur at the same time. Therefore S(σ) is an independent set in G.

(b) Choose the permutation σ randomly – with respect to the uniform distri-
bution. For any vertex i, let Ui be the union of i and its neighbours. As
the degree of i is di, Ui has di +1 elements. By definition – of the question
– i ∈ S(σ) iff σ(i) is ’smallest’ among σ(x), x ∈ Ui. By symmetry, the
prob of i ∈ S(σ) is 1/(di + 1). Therefore, by linearity of expectation, the
prob of i ∈ S(σ) is

E[|S(σ)|] =

n∑
i=1

Pr(i ∈ S(σ)) =

n∑
i=1

1

di + 1
.

(c) By an expectation argument, there must be at least one S(σ) whose value is
at least E[|S(σ)|]. And then, S(σ) is an independent set in G. Therefore,
G has an independent set of size at least

∑n
i=1

1
di+1 .


