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Uncertainty and entropy
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-
Uncertainty

@ Given a random experiment it is natural to ask how uncertain we are
about an outcome of the experiment.

o Compare two experiments - tossing an unbiased coin and throwing a
fair six-sided dice. First experiment attains two outcomes and the
second experiment has six possible outcomes. Both experiments have
the uniform probability distribution. Our intuition says that we are
more uncertain about an outcome of the second experiment.

@ Let us compare tossing of an ideal coin and a binary message source
emitting 0 and 1 both with probability 1/2. Intuitively we should
expect that the uncertainty about an outcome of each of these
experiments is the same. Therefore the uncertainty should be based
only on the probability distribution and not on the concrete sample
space.

@ Therefore, the uncertainty about a particular random experiment can
be specified as a function of the probability distribution
{p1,p2,--.,pn} and we will denote it as H(p1, p2,«- -, Pn)-
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-
Uncertainty - requirements

@ Let us fix the number of outcomes of an experiment and compare the
uncertainty of different probability distributions. Natural requirement
is that the most uncertain is the experiment with the uniform
probability distribution, i.e. H(p1,...pn) is maximal for
pr=—-=ps=1/n.

@ Permutation of probability distribution does not change the
uncertainty, i.e. for any permutation 7 : {1...n} — {1...n} it holds
that H(pl’ p2;.--. 7pn) = H(pﬂ(l)a Pr(2)---> pﬂ(n))

© Uncertainty should be nonnegative and equals to zero if and only if
we are sure about the outcome of the experiment.

H(pi,p2,---,pn) > 0 and it is equal if and only of p; =1 for some i.

@ If we include into an experiment an outcome with zero probability, this
does not change our uncertainty, i.e. H(p1,...,pn,0) = H(p1,...,pn)
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-
Uncertainty - requirements

© As justified before, having the uniform probability distribution on n
outcomes cannot be more uncertain than having the uniform
probability distribution on n+ 1 outcomes, i.e.

nx (n+1)x
H(/m, ... 1/n) < HA/(n+1),....1/(n+ D).

@ H(p1,...,pn) is a continuous function of its parameters.

@ Uncertainty of an experiment consisting of a simultaneous throw of m
and n sided die is as uncertain as an independent throw of m and n
sided die implying

mnX mX nx

A

H(1/(mn),...,1/(mn)) = H(1/m,...,1/m)+ H(1/n,...,1/n).
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-
Entropy and uncertainty

© Let us consider a random choice of one of n+ m balls, m being red
and n being blue. Let p=>""" p; be the probability that a red ball
is chosen and g = ij’fﬂ pi be the probability that a blue one is
chosen. Then the uncertainty which ball is chosen is the uncertainty
whether red of blue ball is chosen plus weighted uncertainty that a

particular ball is chosen provided blue/red ball was chosen. Formally,

H(p17 <y Pmy Pm+1, - - -, Pm+n) =
:H(p7q)+pH<I)17""l)rn>+qH<pm+17"’7pm+n>'
P P q q
It can be shown that any function satisfying Axioms 1 — 8 is of the form

(1)

m
H(p1,- -, pm) = —(log,2) D pilogs pi (2)
i=1
showing that the function is defined uniquely up to multiplication by a

constant, which effectively changes only the base of the logarithm.
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Entropy and uncertainty

Alternatively, we may show that the function H(p1, ..., pm) is uniquely
specified through axioms

Q@ H(1/2,1/2) = 1.
@ H(p,1— p) is a continuous function of p.

e H(p17 s 7pm) - H(Pl + P2, Pp3, ... 7pm) + (Pl +p2)H(p1F_tp27 pll-)‘rzpz)
as in Eq. (2).
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-
Entropy

The function H(px, ..., ps) we informally introduced is called the (Shannon)
entropy and, as justified above, it measures our uncertainty about an
outcome of an experiment.

Definition

Let X be a random variable with probability distribution p(x). Then the
(Shannon) entropy of the random variable X is defined as

H(X)=—- > p(X=x)logP(X = x).
x€lm(X)

In the definition we use the convention that 0log0 = 0, what is justified by
limy—o xlog x = 0. Alternatively, we may sum only over nonzero
probabilities.

As explained above, all required properties are independent of
multiplication by a constant what changes the base of the logarithm in the
definition of the entropy. Therefore, in the rest of this part we will use
logarithm without explicit base. In case we want to measure information in

bits, we should use logarithm base 2.
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Entropy

Let ¢ : R — R be a function. Let us recall that the expectation of the

transformed random variable is E[¢(X)] = >_cim(x) ?(X) P(X = x).
Using this formalism we may write most of the information-theoretic
quantities. In particular, the entropy can be expressed as

H(X)=E {Iog p(lX)} ,
where p(x) = P(X = x).

Lemma

H(X) > 0. J
Proof.
0 < p(x) <1 implies log(1/p(x)) > 0. DJ
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Part Il

Joint and Conditional entropy
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.
Joint entropy
In order to examine an entropy of more complex random experiments

described by correlated random variables we have to introduce the entropy
of a pair (or n—tuple) of random variables.

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x,y) = P(X = x, Y = y). We define the joint (Shannon)
entropy of random variables X and Y as

H(X - > > plxy)logp(x,y),

x€lm(X) yelm(Y)

or, alternatively,

H(X,Y) = —E[log p(X,Y)] = E [Iogp(lXY)] .
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|
Conditional entropy

Important question is how uncertain we are about an outcome of a
random variable X given an outcome of a random variable Y. Naturally,
our uncertainty about an outcome of X given Y =y is

HXIY =y)== > PX=x|Y=y)logP(X=x]Y =y). (3)
x€lm(X)

The uncertainty about an outcome of X given an (unspecified) outcome of

Y is naturally defined as a sum of equations (3) weighted according to
P(Y =y),ie
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-
Conditional Entropy

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x,y) = P(X = x, Y = y). Let us denote

p(x|ly) = P(X = x|Y = y). The conditional entropy of X given Y is

HXIY) = > p)HXY =y) =

yelm(Y)
=— > ply) D plxly)logp(xly) =
yelm(Y)  xelm(X) (4)

- Y > plx,y)logp(xly)

x€lm(X) yelm(Y)
— — Eflog p(X|Y)]
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|
Conditional Entropy

Using the previous definition we may raise the question how much
information we learn on average about X given an outcome of Y.
Naturally, we may interpret it as the decrease of our uncertainty about X
when we learn outcome of Y, i.e. H(X) — H(X|Y). Analogously, the
amount of information we obtain when we learn the outcome of X is

H(X).

Theorem (Chain rule of conditional entropy)
H(X,Y) = H(Y) + H(X]Y). J
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-
Chain rule of conditional entropy

Proof.

- > ) plx.y)logp(x.y) =

x€lm(X) yelm(Y)

= Y > plx,y)loglp(y)p(xly)] =

x€lm(X) yelm(Y)

=— Y ply)logp(y) = Y p(x,y)logp(xly) = (5)

x€lm(X) x€lm(X)
yelm(Y) y€lm(Y)

=— > py)logply) = Y. plx,y)logp(xly) =
yE€Im(Y) x€lm(X)
yelm(Y)

—H(Y) + H(X]Y).

Ol
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Chain rule of conditional entropy

Proof.
Alternatively we may use log p(X, Y) = logp(Y) + log p(X|Y) and take
the expectation on both sides to get the desired result. [

Corollary (Conditioned chain rule)
H(X,Y|Z) = H(Y|Z) + H(X|Y, Z).

Note that in general H(Y|X) # H(X]|Y). On the other hand,
H(X) — H(X]Y) = H(Y) — H(Y|X) showing that information is
symmetric.
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Part I11

Relative Entropy and Mutual Information
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-
Relative entropy

Let us start with the definition of the relative entropy, which measures
inefficiency of assuming that a given distribution is g(x) when the true
distribution is p(x).

Definition
The relative entropy or Kullback-Leibler distance between two
probability distributions p(x) and g(x) is defined as

_ Vloe PX) _ p(X)
D(plla) = > p(x)! 200 E[I ]

x€lm(X)

% 9(X)

In the definition we use the convention that 0 Iog% =0 and plog g = occ.
Important is that the relative entropy is always nonnegative and it is zero
if and only if p(x) = g(x). It is not a distance in the mathematical sense
since it is not symmetric in its parameters and it does not satisfy the
triangle inequality.
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Mutual information

Mutual information measures information one random variable contains
about another random variable. It is the decrease of the uncertainty about
an outcome of a random variable given an outcome of another random
variable, as already discussed above.

Definition

Let X and Y be random variables distributed according to the probability
distribution p(x, y). The mutual information /(X; Y) is the relative
entropy between the joint distribution and the product of marginal
distributions

p(x,y)
= > 3 sxylespens

x€lm(X) y€lm(Y) (6)

=D(p(x,y)|lp(x)p(y)) = ['Og p(%z/))]
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-
Mutual Information and Entropy

Theorem
I(X;Y)=H(X)— H(X|Y).

Proof.

prylog ol pr y) log (’))

p
:—Zp x, y) log p(x +pr y)log p(x|y) =
X,y (7)
—Zp ) log p(x ( ZPXY |0€P(X‘)/))
:H(X)— H(X|Y).

Ol

v
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Mutual information

From symmetry we get also /(X; Y) = H(Y) — H(Y|X). X says about Y
as much as Y says about X. Using H(X, Y) = H(X) + H(Y|X) we get

Theorem
I(X;Y) = H(X) + H(Y) — H(X, Y). J

Note that /(X; X) = H(X) — H(X|X) = H(X).
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Part IV

Properties of Entropy and Mutual Information
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General Chain Rule for Entropy

Theorem
Let X1, Xo,..., X, be random variables. Then

H(X1, Xo, o, Xn) = > H(XilXiz1,. ., X1).
i=1

Proof.
We use repeated application of the chain rule for a pair of random variables
H(X1, X2) =H(X1) + H(Xz2| X1),
H(X1, X2, X3) =H(X1) + H( X2, X3|X1) =
—H(X1) + H(X2|X1) + H(X3| X2, X0), (8)

Ol
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-
General Chain Rule for Entropy

Proof.

H(Xl,Xz, ... ,Xn) :H(Xl) + H(X2|X1) —+ -+ H(Xn|Xn_1, . ,Xl) =
=S HXG X1, -, X0).
i=1
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Conditional Mutual Information

Definition
The conditional mutual information between random variables X and Y
given Z is defined as

p(X, Y|Z)

I(X; Y12) = H(X|2) = HIX|Y, 2) = E |log o i35 |

where the expectation is taken over p(x,y, z).

Theorem (Chain rule for mutual information)
I(Xl,XQ, PN ,Xn; Y) = 27:1 I(X,'; Y‘X,'_]_, N ,Xl)
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-
Conditional Relative Entropy

Definition

The conditional relative entropy is the average of the relative entropies
between the conditional probability distributions p(y|x) and g(y|x)
averaged over the probability distribution p(x). Formally,

PO _ g\, PLYIX)
D(p(y1x)lla(y[x)) ZP ZPMX) log alylx) £ [' g q(YIX)} '

The relative entropy between two joint distributions can be expanded as
the sum of a relative entropy and a conditional relative entropy.

Theorem (Chain rule for relative entropy) J

D(p(x, y)lla(x,y)) = D(p(x)lla(x)) + D(p(y|x)lla(y|x))-
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-
Chain Rule for Relative Entropy

Proof.

q( )
_ N p(x)plylx) _
- Z Z P98 o)alyi) ©)
—Zp X,y logf+zp X,y) Iog
—D( ()lla(x)) + D(P(}/!X)Hq(ﬂx))-
D)
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Part V

Jensen’s inequality
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N —
Convex and concave functions

Before introducing Jensen's inequality let us briefly refresh definitions of
convex and concave function, what is crucial in this part.

Definition
A function f(x) is said to be convex on a set S if for every x1,x2 € S and
0<A<1

FOw + (1= A)x2) < M(xa) + (1 — N)f(x).

A function is strictly convex if the equality holds only if A =0 or A = 1.
A function f is concave if —f is convex. A function f is strictly concave
if —f is strictly convex.

Theorem

If the function has a second derivative which is nonnegative (positive)
everywhere, then the function is convex (strictly convex).
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N —
Convex and Concave Functions

Proof.
We use the Taylor series expansion of the function around xp
f// X*
Flx) = Fx0) + F(x0)(x — 0) + o) (x — x0)2

where x* lies between xp and x. By our initial assumption the term f”(x*) is
always nonnegative and the same holds for the last addend. Let
X0 =Axg + (1 — A)x2, A € [0,1] and x = x; and we have

f(x1) > f(xo0) + f'(x0)[(1 — N\) (a2 — x2)]- (10)
Similarly, taking x = x» we obtain
f(x2) = f(x0) + '(x0) AN — x1)]. (11)

Multiplying (10) by A and (11) by (1 — A) and adding we obtain the convexity.
The proof for the strict convexity is analogous. Ol

Jan Bouda (FI MU) Lecture 6 - Information theory April 19, 2009 30/ 48



N —
Convex and Concave Functions

Proof.
Multiplying (10) by A and (11) by (1 — X) and adding we obtain the
convexity

AM(x1) + (1= Nf(x) >
>A(f(x0) + f'(x0)[(1 = N)(xa—x2)]) + (L=A)(F(x0) + ' (x0) [N —x1)]) =
=M (%0) +(1=A)f (x0) + A (x0)[(1 = A) 31 —x2)] = (1= A) ' (x0) [AN(x1 —x2)] =
=f(x0) = f(Ax1 + (1 — A)x2).

The proof for the strict convexity is analogous. Ol
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-
Jensen’s Inequality

Last theorem shows immediately the strict convexity for x2, < and x log x
for x > 0, and the strict concavity of log x and /x for x > 0.

The following inequality is behind most of the fundamental theorems in
information theory and in mathematics in general.

Theorem (Jensen's inequality)

If f is a convex function and X is a random variable, then
E[f(X)] = f(E(X)). (12)

Moreover, if f is strictly convex, the equality in (12) implies that
X = E(X) occurs with probability 1, i.e. X is a constant.
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Jensen’s Inequality

Proof.
We prove this inequality by induction on the number of elements in
Im(X). For probability distribution on two points we have

E(f(X)) = p1f(x1) + p2f(x2) > f(p1x1 + p2x2) = F(E(X)) (13)

what follows directly from convexity. Suppose the theorem holds for k — 1
points. Then we put p! = p;/(1 — px) for i =1,2...,k —1 and we have

Zp/ XI Pkf Xk 1—Pk prf XI =
>pif(xk) + (1 — pi)f (prx,) >

(14)

Ol
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-
Jensen’s Inequality

Proof.

k—1
>f <kak + (1 — pk) Zp,‘x,-) =

i=1
k
—f (Zp;x,-) — F(E(X)),
i=1

where the first inequality follows from the induction hypothesis and the
second one from convexity of f. [

v

Jan Bouda (FI MU) Lecture 6 - Information theory April 19, 2009 34 /48



Information Inequality

Theorem (Information inequality)

Let p(x) and q(x), x € X, be two probability distributions. Then

D(pllq) > 0

with equality if and only if p(x) = q(x) for all x.
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Information Inequality

Proof.
Let A = {x|p(x) > 0} be the support set of p(x). Then

xEA q(X)
=3 p(x)log LX) <
= p(x)
©) a(x) (15)
<log » p(x =
Xze:\ )0
=log ) q(x) <logy_ q(x) =
xEA xeX
=logl =0,
where (x) follows from Jensen's inequality. O
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-
Information Inequality

Proof.

Since log t is a strictly concave function (implying — log t is strictly convex)
of t, we have equality in () if and only if g(x)/p(x) = 1 everywhere, i.e.
p(x) = q(x). Also, if p(x) = g(x) the second inequality also becomes
equality. O

Corollary (Nonnegativity of mutual information)

For any two random variables X, Y
I(X;Y)>0

with equality if and only if X and Y are independent.

Proof.
1(X;Y) = D(p(x,y)llp(x)p(y)) > 0 with equality if and only if
p(x,y) = p(x)p(y), i.e. X and Y are independent. O]

vy
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.
Consequences of Information Inequality

Corollary

D(p(y|x)lla(y|x)) = 0
with equality if and only if p(y|x) = q(y|x) for all y and x with p(x) > 0.

Corollary
I(X;Y|Z)>0
with equality if and only if X and Y are conditionally independent given Z.

Theorem

H(X) < log |[Im(X)| with equality if and only if X has a uniform
distribution over Im(X).
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.
Consequences of Information Inequality

Proof.

Let u(x) = 1/|lm(X)| be a uniform probability distribution over Im(X)
and let p(x) be the probability distribution of X. Then

D(p|lu) = _ p(x)log 2
== p(x)logu(x) = (= p(x)log p(x)) = log [Im(X)| — H(X).

Theorem (Conditioning reduces entropy)

H(X|Y) < H(X)

with equality if and only if X and Y are independent.

v
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.
Consequences of Information Inequality

Proof.
0 < I(X; Y) = H(X) — H(X|Y). DJ

Previous theorem says that on average knowledge of a random variable Y
reduces our uncertainty about other random variable X. However, there
may exist y such that H(X|Y = y) > H(X).

Theorem (Independence bound on entropy)

Let X1, X, ..., X, be drawn according to p(x1,x2,...,Xn). Then

n
H(X1, Xa, .., Xa) <> H(X)
i=1

with equality if and only if X;'s are mutually independent.
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.
Consequences of Information Inequality

Proof.
We use the chain rule for entropy

H(X1, Xo, o, Xn) =Y H(Xi|Xiz1,. ., X1)

= z": H(Xi),
i=1

where the inequality follows directly from the previous theorem. We have
equality if and only if X; is independent of all X;_1,..., X3. Ol

v
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Part VI

Log Sum Inequality and Its Applications
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Log Sum Inequality

Theorem (Log sum inequality)

For a nonnegative numbers a1, ap, ..., a, and by, by, ..., b, it holds that

Za, Iog (Z a,> log E’ L bl

with equality if and only if aj/b; = const.

In the theorem we used again the convention that Olog0 = 0,
alog(a/0) = oo if a > 0 and 0log(0/0) = 0.
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-
Log Sum Inequality

Proof.

Assume WLOG that a; > 0 and b; > 0. The function f(t) = tlogt is
strictly convex since f”'(t) = % log e > 0 for all positive t. We use the
Jensen's inequality to get

S aif(t) > f (Z a,-t,->

for aj >0, >, aj = 1. Setting aj = bj/ Zf:l b;j and t; = a;/b; we obtain

e > (S50 e

what is the desired result. ny
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.
Consequences of Log Sum Inequality

Theorem

D(p||q) is convex in the pair (p, q), i.e. if (p1,q1) and (p2, q2) are two
pairs of probability distributions, then

D(Ap1 + (1 = A)p2||[Agr + (1 — N)g2) < AD(p1llgr) + (1 — A)D(p2||q2)

forall0 <\ <1.

Theorem (Concavity of entropy)

H(p) is a concave function of p

Theorem

Let (X,Y) ~ p(x,y) = p(x)p(y|x). The mutual information I(X;Y) is a
concave function of p(x) for fixed p(y|x) and a convex function of p(y|x)
for fixed p(x).

v
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Part VII

Data Processing inequality
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Data Processing Inequality

Theorem

X — Y — Z is a Markov chain if and only if X and Z are independent
when conditioned by Y, i.e.

p(x, zly) = p(xly)p(zly).

Note that X — Y — Z implies Z — Y — X. Also, if Z = f(Y), then
X =Y —=Z

Theorem (Data processing inequality)
IFX — Y — Z, then I(X;Y) > I(X; Z). J
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Data Processing Inequality

Proof.

We expand mutual information using the chain rule in two different ways as

I(X;Y,2Z) =I(X; Z) + I(X; Y|2) .
=I(X; Y) + I(X; Z|Y). (17)

Since X and Z are conditionally independent given Y we have
I(X;Z|Y)=0. Since I(X; Y|Z) > 0 we have

1(X; Y) > I(X; 2).
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