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k-wise independent random variables
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.
k-wise independence

Definition
Random variables Xi, X5, ..., X, are k-wise independent iff for any
I C{1,...,n} with |/| < k and for any values x;, i € /, it holds that

P </\Xi:Xi> :HP(X,':X;). (1)

i€l i€l

For k = 2 we say that random variables are pairwise independent.

Advantage of pairwise independent random variables is that they require
much less randomness to construct, in contrast to independent random
variables.
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-
Constructing Pairwise Independent Bits

Let Xi,..., X} be uniformly distributed independent random variables on
{0,1}. Let S; C {1,..., b}, Sj # 0 be a nonempty set of indices, there are
2b — 1 such subsets. Let us define random variables

Yi =P X (2)

i€S;
as the XOR of X;'s.
Theorem
Random variables Y1, Ya, ..., Yos_q are uniform and pairwise independent.J
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-
Constructing Pairwise Independent Bits

Proof.
First we have to show that Yj is uniform for any j. We will do so using the
principle of deferred decision. Let z = max ;. Then

Yi=| @ X|eX. (3)
ieSi~{z}

Suppose we know values of all X;, i € S; \ {z}. Then the value of Y is
determined by the value of X, and the probabilities are
P(Y;j=0)=P(Y;=1)=1/2. O

v
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-
Constructing Pairwise Independent Bits

Proof.

Next we have to show the pairwise independence. Consider any Yy and Y
together with the corresponding index sets Sk and S;. Assume WLOG that
z € 5/ S, and let us calculate

P(Yi=d|Yk=c) (4)

for any ¢,d € {0,1}. We use again the principle of deferred decision.
Suppose that we know all values of Xj, i € (5xU S)) \ {z}. This
completely determines the value of Si, but we need X, to determine the
value of S;. This gives

1
for any ¢, d € {0, 1} showing the pairwise independence. O
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-
Constructing Pairwise Independent Integers

In a much analogous way we may construct pairwise independent random
variables Yp, Y1, ..., Yp—1 uniformly taking integer values modulo p (for
some prime p). We need two independent uniform random variables X;
and X; over {1,...,p— 1} and set

Yi=Xi1+iXomodpfori=0,...,p—1. (6)

Theorem
Random variables Yo, Y1, ..., Yp—1 are uniform and pairwise independent. J
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Constructing Pairwise Independent Integers

Proof.
By the principle of deferred decisions, random variables Y; are uniform.
Given X5, all uniformly distributed values of Xj imply uniform distribution

on all possible values of Y;.
Consider any pair of random variables Y; and Y;. We would like to show

that, for any a,b € {1,...,p — 1},
1

P(Y,-:a\/Yj:b):?. (7)
The event [Y; = a] U[Y; = b] is equivalent to
X1+ iXo =a (mod p) and X; +jXo =b (mod p). (8)

0J

v
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-
Constructing Pairwise Independent Integers

Proof.
We have a system of two linear equations with the unique solution
b— i(b—
Xo = = ?modpanXmza—umodp. (9)
J—1 J— 1

X1 and X are uniform and independent, determining the probability of
this event to be # as desired. [

v

This proof can be easily extended to show that it suffices to have
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Part Il

Graphs: Finding Large Cuts
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]
Probabilistic method

The following theorem is a special case of the probabilistic method. It
establishes the fact, that there is at least one value in Im(X) greater or
equal to E(X) and at least one value smaller or equal to E(X).

Theorem

Suppose we have a random variable X with E(X) = j. Then
P(X <p)>0and P(X > pu)>0.
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Probabilistic Method

Proof.
Recall that
p=EX)= Y  xP(X=x).
xelm(X)
If P(X > p) =0, we have

= Z xP(X =x) = Z XP(X = x)

x€lm(x) x€lm(X),x<p

< > wPX=x)=upu,

x€lm(X),x<p

obtaining a contradiction.
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]
Probabilistic Method

Proof.
Similarly for P(X < u) = 0 we have

W= Z xP(X =x) = Z xP(X = x)

x€lm(x) x€lm(X),x>u
> Z MP(X = X) =K,
x€lm(X),x>p
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-
Existence of Large Cuts

Given a (not oriented) graph G = (V, E, f) a cut of the graph is a
partitioning V into two sets A and B = V ~ A. Weight of the cut is the
sum of weights of edges connecting A and B, i.e.

> f{u,v}).
{u,v}€E
ucA,veB
Here we assume that the weight of every edges is equal to 1. The problem
of finding maximum cut is NP-hard.
We show, using the probabilistic method, that the values of the maximal
cut is at least |E| /2.

Theorem

Given a graph G = (V, E) with n nodes and m edges, there is partitioning
of V into two disjoint sets A and B such that m/2 edges connect a node
in A and a node in B.
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-
Existence of Large Cuts

Proof.

Construct sets A and B in the way that you assign each node in V
independently and and uniformly either to A or to B. Let {e1, €,...€en} be

arbitrary enumeration of the edges of G. For i = 1,..., m we define
X = 1 if edge.i connects A to B, (10)
0 otherwise.
The probability that a particular edge connects A and B is 1/2 giving
1
E(X) =5, (1)

since for ¢; = {u, v}
EX)=PXi=1)=Puec AANveB)+P(ue BAvEA).

Using independence of the node assignment we have
Pluec ANveB)=Pue BAveA)=P(ue AP(ve B)=1/4 O
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-
Existence of Large Cuts

Proof.

Let c(A, B) be a random variable (function of A and B) denoting the
value of the cut corresponding to A and B. Then

E(c(A, B)) = (Zx) =Y E(X) = g (12)
i=1

Using the previous theorem we obtain the required result. [

A Las Vegas algorithm is a randomized algorithm that always gives
correct results. We will use the last theorem to design a Las Vegas
algorithm that finds a cut of the size at least m/2.
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-
Finding Large Cuts

Require: Graph G = (V,E), V ={v1,..., v}

1: repeat

2: A0

3: B — @ .

4 F=(n,....r) mdependentl;:md randomly (0,1}
5: fori=1,...,ndo
6: if r; =0 then

7 A— AU {V}
8: else

9: B— BU{v}
10: end if

11: end for

12: until ¢(A,B) > m/2
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Finding Large Cuts

Theorem

The expected number E of the repeat cycle executions is at most [m/2].

Proof.
Let m
= > — .
p P(C(A,B)f 2) (13)
Then
5 =E(c(A,B))
= > iP(c(AB)=i)+ Y iP(c(AB)=i) (14)
i<m/2—1 i>m/2
m
<(1 — — — .
<(1-p) (5 —1)+pm
D)
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Finding Large Cuts

Proof.
Finally,
1
m/2+1 (15)

Recalling that we are looking for the expected value of a geometric
distribution we have

p>

1-p m/2 m/2+1
E = < =m/2. 1
p ~—m/2+1 1 m/ (16)
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-
Derandomizing the algorithm

Consider now a modified version of the algorithm, where the bits r; are
chosen pairwise independently, but (not necessarily) independently.

@ Recall that the only place where we use independence of respective
bits r; is Equation (11), where pairwise independence is sufficient.

@ The aforementioned algorithm works with pairwise independent bits
as well.

@ Let the pairwise independent bits 1, ..., r, be generated from
uniform random bits Xi, ..., Xp, with b = [log,(n + 1)], using the
aforementioned procedure.

@ The algorithm with this random input finds cut of size at least m/2
with probability at least p > /2+1

@ Using the probabilistic method principle, there is an assignment of
values xq,...,xp to X1,..., X such that the algorithm with this
assignment returns a cut of the desired size.

Finally, it suffices to run algorithm sequentially for all 2/1°82("+1)1 possible
inputs. Therefore, such an algorithm runs in time O(mn).
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Part I11

Variance of Pairwise Independent Random Variables
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N —
Variance of a Sum

Lemma

Var (i X,-) = i Var (Xi) +2 ) Cov(X;, X)).
i=1

i=1 i<j

Jan Bouda (FI MU) Lecture 8 - Message Authentication and Univ April 28, 2010 22 /32



N —
Variance of a Sum

Proof.

We know that this equation holds for n=2. Let us assume that it holds for
n < ng and we will show that it holds for ng + 1.

no+1 no no 2
Var (Z X,-> =E| [ DX+ Xupr1 — E (Z X+ xno+1>]
i=1

i=1 i=1
" ng no 12
=E [ [D_Xi+Xnp11— E (Z x,-) — E (Xnp11)
Li=1 i=1 i
[ no no 12
=E| D _Xi—E (Z X,-) + Xpor1 — E (Xng11)
Li=1 i=1 i

no no
— oo — Vi (Z X,-> + Var (Xpp11) 4 2Cov (Z X,-,X,,OH) .

i=1 i=1
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N —
Variance of a Sum

Proof.
To complete the proof, observe that

no no
Cov (Z X,-,X,,0+1> = Cov (Xi, Xny41) - (17)

i=1 i=1
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Variance and Pairwise Independence

Theorem

Let X =37, Xj, where X; are pairwise independent. Then

Var(X) = i Var(X;). (18)
i=1

Theorem directly follows from the fact that the covariance
Cov(Xi, Xj) = 0 for (pairwise) independent random variables X; and X;.
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Part IV

Wegman-Carter Hashing
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-
Universal hashing

Definition
Let A and B be sets such that |A| > |BJ|. A family H of hash functions
h: A — B is k-universal iff for any x3,x2,...,xx € A and a hash function

h € H randomly and uniformly chosen from H it holds that

P(h(x1) = h(xa) = - - - = h(xx)) < \B|1“' (19)

Applications of k-universal classes are mainly in database hashing and
randomness extractors (see later lectures).

Definition
Let A and B be sets such that |A| > |B|. A family H of hash functions
h: A — B is strongly k-universal iff for any x; # xo # - - - # xx € A, any

Y1,¥2,---, Yk € B and a hash function h € H randomly and uniformly
chosen from H it holds that
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-
Universal hashing

For any fixed elements a; # a» # - -+ # ax € A and h selected uniformly
from some strongly k-universal hashing family, we have that the induced
random variables X; = h(a;), i =1,..., k are k-wise independent.
Following this the strongly k-universal classes are sometimes called k-wise
independent classes of hash functions. The original name of (strongly)
k-universal classes introduce by Wegman and Carter is (strongly)
universaly, but we find the k-universal to be more preferable.

The most important application of strongly k-universal classes is that they
establish a perfectly secure message authentication (details provided
during the practice lectures).

Note that any strongly k-universal H is k-universal as well. Also, strongly
k-universal H is strongly /-universal for any / < k and k-universal H is
I-universal for any | < k.
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Universal Hashing: Example

Let A={0,1,...,m—1} and B={0,1,...,n— 1} with m > n. Let
p > m be some prime. Consider the class of hash functions

hab(x) = ((ax + b) mod p) mod n. (21)
Let
H={hpll<a<p-10<b<p} (22)
stressing that a # 0.
Theorem
H is 2-universal. J
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Universal Hashing: Example

Proof.

We count the number of function from H for which two distinct elements
x1 and xo from A collide. x; # xp implies

ax1 +b# axx+ b (mod p),

since the opposite occurs only if a(x; — x2) =0 (mod p). However, we
know that neither a=0 (mod p) nor x; — x2 =0 (mod p), what implies
the equation.

With fixed x; and x», For every pair u # v € B there exists exactly one
pair a, b such that ax; + b = u (mod p) and ax + b = v (mod p). D)
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-
Universal Hashing: Example

Proof.
Solving the system of two linear equations we obtain the unique solution
v—u
a= mod p (23)
Xo — X1
b= u— ax; mod p. (24)

Since there is exactly one hash function for each pair (a, b), we have there
is exactly one hash function in H such that

axi+b=u (modp)and axxc+b=v (mod p).

We have that the number of collisions equals to the number of pairs (u, v)
from {0,...,p — 1} satisfying u # v and u = v (mod n). For each choice
of u there are at most [p/n] — 1 possible values of v. O
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Universal Hashing: Example

Proof.

Together we have that there are at most

p([p/n] —1) < p<p+(n—1) _ ”> _plp—-1)

n n n

such pairs. Therefore, the collision probability is

o P2
P(hap(x1) = hap(x2)) < 1)~
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