264 DEDICATION OF COMPUTER AND SYSTEM SCIENCES 22, 265-279 (1981)

9. Simple Godel numberings, isomorphisms, and programming properties, SIAM,
Comput. 1 (1978), 39-60. With Paul Young and Karl Winkimann.

10. Crystalline glazes, Ceramic Rev. 49 (1978), 16-19.

11. A note on structure and looking back applied to the complexity of comg
functions, J. Comput. System Sci. 22 (1981), 53-59. With Paul Chew.

12. Remarks on recursion vs. diagonalization and exponentially difficult prot
this Special Issue (1981). With Paul Young.

New Hash Functions and Their Use
in Authentication and Set Equality

MARK N. WEGMAN AND J. LAWRENCE CARTER

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Received November 5, 1980

-1

. In this paper we exhibit several new classes of hash functions with certain desirable
. properties, and introduce two novel applications for hashing which make use of these
_ functions. One class contains a small number of functions, yet is almost universal,. If the
8 functions hash n-bit long names into m-bit indices, then specifying a member of the class
#.requires only O((m + log, log,(n)) - log,(n)) bits as compared to O(n) bits for carlier
S techniques. For long names, this is about a factor of m larger than the lower bound of
» m+ log, n — log, m bits- An application of this class is a provably secure authentication
' technique for sending messages over insecure lines. A second class of functions satisfies a
such stronger property than universal,. We present the application of testing sets for
¥ equality.

i The authentication technique allows the receiver to be certain that a message is genuine. An
" “enemy”—even one with infinite computer resources—cannot forge or modify a message
o without detection. The set equality technique allows operations including “add member to
. set,” “delete member from set” and “test two sets for equality” to be performed in expected

™ constant time and with less than a specified probability of error.

i
-
iy
k
I'-:
- A r
- T
--1
s
it B
gl
h
i
L, 2
il
%
B
i
:

|_'; !
AR
- Ii,"

2
%

E

= B i
L L T e N

- g . £
i f

INTRODUCTION

E

Hash functions are functions which map from larger domains to smaller ranges.
ey may be viewed as a means of assigning an abbreviation to a name. A desirable
pperty of a hash function is that “most of the time,” when the hashed values of two
ities are the same, the quantities are the same. While one must be careful of
one means by “most of the time,” this intuition has led to the two applications
ibed in this paper. For instance, the set equality tester works by maintaining an
iation for each set (namely, its hashed value). It will declare two sets to be
pal if the abbreviations are the same. Thus, it is correct most of the time when it
the sets are equal, and always right when it says they are unequal. While this
eais not new [13), we here use the techniques of universal hashing so that the
Fobability of making an error is small for any pair of sets, not just for randomly
Been sets. We first will briefly summarize universal hashing to make this distinction

_': shing can be used to achieve fast average performance for a variety of

ications, most notably for an associative memory such as a compiler’s symbol
265
0022-0000/81/030265-15%$02.00/0

Copyright © 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.

i
[Tt N

. .‘..—.‘- R e 3 g il

= —-—-——A‘ﬁ-a—-—‘n —-ﬂ-—#——-—_-_--h.--—-.--‘-—‘_l_-— e 5 Jr —

266 WEGMAN AND CARTER NEW HASH FUNCTIONS 267

table or a database. One would like “average performance” to mean the perform
averaged over all inputs that the application will be run on. However, one :
doesn’t know the actual data, and so one chooses a hash function which will e conventional test.

well assuming each input is equally likely. Recently an approach to hashing has bess lly, in Section 6, we show how to construct a strongly universal set of
developed which allows one to achieve and prove a fast average performance, withos metions. The functions in this set can be evaluated rapidly.

needing to assume anything about the probability distribution on the inputs |6} In
this approach, one has a collection of hash functions, instead of just one. Each time
the application is run, a hash function is randomly selected from the set. (If this i
impractical, functions may be chosen less frequently, or perhaps only once. See [§

an ordinary set equality testing method. If the probabilistic test says the sets are
ent, it must be correct. If it says the sets are the same, one could then perform

l. STRONGLY UNIVERSAL SETS OF HASH FUNCTIONS

0 be universal,, a set of functions from 4 to B must only satisfy a requirement on

for a more complete discussion.) If the set of funictions is carefully chosen to be whitSlls obability that a randomly chosen function will map two points of 4 to the same
is called a universal, class, then many applications of hashing will have prc e, For a set of functions to be strongly universal,, a randomly chosen function
good expected performance for any distribution of inputs, not just the unifonsmst, with equal probability, map any n distinct points of A to any n values in B; in

per words, any n points must be distributed randomly throughout B by the
tions. More formally,

distribution. i
Known universal classes contain a fairly large number of hash functions. Fer
instance, the functions in a typical class can hash n-bit long names, and the clas
contains 29 functions. Thus, O(n) bits are required to specify a randomly ¢
function. In Section 3, we present a set of functions which is “almost” strg
universal, and is much smaller—only log(n) bits are required. This |mpruv=m
make some applications of hashing practical, for instance the aut ,
technique described below. Also, if used in conjunction with the extendible has
scheme of [9], one can make a fast, practical and completely general &
memory subroutine package.
A possibly important use of these functions, described in Section 2, is a prow
secure authentication system. This system allows the receiver of a message to h
of the authenticity of a message—that the message was not forged or modified &
unauthorized “enemy.” It is necessary for the sender and the receiver to share a sets
key whose length is on the order of the log of the length of the message. But uall
digital signatures based on public key cryptosystems, it can be proven that'}
system is secure even against an enemy with infinite computing power. Aln,
are no messages which just happen to be easy to forge.
Section 4 gives a refinement of the authentication system which allows
messages to be sent using the same secret key, with each message requi
additional but shorter key. The total length of the keys required for sending m
messages asymptotically achieves the lower bound. -
The application which motivated defining strongly universal, cl
functions—a set equality tester—is given in Section 5. Assuming that

constructed using certain specified operations, we give a technique which has an

independent and small chance of error for determining that sets are aqﬂ " ":-*-' often desirable to be able to send a message over an insecure line and yet
expected running time of the algorithm is input independent and is lincar ﬂlﬂ receiver to be certain of the identity of the sender. (For convenience, we will

number of construction operations and equality tests. This is the only alge | | r “he” to denote the purported sender of a message, and “B” or “she” for
have seen with the dubious distinction of requiring probabilistic analyses of'fs rec “’ﬂ"*) Before modern communication methods existed, 4 could add a
kinds—it can both make a mistake and take a long time doing so. As Gill dwritten signature to a message. B could compare the signature on a message to
observed |11], one can always make the running time constant at the expem
larger probability of error. Alternatively, one can use the technique in con

ITION. Suppose H is a set of hash functions, each element of H being a
from A to B. H is strongly universal, if given any n distinct elements
wa, of A and any n (not necessarily distinct) elements b,,..., b, of B, then
. _‘i Bl"} functions take a, to b,, a, to b,, etc. (| X'| means the number of elements in
get X.) A set of hash funminns is strongly universal , if it is strongly universal,, for
ralues of n.'

e
-l.l'

-
1 =

s L
LS

arter and Wegman |6] present several classes of hash functions which turn out to
strongly universal,. Strongly universal, sets of functions can be created using
omials over finite fields. In pamcular, let A and B both be the same finite field.
LH be the class of polynomials of degree less than n. H is strongly universal, since
lny n distinct elements of 4 and corresponding elements of B, there is :nctly
‘polynomial of degree less than n which “interpolates” through the designated
8 (The standard linear algebra proof which uses the invertibility of the Vander-
matnx also works with finite fields.)

1ay seem peculiar to define a set of hash functions with A and B being the same
_Hnwever, it is easy to make B smaller by, for instance, just choosing the last
g of the hashed value. If the size of the field is a power of two, the result will still
2 strongly universal class of functions; otherwise, it will still be “close.”

) Section 6, we will exhibit a strongly universal , set of functions.

4

.1':1"

.rll.'.

2. DIGITAL SIGNATURES AND AUTHENTICATION TAGS

only strongly universal , set of functions from A to B is the set of all functions from 4 to B;
, we feel it gives useful intuition to think of this class as defined here.

268 WEGMAN AND CARTER NEW HASH FUNCTIONS 269

what she knew was A’s signature to assure herself the message was genuine.

m. If the result looks sensible, she has some assurance that the string of bits
who intercepted the message could not cut off the signature and paste it to a dif .; .indeed a message sent by 4. This approach has several disadvantages. Firstly, it
document without detection. We seek to gain these advantages in the case of di : i happen that if a certain portion of any encrypted valid message is twiddled in a
messages. «Shatain way, then the result still has a reasonable chance of being an encrypted valid
A signature serves a number of functions: “ "t different) message. If so, an enemy could interfere with the communication, even
thout being able to decrypt any message. This is a technique for creating malicious
gchief,
il the enemy knows the message being sent, things are even worse. For example,
ppose the messages between a bank teller and the central office is encrypted by an
jusive-or with a random and never reused bit string. (This is known to be a
pbably unbreakable encryption technique.) A thief makes a deposit and the teller
iis a record of the transaction to the central office. The thief now intercepts the
poded message and prevents it from being sent to the central office. Since the thief
8 both the plaintext and encrypted version of the message, he can exclusive-or
together to recover the one-time random bit string. He can now substitute a
ferent message—perhaps a record of a larger deposit—exclusive-ored with the
@w-known bit string. The moral is that a good encryption technique may be of no
pin proving authorship. One can only trust the authenticity of messages to the
at that one can prove that such systematic changes are impossible.

(1) It can assure B that the message was sent by A or someone aulhorind_
him.
(2) It can be used to prove (perhaps in a court) that 4 or someone authort

him sent the message, and

(3) It can assure B that 4 himself, not just someone authorized by 4,
sent the message. "

Authentication tags provide a method of accomplishing the first of these .
functions. If there is an agency which everyone trusts, then authentication tlﬂ
also be used to provide the second function. Before presenting these authenticsl
tags, we would like to review two other methods which also have some ‘
properties of signatures—digital signatures and encryption. None of the methods ®
will discuss can be used for the third function since the methods do not depen :

hysical properties of 4 but only on some knowledge which he ¢ .
:ml:-,mne :;ﬂp y 4 R T i | i ksecond disadvantage of using encryption for determining authorship is that there

A digital signature as discussed by Diffie and Hellman [7] consists of a string .""‘”“n“:.;‘ﬁ"“d“"“" n the “““‘“;?ﬁ:?‘i“““' - “t;“‘: ’“’t‘j'l‘g"‘f“f e “'“'th"‘h;
bits which is concatenated to a message. Only A knows the function which is sod 08 gcs & [it :tcncr}'pp on process 1.:1 Tfhmcr:aﬂe ¢ ::E © ftlmﬁlf't' lﬂ.‘
generate the signature, but he also publishes a checking function. This check PROGEIS Th05 VAL TIITNOS 1 Yoo, N0y One e scadsealiocaa e oon’ i
function allows anyone to test whether the signature is valid for the pi | compression to the messages. With authentication tags, one can separate the

. s : : ' merecy aspects of communication from the authentication aspects. One can use the
message. Moreover, without the signing function (but even with the ¢ i b i s 4 the aaly redundancy: needed Is. tha
function) it is difficult to determine the correct signature to any alternate m : :::ed; d uf:r :h:?;pg itsgclf ¢ IMCIEY, A0 the only e y
F I th ts a valid signature. e ' . N

Or 81 messsges: there SXie A.w '8 -* i1 filinlike digital signatures and encryption, a carefully constructed authentication tag
fem has the property that it is provably impossible for a forger to have more than

Diffie and Hellman [7], and Rivest et al. [12| have presented “public key 4
tosystems” which allow the above (in addition to allowing an interesting typef e ; : . :
x pitrarily small chance of creating a message which the receiver will accept as

encryption.) However,

"i"g’
T
|, 3

5 An authentication tag system can be formalized as follows: There is a set M of

THEOREM. No public key cryptosystem is unbreakable. That is, an enemy il mible messages and a set T of authentication tags. For instance, M might be the set
unbounded computing resources can forge messages. ¢ pll character strings of length 10,000 or less, and T might be the set of bit strings
] 100. There is also a (publicly known) set of functions F, where each
ition in F maps M into T. To use the system, A and B agree upon a secret “key”
ieh specifies one of the functions /in F. When A4 transmits a message m in M, he

psends the authentication tag f(m). B checks that f applied to the message she
- Isived is indeed the tag she received. If so, she has some assurance the received
that unless NP = co-NP (which many people believe is unlikely) no public W e is not a forgery. It must be impossible to find the function from a message
tosystem can be NP-complete. ol its tag. Otherwise the forgers might intercept, analyze and replace the message

A traditional encryption scheme also provides some of the function of a signss yone of their own. In fact, knowing the value of f on one message must give no
Suppose 4 and B have agreed upon an encryption and a decryption mcthod, frmation about the value of f on any other message. We will show a little later
they keep secret. When B receives any string of bits, she applies the ¢ is can be accomplished.

154

Proof. An enemy with enough time can guess all possible sngnlium
particular message and when a valid signature is found use it.

U

Thus, all such signature schemes can be cracked in nondeterministic polym
time, and none have so far been shown to be NP-complete. In fact, |1, 2] have

270 WEGMAN AND CARTER NEW HASH FUNCTIONS 271

It is natural to wonder, if A and B have agreed upon any secret authentic
function that nobody has any knowledge about, why won’t the system automati¢
be completely unbreakable? Why restrict the choice of S to be from the
functions F? It turns out that it is important to both the security and the usat i
the system to specify F. Suppose we simply request A and B to collabo _
choosing a function. This requires time and imagination, and unless they are skills
their choice is likely to be poor. For instance, if they decided that the first lettersa
each paragraph of the message should spell out “"GIPWOLLEY,” then most
changes by the forger to the message would leave these characters the same and thes
would be undetected. So the secret function must be dependent on most of
characters in the message. If the communicants plan to calculate such a funet

hand, they will most likely make a mistake. So either they must know

program a computer, or there must be a software package designed to help thes 0 compensate for these disadvantage, we can construct an authentication scheme
create functions. Such a package, if it is at all usable, will limit the choic ¥ ih is provably unbreakable. That is to say no resources other than knowledge of
functions, and immediately we have to worry that the choice is sufficiently lange: tkey allow forgers to find the correct tag for a forged message. As the length of the
ensure security—which of course is the subject of this section. But let’s suppose th _ rows the likelihood of a correct tag being appended to a message by forgers who
the communicants are able to program. We suspect that a sizable percentage sl know the key becomes more and more remote.

programmers, when faced with the problem of creating a secret function o make this more precise, we will say that an authentication system is
dependent on all the bits of a message, would choose a function of the form, “ akable with certainty p if after a function f is randomly chosen and after forgers

only messages which are congruent to 289 modulo 831,” or perhaps “Compress bgiven any message m and the corresponding tag f(m), the forgers cannot find a
message by exclusive-OR-ing it together in 32-bit chunks, and accept only messag

: lerent message m'’ for which they have better than a probability of p of guessing
whose result is hex ‘7A28E910".” For both of these methods, it is easy to diste porrect tag. Note that this definition must hold for any m, even one chosen by the
message to another message which has the same authentication tag, even

knowing the specific integers involved. If the least common multiple of .all m
less than 1000 is added to a message, then its residue modulo anything less than Ly
(as well as modulo many other numbers) will be unchanged. Incidentally, this =~
is fewer than 1000/In(2) bits long. To foil the exclusive-OR techniques is even casi
if § is any bit string such that the result of compressing S using 32-bit exclusive
is hex “00000000,” then S ® M will compress to the same value that M comt -'
to. The point of this discussion is to illustrate why it is important to hawe
mathematical foundation behind the authentication scheme.

An authentication tag differs from a signature in that the receiver B can also cré
the authentication tag and thus a proper message. B cannot prove to a third pas
that the message originated with A4 since the third party will realize that B could ham
fabricated it. It may appear that this disadvantage is not shared by the dig
signature technique. This is only partly true. If 4 wants to deny authorship ofis
message which he did indeed send, he can do so (at the cost of a bitidl
embarrassment) by professing that he accidentally revealed his secret signing
to B or to someone else.

On the other hand, if there is a universally trusted agency then authentication
are as good as digital signatures for establishing the authorship of messages. Thi
works as follows: Each individual person X shares his secret function £, only with 3
agency. To send a message to B, 4 sends his message (tagged using his function)$
the agency. The message must contain the name of the sender and receiver.

cy first verifies that the message it receives has the correct tag for the sender
med in the message. Then it stores a copy, appends the tag via f, to the message,
M forwards it on to B. When B verifies that the tag is correct, she accepts the
. B can now prove to anyone who trusts the agency that 4 sent her the
mage by simply asking the agency to check its records.

A second possible disadvantage of authentication tags is that only a finite number
Joessages can be sent using a particular function. We will prove that any
Preakable scheme can only be used a finite number of times, with that number
gendent on the size of the key and the desired probability of guessing the correct
pWe will also show that our scheme approaches the theoretical bound on the
key size needed to send a given number of messages with a desired level of

ity

fo create an authentication system which is unbreakable with certainty p, we can
ply choose T to have at least 1/p elements, and let F be a strongly universal, class
hash functions from M to T. If we let H' be the subset of H which maps m to
§), we see that the only information that the forgers have available is that the
Wet function is one of the functions in H'. However, the definition of strongly
fersal, implies that for any m’ distinct from m, the proportion of functions in H’
jeh map m’ to any particular tag ¢’ is 1/|T). Since |T| > 1/p, any choice the forger
pkes has no more than a probability of p of being correct.

silbert, MacWilliams and Sloane [10] have found rather complicated strongly
bersal, sets of functions for exactly this purpose. The difficulty with their set and
i other previously known strongly universal, sets is that the set of functions is so
ge that specifying a function in the class requires a key at least as long as the
Winal message. It is desirable to use a key considerably shorter than the message.
geond problem is that only one message per key can be sent, since knowledge of
message-tag pairs may give some information about the value of the function on
 third message. We will solve these problems separately.

e i

Zae

s 1
¥
P
T
i
g
S
I e
B SEas
-
o
gt
A
il
R [
i
g]
-
e
1.0
¥
| e s
R
LI
i
ety s

] iy, H ap1 & L s
= rai TRl = e LIER y
’ ! :-.I\.I' - ?:-;rji' :"'i"ll‘—_- . -‘.'-- r'. {l: rI‘E" o

=

= Ve, ey A

il I-..l_u

=i |._.'. | . = "'.-'.-‘."' ook AL Ry T o LS v
ol e A LS sl Ly M1 b b I B 4N 3 L ;
S S SR R R R A S BT o L e S
Lt s ey s L S

Bl -

5
e e S =g Ty g A LA s

1 » . Ty - s
; i B Nl LS S
el L L 1R R e et £

P i i - g L el il
=4 '.-|-I|i--'- i o v TS L B h

.'I: r ke el
g o B
i

FE o 4

SR ki

.._._'.- Tl o ot

L T

L L - T
" T

I“."'h et

L N R T

-.,.." X "','.l“ 15D

A L ek 5

i
wiihd,
- .",TJ

!

=yl v Yo =i

S

PR e -

S—

Ty

e

i i R . 3 e kg

gl

| e

1 i A

W S e
B DL B

¥ "o T g
i B = A e AR
o8 - o P s g i e B .1.1.._,-.1;,-“
g - . -

#
P — _.._4-‘&.5—.—_-—- . A ——— e A e e . Sl .

272 WEGMAN AND CARTER
3. A SMALL, ALMOST STRONGLY UNIVERSAL, CLASS

We wish to construct a set of hash functions from some large space A’ to a
B’. In the above, A’ is the set of messages and B’ is the set of possible tags.
and b’ be the length of the messages and tags, respectively. Let s = b’ + log, log
Let H be some strongly universal, class of functions which map bit strings of le
25 to ones of length s. The multiplicative scheme of [6] is fine for this purpose. E

member of H' will be constructed from a sequence of length log, a’ —Io;,l' |

members of H. Suppose f|, f;,... is some such sequence. We will specify how to
the associated member /' of H' to a message. The message is broken into sut
of length 2s. If necessary, the last substring should be padded with blanks. Thus,

message will be broken into [a’/2s]| substrings. /| is applied to all the substrings s

the resulting substrings are concatenated. By concatenating the resulting subst
we have obtained a string whose length is roughly half the originals string’s le
This process is repeated using f,, f;,...
tag (i.e., the result of the hash function f*) is the low-order b’ bits of this subst
The key needed to specify /' is the concatenation of the keys needed to

JisSaren -

of the input. If this class is used for H, the size of the key for H' will be 4s log4

Thus, the key is roughly four times the length of the tags times the log of the lenglh
of the message. By comparison, the multiplicative scheme by itself would have akey
whose length was twice that of the message.

Observe that assuming the functions in H can be evaluated in time proportional ¥
s, the functions in H' also can be evaluated in time proportional to the length of the

message.
The sense in which H' is
theorem.

“almost” strongly universal, is given in the follc

THEOREM. Given any two distinct messages m, and m, and any two tag val
and t,, the number of functions which take m, to t, is 1/|B’| times the total n

Junctions. However, fewer than 2/|B’| of these functions will also take m, fto t,.

Proof sketch. Each time we halve the length of the messages, there is a
(1/(27)) chance that the two resulting strings are now identical. Since we iterate g
halving process log, a’ — log, b’ times, the chance that the two strings are |dmud

the next to last step is at most log, a’/(2°), which is equal to 1/(2°'). Now the fact

that the function that does the last reduction is chosen from a strongly univer
class can be used to show that m, will be taken into any tag with equal probabili
and as long as the penultimate strings were different, m, will also be taken into

string with probability equal to 1/|B’|. Thus, if ¢, #,, then less than l/|B‘|d’
functions will take m, to #,, and otherwise, less than 2/|B’| will. i

- e

The above theorem can be contrasted with the definition of strongly uni
which says that 1/|B’| of the functions must take m, to t,, and that 1/|B’'| of
functions will also take m, to t,. In terms of the authentication scheme, the thee

until only one substring of length s is left.’

s

The multiplicative scheme suggested in [6] has a key roughly twice the s

o keys. Let m,,..,m, be any n messages, with the restriction that the message
pmbers must all be different (we assume that m; has number i.) Suppose a forger

il LA

- .

NEW HASH FUNCTIONS 273

gates after the enemy knows one message-tag pair, he can do no better than to find
gother message-tag pair which has probability 2/|B’| of being correct. Thus, the

$eme is unbreakable with certainty 2/|B’|, and this certainty can be made smaller
any predetermined value.

4. AUTHENTICATING MULTIPLE MESSAGES

above method does not allow us to tag more than one message using the same
metion, since once the enemy knows two message-tag pairs, he may be able to

Bermine more such pairs. One way around this problem might be to use a

:

sal, function, which would allow us to send n — 1 messages, but a better

hod is as follows: Let F be a strongly universal, set of functions from M to B,

B is the set of bit strings of length k. Each message in M must contain a
gssage number between 1 and n. The secret key shared by the sender and receiver
pw consists of two parts. The first part specifies a function f in F. The second part
key is a sequence (b,,..., b,) of elements of B. The sender must be certain never
send two messages with the same message number. To create the authentication
'f, for the message m, (a message with message number i) the sender first
geulates f(m,;) and then exclusive-or’s this result with b,. Since each message
mtains a message number, the receiver can duplicate this process to verify the tag is

orre (If a message is unnumbered, it is automatically rejected as a forgery.) We

to show that this scheme is unbreakable with certainty 1/(2").

2

EOREM. Suppose some key (f, (b,,...,b,)) has been chosen randamf_}: Srom the

s only the set F and the set of messages and their corresponding tags !, =

}@ b,. (We use ® to denote the exclusive-or operation.) Then there is no new

ge (with any message number) for which the forger has a better than 1/(2%)
2 of correctly guessing the tag.

Proof. Suppose the forger wishes to guess the tag to the new message m. Without
s of generality, we assume m has the message number 1. For each ¢ in B, define
(g, b)|gEF, bEB, gm)®b=1t, and g(m)® b =1t}. In other words, §, is
H of partial keys (partial since only the first of n elements of b are specified)

are consistent with the fact that m, has tag t,, and which give the bogus

se m the tag £. It isn’t hard to show that since F is strongly universal,, each of
_S,a have the same size. Further, there is exactly one way to extend each partial
iy in S, to a complete key which also assigns tag ¢, to message m, for i=2,...n
amely, let b, = g(m,) @ t,.) Thus, of all the keys which are consistent with the infor-

mation which the forger has available, as many will assign to m any one tag as any

tag. Thus, the forger’s probability of guessing the correct tag for m is | /(2%).

274 WEGMAN AND CARTER NEW HASH FUNCTIONS 275

A similar theorem holds when you use an almost strongly universal, class, ««* @& DELETE(x, §}—Removes element x from the set named S. This may only be
The next theorem shows that the number of bits required by this schﬂ med if x is a member of §.

asymptotically optimal. To make this precise, we define OPT(n) to be the ;TEST{S,,SI)—R:turns “true” if the sets named by S, and S, are equal, and
key size needed to prevent a forger from having more than a specified pmha aise” otherwise. TEST may possibly call two sets equal when they are not, but it
success at forging at least one out of n messages. We prove that as n app mmot call them unequal when they are actually equal.

inﬁniFy, th.f:.nurnbﬂr of bits our scheme uses to send n messages with the ND(S)—Returns a list of the names of sets which are equal to S. S will
security, divided by OPT(n), approaches 1. A similar theorem has also been n' 3 be included in this list. This list may, by mistake, contain the names of sets

by Fak |8). We will consider a slightly more general scenario in which the messags th are actually not equal to S, but no equal set can be overlooked
need not have message numbers. Suppose a function has been selected from a set e ’ '

The forger chooses a message m, and tries to guess the correct tag. He is :
the correct tag ¢,. Now the forger selects a second message m,, trys to guess thetag
and then is told the correct tag ¢,. This process is repeated n times. If we wish, w8y
may require the forger to choose each message from a restricted subset of the set gl
all messages, or we may even have a fixed sequence of messages—these vari
don’t affect the following theorem.

en any & > 0, we can process a sequence of requests in expected time linear in
ber of requests times (—log(e)). The error probability for each TEST request
fl be less than &, and for each FIND request, less than ¢ times the number of set
gmes in existence at the time of the request. In addition to the four requests
mtioned above, one may also have either COPY and DIFF requests, or
! ENT, LIST and CONTAINERS requests. These are defined as follows:

COPY S,,S5,)—S, becomes another name for th :
THEOREM. [n the above scenario, {f the forger’s probability of success on his £ - ; | . 1)—; i r L t-: set named by §,
guess is <p,, then F must contain at least 1/(p,p, --- p,) functions. B (3, 5,)—Assigns §, to be the symmetric difference of S, and §,.

8. ELEMENT(x, S)—Returns “true” if x i ber of th t ed § and
Proof. Let Fy=F and F,={f€ F|f(m,)=1t, for i=1,...,k}. The forger & b 8) w 4 188 CHDU 0L e bee nam an

use the following strategy in his guessing: After choosing the ith message, B g eAaacwings LHa:eesponaciis shvays corsopt.

u : e ,
enumerates the set F;,_,, randomly chooses a member of it, and guesses the tag * ll..[ST{S)—Returns a list of the elements of the set named S.
Since this has <p, chance of success, it must be the case that |{f€ F,_, s CONTAINERS(x)—Returns a list of the names of all the currently-existing sets
S(m)=1t} <p;|F,_,|- The set on the left-hand side is F;,, so we have |F,_} g Pontan X,
(1/p,)|F,|. This is true for each i, so we have |Fy|> (1/p,) - (1/p,)|F,} Thele
theorem follows since F,=F and |F, | > I.

o .. o ok

dhe algorithm which performs these operations is a modification of a known
mristic (see |13]) which, when two sets are unequal, will sometimes rapidly
ermine that they are unequal. (The rest of the time, the heuristic is unable to
fide if they are equal or not.) We modify the scheme so that given any sequence of
ests which create unequal sets, there is a high probability that the algorithm will
"ine they are unequal. The probability may be made so high that the lack of
wing they are unequal is sufficient evidence for the particular application to treat
:;: as equal. For instance, one can make the probability less than the probability
thc computer would make a hardware error during the additional time which
i be required to perform a complete test.
We view this algorithm as a tool to be used for other applications, rather than
B pause we are directly interested in testing set equality. Thus, it is important that we
o ' pve that the probability of making a mistake is not dependent on the particular
mracteristics of the input string, otherwise our application could only use sequences
pequests which had those characteristics. We accomplish this by constructing a
of algorithms and showing that for the worst input, there is only a low
4 8bability that a randomly chosen algorithm will produce an error.

ADD(x, S)}—Adds the element x to the set named S. This operation may noth¢ “The basic idea behind the set equality tester is that with each set name §,, there is
used if x is already a member of S. If S has not previously been used in amy Sm“abbreviation” V;. When a change is made to a set, the abbreviation is updated,
commands, it is treated as a name for the empty set. M two sets are claimed to be equal if their abbreviations are equal. Associated with

COROLLARY. When p, =p,= --- = p, then it requires at least n(—log,(p)) b
specify a randomly chosen member of F for any scheme which is unbreakable
certainty p and be able 10 send n messages. Note that the scheme we presented ¢
requires n(—log,(p)) + K bits, where K is the number of bits needed to spec:p)
element of a strongly universal, class of hash functions. e

5. TESTING SET EQUALITY

In this section we present a linear time algorithm for probabilistically testing mam
sets for equality. More formally, suppose we have a sequence of requests which mee
name an arbitrary number of sets and an arbitrary number of elements. Each reque
can be one of the following four commands:

{
"
H
1
=
o=
-
! LJ
T5
=
1T

b SR I B e SRy
]

e : il e Bt I Ty L .,-!1].‘,“
o 3 :E‘E_"':-izi-‘! e -"_ali'ﬂ‘___"

T d v e s S

- kil
T e i gt B

i
.

iy
" -

-
=

o
]

e h
r L

- i
vl

N

o W 1P

-y

LA

=L

e

] = i
i

;i

B

=t

3 e L]

: G A
e
i,

- I_

A

R n
ol |
b= 2
il

§ o

.

i
1 Ea il
< ¥

s ”

T o |
L ol

*5
¥
o tn E s

e

'
el o
11k
T 3

i
[2
<ol
o B

o
ey -
| -
.
b
LML
b e
ol (e
I':|'!:
¥ a
ST
s
ol AT

-

et 1

|
il &
¥
I
5

T

=% LFL
iy

T
R
b l
!

By |
'k
it ‘;—:-.
T,

i

i

i
L |

LRl s &
i |

s
o4

P

i

i
=+ "
I &
:}---'
1

0! " .
[
L L]

o
Tt

i I"_ 2 ¥ s ikl
' 3 -l A
s sy T 4 s R R A
1.“..%1!. T =

e e

o R
-

y 3 - LR, 15 ..
- L] s} LR N
- 1y i - = o
s ke AL e B P

> OERAw B

276 WEGMAN AND CARTER NEW HASH FUNCTIONS 211

each abbreviation, there must be a list of the set names which currently have t *
abbreviation. Of course, we store the abbreviations (and their corresponding lists)®
a hash table. Incidentally, since the Vs are produced by hashing, it is suffic
simply to mask off bits as the hash function used to store them in this table. |

To be mnre specific, let G be a group with operation @ and denote the i mm '_
in G by x~'. Let h be a hash function chosen from a strongly universal , _
maps elements of the sets being constructed into G. One might implement thiu “heme
with G being the set of bit strings of a certain length, and ® being exclusive-or. TaS ption that the operations take constant time may no longer be valid. However,
operation is easy to perform, and the inverse operation—the identity function— #the sequence of requests never makes very large multi-sets, then this will not be a
even easier. R eoblem.

The first time a set name S, is used, its corresponding ¥, is set to the idenSf88 We now mention three applications of set equality testers. The generation of LR or
element of G. The requests are handled as follows: R parse tables can be speeded up since a considerable amount of time is spent

ADD(x, S,) is implemented by updating ¥, to V,® h(x), and removing S, 2 g0 ing 1I? 4 set'uf items is new or has already been generated. Here, the FIND
the list associated with the old value of V, and adding it to the new. (In order & imand is particularly useful. Secondly, a graph may be represented as a set of
able to perform the removal in constant time, we must keep a pointer with the E s and a setfuf edges. Testing labeled graphs for equality is now easy. Finally, the
S, shich poiuts:to whees:this:name i in, the: li sssociated With %) Sgmemory state of a computer may be represented as a set of pairs, each pair consisting

- o iy N— an address and the v.e!lue stored in that address [3]. If a value in memory is

DELETE(x, S,) is implemented similarly, except A(x) ' is used in p iged, we delete the pair consisting of the address and the old value, and add the

TEST(S,, S,) is implemented by comparing V; with V. of the address and the new value. We can use our method to see if a memory

FIND(S,) simply returns the list associated with V. i 'has bee::t siﬁsin b:furel; and thll._ls whether Eze b;;rugram is looping (see [4]).

s @ It s conceivable that the equality test cou extended to other requests. If the
COPY(S,, S,) removes S, from V's list, sets ¥, =V, and adds 3, to Vi ~amality test could be extended adequately, a good part of a lnngu:; like SETL

fit in such a scheme. However, a recent result 14| suggests that it is
pssible to find a fast test for two sets being disjoint.

llar to the one described above can process the requests, ADD(x, k, S), which
k copies of x to § (we no longer need the restriction that x was not already in
DELETE(x._. k,S), TEST(S,, ;) and FIND(S,). Analogously to the set equality
. one can additionally add either the COPY and MULTISET UNION
pmmands, or the ELEMENT, LIST and CONTAINERS commands. Here,
ENT(x, §,) returns how many times x occurs in S,. A difficulty with using
tion instead of exclusive-or is that the ¥’s can get nrbltrnrlly large, and thus the

DIFF(S,, S,) sets ¥, to V,® V,, and updates the lists associated with the &
and new abbreviations appropriately. We observe that for DIFF to work cc
x~' must be x for all x € G, which is the case when the group operation is exc

or.

ELEMENT, LIST and CONTAINERS—to be able to perform these operat
one must maintain several additional hash tables. One contains all pairs (x, S,) .
have been the subject of an ADD request but not a DELETE request. This t g 3
used to answer ELEMENT requests. A second hash table associates with uﬁ E

6. IMPLEMENTING STRONGLY UNIVERSAL_ SETS

*We can create a strongly universal , set of functions as follows: Each function will

list of the sets which contain x. This table is consulted to perform a CONTAIN ___th:: set of names of set elem:nt's (that is, ‘hﬂ_“ffﬁ of the set equality tester) to the
request. In order to be able to update this list in constant time wi } ggpoup G. The techniques of [6] give us the ability to use an associative memory

DELETE(x, S,) request is encountered, it is necessary to associate with the je h requires constant expected time per request. We assume the ability to generate
(x, S;) in the Iitrsl hash table a pointer to S, in the list associated with x. Fin % ';:'I":E:rfn:; "::Ll l‘::i:h““ t“;’_? ‘)‘b‘““‘ﬁ to :::ﬂtﬂ : lﬂmlﬂ t;_““:“““f d:f‘u:ed
T seen. f(x) is computed as follows: if there is a value
be able to answer LIST(S,) requests, we need to associate to the name S a | e piiite
oc1ated ative memory, then f(x) is that value. Otherwise, f(x)
elements which are currently in S,. Again, we need to have a pointer stored with 2 ;s
pair (x,S,) which will enable us to remove x from the list associated with §; a value chosen randomly from G, and x and that value are stored in the

constant time when a DELETE(x, S,) request is encountered. - pciative memory. Thus, the value of hash on any element is independent of its
» 9

Mies on any other elements.
These techniques may be modified to deal with multi-sets instead of sets. A can now prove:

set is similar to a set, except one counts how many times an element has by 3
inserted into the multi-set. Two multi-sets are equal only if each element has be THEOREM. The probability that the set equality tester described above incorrectly

inserted the same number of times. In the above discussion we suggested Wi @wers a TEST request is no more than the reciprocal of the number of elements in
exclusive-or as the operation @. If one uses ordinary addition instead, then a schESESe group.

i b

278 WEGMAN AND CARTER

NEW HASH FUNCTIONS 279
vJ. GiLL, “Probabilistic Turing Machines and Complexity of Computation,”
i Department of Mathematics, University of California at Berkeley, June, 1972,

gi& R. RIVEST, A. SHAMIR, AND L. ADLEMAN, “On Digi : :
MIT/LCS/TM-82. » "On Digital Signatures and Public-key Cryptosystems,”

B J. T. SCHWARTZ, private communication (implemented in 1973).

¥ A. YAO, Some complexity questions related to distributi i
3 : istributive computing, in “Proceedings. El
; Annual ACM Symposium on Theory of Computing, May 1979,” pp. 209-213. %, Hleventh

Proof. There are two imaginable errors: our algorithm might say two equal sety
were unequal, or it might say two unequal sets were equal. If V, # V, then sets §, and*
§; must be unequal. Thus, the first type of error cannot occur. We will now find the"
probability of saying two unequal sets are equal. .-,j.

If sets S, and S, are unequal then either set S, or set §; must have an element not"
contained in the other. We enumerate the elements of set S; by x, ,. Without loss
generality we will assume S, has an element, x; , not contained in §;. If ¥, =V, thea "

L

h{x“) ® h('xi,l) ver = h(xj,l)@ h(lez}

Ph. D. dissertation,

which is true if and only if . &

Ax) = hix,) " @ h(x,,) " @ h(x,)@ A(x,,) - . i

It follows from the definition of strongly universal_ that for any b € G (where Gi§ |
the range of the hash function) the probability that A(x, ,) = b is independent of the '
value of b and the values of & on other elements, so the probability that A(x,)=
h(x;) " ®h(x,3) " - ®h(x;,) D h(x,,) - is the reciprocal of the number of
elements in G. Thus, the probability that V, = V, when S, # S, is the reciprocal of the’
number of elements in G. i

Notice that one indeed needs to use a strongly universal,, set of functions, since the
above reasoning requires that the value of h(S,) be independent of the value of hos
all the other elements of sets S, and S,. "

If the group elements are all bit string of length 100, the error probability per test
would be 1/2'%, This might well be less than the probability of a machine error i B
the extra time necessary to do a complete check. g 1

..-._-

;J-r-.-:. A F T T W . A

' .-I-J'..\.' [gl 1 =

_;t T pig) L .,.. AT " ,.‘. e bt
e LA - g a

-~

*

o
o e
TR R T
- I = Fry -

»
et

o .;.}*';1

REFERENCES

1. L. ADLEMAN, Private communication, Dec. 1977.

2. G. BrassarD, Relativized cryptography, in “Proceedings, Twentieth Annual Symposium on F
dations of Computer Science,” pp. 383-391, October, 1979,

3. D. Brown, Kraft storage and access for list implementation, in “Proceedings, Twelfth Annual
Symposium on Theory of Computing, April 1980," pp. 100-107.

4. J. COCKE, private communication (May, 1978).

5. J. L. CARTER, J. GiLL, R. FLoyp, G. MARKOWSKY, AND M. WEGMAN, Exact and approx
membership testers, in ‘‘Proceedings, Tenth Annual ACM Symposium on Theory of Comg
May 1978,” pp. 59-65. p

6. J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, J. Comput. Sysiem Sel. I

No. 2 (April 1979), 143-154.

. W. DirriEe aAND M. HeLLMAN, New directions in xryptography, IEEE Trans. Inform, v

(November 1976).

8. V. Fak, Repeated use of codes which detect deception, IEEE Trans. Inform. Theory 23,
(March, 1979), 233-234. .

9. R. FAGIN, J. NIEVERGELT, N. PIPPENGER, AND H. R. STRONG, Extendible hashing—A fast &
method for dynamic files, ACM Transactions Database Systems 4, No. 3 (1979), 315-344, :

10. E. N. Giert, F. J. MACWiLLIAMS, AND N. J. A. SLoane, Codes which detect deception, ik
Svstem Tech. J. (March 1947), 405424,

i

.

I-I- II E .

- &
3
g
E
i
+

Ty

2k i, i :"t Pl e . o
g ¥ [- s g i

& 4_1" iR ¢ e e r
L e

e
T

b
Sk ok
~J

i
b T

N T

---..--.
Bl ot LR
LA T T A

oL
;
oy
. '—_
e U g

|

g ¥

T:_#.
T
@)
.
'
.i_g.=

R

g

.
¥ N 2 bt o
v (R
i " LR = " -
i e LY e
.._. o
,

| &
K
L.y

¥y
Lo, TS

e [T
[= - T i
LR f. iy
e y i,
L 3
o e

£ 5L B, s

sk
=

L

	01.jpg
	02.jpg
	03.jpg
	04.jpg
	05.jpg
	06.jpg
	07.jpg
	08.jpg

