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It has been argued that Event Calculus (EC) is suitable for modeling high-level specifications of
safety-critical cyber-physical systems. The primary advantage lies in the rather small semantic gap
between EC models and requirements expressed in a semi-formal natural language. Moreover, its
use of continuous time and variables avoids imprecision that stems from discretization. In the past,
we have shown that a goal-directed ASP system can be used for implementing these EC models.
However, precise representation of time as an infinitesimally divisible continuous quantity leads to
Zeno-like behaviors and to non-termination in such a system. In this work, we model a number of
well-known example problems from the literature to systematically study various natural EC model-
ing patterns that yield these Zeno-like behaviors, and propose ways to deal with them. Moreover, we
also propose a technique to automatically detect all such cases.

1 Introduction and Motivation

Requirements engineering is a wide field of research due to its various applications in critical sectors,
such as medical or aerospace, where it is necessary to verify the correct operation of cyber-physical
systems (CPS). Their development starts with the specification of system requirements, which is by
many considered the most crucial part of the development process. The importance is clearly illustrated
by the results of the AVSI SAVI project [19] which show that 70% of errors are introduced during
the system specification and design phases, yet most of them are detected later, during the testing of
system’s concrete implementation. The main reason the errors are not detected earlier is that the system
specification describes a whole set of feasible solutions from which one concrete solution is eventually
chosen to be implemented. Such a single solution is much easier to verify compared to a potentially huge
set of solutions to validate in the early phases, mainly because we can make assumptions, e.g., that the
CPS operates in discrete time. When reasoning about all feasible solutions, we need to represent their
real-world behavior as closely as possible which includes modeling the system behavior in continuous
time and space. However, this introduces issues such as Zeno behavior where, theoretically, an infinite
number of events can occur in a finite interval—an unrealistic behavior which makes modeling difficult.

As argued in [18], a promising way to reason about system requirements is to transform them into
Event Calculus (EC) [12] and use its semantics for the verification and validation. EC is particularly
suitable since its semantics follows how a human would think of the requirements, which makes the
semantic gap between EC and the requirements near-zero. This allows EC to faithfully reason about the
behavior defined by the requirements without being tainted by design or implementation decisions, such
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as “designing" states, transitions, or decomposition into sub-systems as is the case, e.g., with automata-
based approaches. The capabilities of this approach have already been shown on a train gate controller
system [17] and in our prior work [18], where we managed to discover a number of inconsistencies and
a violation of a safety property in the specification of a safety-critical medical device. Both of the above
works use s(CASP)—a goal-directed, grounding-free reasoner for Answer Set Programming (ASP) with
constraints [4]. The grounding-free nature and support for constraint solving allow s(CASP) to reason
about continuous time and continuous quantities, which are both crucial for accurately and realistically
representing CPS behavior. The goal-directed nature further allows s(CASP) to provide explainable re-
sults, which is crucial when using results of automated reasoning as evidence for certification, e.g., when
building assurance cases [13]. However, similar to Prolog, s(CASP) can suffer from non-termination,
especially when reasoning in continuous time, which both of the above works struggled with.

In this work, we identify and systematically classify a number of general Zeno-like behaviors which
cause non-termination in goal-directed reasoning under continuous time. We have implemented all rele-
vant examples from the literature, including fairly complex ones like the water tanks [2] and real safety-
critical systems [18]. We show how to address the identified classes of Zeno-like behaviors so that the
non-termination issues are avoided. More precisely, by Zeno-like behavior, we mean behavior that makes
the reasoning explore an infinite number of events with infinitesimal time intervals in between, but an
infinite number of events do not actually occur, making it only similar to Zeno behavior. It is caused
by common EC modeling patterns, e.g., preventing repeated triggering, some of which are specific to
goal-directed reasoning, e.g., terminating specific trajectories. We have identified a unifying feature of
all these behaviors, a Zeno-descending chain of events (Section 3), and propose a technique for detecting
it during reasoning (Section 3.2). We introduce each of the general Zeno-like behaviors using examples
from the literature or their variations (Section 4 and 5) and we propose solutions for each of them. Then,
we discuss the water tanks example which combines all the behaviors as sub-problems and, in addition,
exhibits real Zeno behavior (Section 6). This example illustrates all the prior solutions combined and
solving the Zeno-like sub-problems leads to the real Zeno behavior being dealt with as well.

2 Background & Related Work

Zeno’s paradoxes of motion were formulated by the ancient philosopher Zeno of Elea: his Racetrack
paradox (or dichotomy of motion) says that a runner will never reach the finish line because they must
run half of the distance first, then half of what is remaining, etc. Zeno executions or Zeno runs are a well-
known problem in timed/hybrid systems and automata. A common definition of Zeno behavior is that an
infinite number of events or state transitions occur in a finite time interval. Zeno behaviors do not occur in
real physical systems and are a byproduct of abstractions. According to [20], many works simply impose
non-Zeno assumptions, such as [7]. A way to deal with Zeno behaviors is to remove them by modifying
the system using techniques such as regularization [9]. Further research proposes techniques for detecting
Zeno behavior [0, 14], or sufficient conditions for the presence (or lack of) Zeno behavior [20, 10, 8].
However, as far as we know, a systematic exploration of Zeno behaviors in EC has not been conducted
yet. For example, in Section 4, we show that the bank account example [12] fundamentally has no
solution in continuous time leading to Zeno-like behavior in goal-directed reasoning.

2.1 s(CASP) and Event Calculus

The s(CASP) system [4] extends the expressiveness of ASP systems, based on the stable model seman-
tics [5], by including predicates, constraints among non-ground variables, uninterpreted functions, and,
most importantly, a top-down, query-driven execution strategy. This makes it possible to return answers
with non-ground variables and to compute partial models by returning only the necessary fragment of
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fluent(light_on). 1 holdsAt(Fluent, T2) :-

event (turn_light_on). event(turn_light_off). 2 T1#>0, T1#<T2,
initiates(turn_light_on, light_on, T). 3 can_initiates(Event, Fluent, T1),
terminates(turn_light_off, light_on, T). 4  happens(Event, T1),

% automatically created can_* rules 5 initiates(Event, Fluent, T1),
can_initiates(turn_light_on, light_on, T). 6  mnot_stoppedIn(T1, Fluent, T2).
can_terminates(turn_light_off, light_on, T). ;
9

B Y O

stoppedIn(T1, Fluent, T2) :-
T1#< T, T#<T2,

(a) Domain model (ex1/model.pl).
10 can_terminates(Event, Fluent),

1 initiallyN(light_on). 11 happens(Event, T),
2 happens(turn_light_on, 10). happens(turn_light_off, 20). 12 terminates(Event, Fluent, T).
3 7- holdsAt(light_on, T). 7% expected: T #> 10,T #=< 20 13 not_stoppedIn(T1, Fluent, T) :- ...
(b) Narrative and a query with the expected answer. (c) EC axioms at axioms/bec_scasp-small.pl.

Figure 1: s(CASP) encoding of Example 1 (light on/off).

a stable model to support the answer, which can include the full proof tree making them fully explain-
able. In s(CASP), thanks to its constructive negation, not p(X) can return bindings for X for which the
call p(X) would have failed. Thanks to the interface of S(CASP) with constraint solvers, sound non-
monotonic reasoning with constraints is possible. Like other ASP implementations and unlike Prolog,
s(CASP) handles non-stratified negation and returns the corresponding (partial) stable models, e.g., for
p :- not g. q :- not p.,under the stable model semantics there are two possible models for this even
loop, with either p or q being true.

The Event Calculus (EC) is a formalism for reasoning about events and change [16, 12] of which
there are several versions. We use the Basic Event Calculus (BEC) [15, 11]. There are three basic
concepts in EC: (i) an event is an action that may occur in the world, (ii) a fluent is a time-varying
property of the world, (iii) a timepoint is an instant of time. Events may happen at a timepoint. Fluents
have a truth value at any timepoint and may have quantities associated with them. They change discretely
via events or continuously via trajectories. An EC formulation of an example consists of a universal
theory, a domain model, and a narrative. The theory is a conjunction of EC axioms, the domain model
consists of the causal laws of the domain, and the narrative provides observations of event occurrences
and properties of fluents. Consider the following example from [12]:

Example 1 (Light on/off (7): A model of a light that can be turned on and off. First, we define the
domain model (Fig. 1a) where: (i) the state of the light is represented by a fluent (line 1), (ii) turning
it on/off is represented by events (line 2), (iii) event effects are stated at lines 3—4, and s(CASP)
generates lines 6—7 (discussed in Section 2.1.1). Second, we define a narrative (Fig. 1b). The light is
initially off (line 1) and it is turned on/off at times 10/20 (line 2). We query timepoints at which the
light is on (line 3) and the answer is between 10 and 20. The code is available at ex1/model.pl.’

The relevant EC axioms for this example are shown in Fig. 1c and implemented in axioms/bec_
scasp-small.pl. The predicate holdsAt (F, T2) is provable for time T2 if an event happened at some
earlier time T1 whose effect was to initiate that fluent at T1 and the fluent was not stopped between T1
and T2. A fluent is stopped in a time interval if some event occurs within the interval that terminates it.
The full 7 BEC axioms, used in further examples, are implemented in axioms/bec_scasp.pl. Implemen-
tation of the predicate not_stoppedIn/3 is discussed in Section 2.1.1.

2.1.1 Modeling EC Axioms in s(CASP)

Two key factors contribute to the s(CASP)’s ability to model EC in continuous time: the preservation of
non-ground variables during the execution and the integration with constraint solvers. Using the trans-

L All files are available at https:/github.com/ovasicek/iclp25-scasp-zeno/tree/master/examples [NV IRCIEZEE].
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lation rules, introduced in [3], one can translate the BEC axioms into s(CASP) programs that follow the
logic programming convention. However, special considerations must be made to avoid non-termination.

First, it is crucial to consider the relative order of happens/2 and initiates/3 (same for
terminates/3 and releases/3) in the axiom for holdsAt/2 shown in Fig. 1c. When proving happens/2
first, the reasoning might go through an expensive (or non-terminating) proof of an event happen-
ing only to then realize that it has no effects on the fluent. However, proving initiates/3 first can
lead to the reasoning trying to prove the effect of an infinite number of events without considering
whether they happen’. In [18], we proposed to define predicates can_initiates/3, can_terminates/3,
can_releases/3, and can_trajectory/4 via preprocessing that is done by s(CASP) automatically when
using the --ec command-line option. It defines a fact can_initiates(E,F,T) for each fact and/or rule
initiates(E,F,T):- some_body (and similarly for others) without duplicates. Custom rules can be
defined manually. This has proven effective in avoiding non-termination while pruning the search space.

Second, s(CASP) implements the not keyword by generating dual rules. The generation is unin-
formed of the semantics of the predicates and, thus, generates more rules than needed including ones
that may explore unrealistic combinations of values of continuous time arguments. We use a custom
implementation of the predicates not_stoppedIn(T1, F, T2) and not_startedIn/3 in order to avoid
non-termination. The custom implementation (in axioms/bec_scasp.pl, line 169) leverages the semantics
of the predicates to be more efficient and prevent non-termination.

3 Zeno-Like Behavior in s(CASP): Zeno-Descending Chain of Events

In our experiments, the main source of non-termination are triggered events. An event is triggered if its
occurrences are implied by rules of the domain model. In continuous time, such trigger rules can lead to
an infinite number of occurrences and, thus, to an infinite number of changes to reason about.

We have encountered many examples that share the same pattern in their reasoning trees while non-
terminating. The reasoning gets stuck in a loop through event trigger rules, where each iteration has
a happens (Event, TimeN) predicate with a new time variable which is strictly less than the one from
the previous iteration but otherwise both are constrained to the same interval. The tree thus contains a
chain: happens(e,T1), T2 < T1, happens(e,T2), ..., TN < ... < T2 < T1, happens(e,TN). We call such
a sequence a Zeno-descending chain of events (or Zeno chain). A crucial aspect is that there is no time
delta between the T’s, and so the distance between the timepoints can be infinitesimal. Reasoning with
a Zeno chain results in exploring an infinite number of event occurrences in a finite time interval, which
matches the definition of Zeno behavior. However, as we show throughout this paper, a Zeno chain can
be encountered by goal-directed reasoning even in examples in which only a finite number of events
occur. Therefore, not all Zeno chains represent Zeno behavior but rather only Zeno-like behavior.

In Section 3.2, we propose a technique for automatic detection of a Zeno chain, which allows us to
alert users to its presence and to halt the non-terminating reasoning.

3.1 Example(s) of a Zeno-Descending Chain of Events

Example 2 (Simplified bank account 7): A simplified version of the bank account problem [12] rea-
sons about a single bank account and money withdrawal from it. If the balance is below the minimum
of 1000, then a service fee of 10 will be charged via a triggered event. In this version, the service
fee can only be charged once per narrative (instead of once per month). Fig. 2 shows the s(CASP)
encoding of this example and an example narrative with a few queries and their expected answers.
The code is available at ex2/model.pl.

2Such non-termination is shown in ex1/logs/non_term_summary.log using a modified version of the light example.
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| fluent(balance(M)). fluent(noServiceFeeYet). 16 happens(serviceFee, T) :-

2 event(withdraw(M)). event(serviceFee). 17 holdsAt(noServiceFeeYet, T),

3 18 B #< 1000, Y% min balance is 1000

4 initiates(withdraw(X), balance(NewB), T) :- 19  holdsAt(balance(B), T).

5 NewB #= 01dB - X, . .

6  holdsAt(balance(01dB), T). (b) Problematic event trigger rule.
7 terminates(withdraw(_), balance(0ldB), T) :- initiallyP(balance(10000)) .

8  holdsAt(balance(01dB), T). initiallyP(noServiceFeeYet).

9

happens (withdraw(8000), 10).
10 terminates(serviceFee, noServiceFeeYet, T). happens (withdraw(1500), 20).
initiates(serviceFee, balance(NewB), T) :-
12 NewB #= 01dB - 10, 7 service fee is 10
13 holdsAt(balance(01dB), T).

14 terminates(serviceFee, balance(01dB), T) :-

15 holdsAt(balance(01dB), T).

7- holdsAt(balance(X), 5). 7% 10000

?7- holdsAt(balance(X), 15). % 2000

?- holdsAt(balance(X), 25). % 490

?- happens(serviceFee, T). 7 smallest T > 20

© X NN A W N —

(a) Domain model (ex2/model.pl). (c) Narrative and queries with expected answers.
Figure 2: s(CASP) encoding of Example 2 (simplified bank account).

happens(serviceFee, {T17[T1 > 0, T1 =< 100]}) % T1

holdsAt(noServiceFeeYet, {T1~[T1 > 0, T1 =< 100]})
initiallyP(noServiceFeeYet)
not_stoppedIn(0,noServiceFeeYet, {T1~[T1 > 0, T1 =< 1001}
{T27[T2 > 0, T2 < 100]} #< {T1~[T1 > 0, T1 =< 100]} hT2<TL
happens(serviceFee, {T27[T2 > 0, T2 < 1001} % T2

holdsAt(noServiceFeeYet, {T27[T2 > 0, T2 < 100]})
initiallyP(noServiceFeeYet)
not_stoppedIn(0,noServiceFeeYet, {T27[T2 > 0, T2 < 100]})
{T37[T3 > 0, T3 < 100]} #< {T27[T2 > 0, T2 < 100]} % T3 < T2
happens(serviceFee, {T37[T3 > 0, T3 < 100]}) % T3

=T - . T IRV R

- o

Figure 3: Zeno-descending chain of events in a simplified trace of Ex. 2 (full in ex2/logs/non_term.log)

All queries from Fig. 2c non-terminate due to the trigger rule of serviceFee (Fig. 2b). A simplified
snapshot of the non-terminating reasoning tree is shown in Fig. 3. The Zeno chain starts at line 6 and
continues at line 11. The reasoning enters a Zeno chain because to prove that the fee happened at some
T2, it must consider that it could have already happened earlier at T3, but then it must consider an even
earlier T4, etc. Details and solutions are discussed in Section 4.

In the following sections, we present and describe solutions to a selected class of problems that lead
to non-termination through a Zeno chain. Each class of problems is introduced with an example from
the literature or a variation thereof. Table 1 summarizes all the examples, alongside further unnumbered
examples (available at the repository under the folder named other), and for each example shows which
combination of problems (Zeno-like or Zeno behavior) is present.

3.2 Automated Detection of Zeno-Descending Chains of Events

We propose a simple yet effective technique to detect Zeno chains, made available as a feature of s(CASP)
from version 0.25.06.25 at https://gitlab.software.imdea.org/ciao-lang/sCASP. It can be enabled using
the --zeno_halt flag. When a Zeno chain is detected, s(CASP) stops and issues a warning to inform the
user (avoiding non-termination). This technique, works as follows: when a predicate happens(E,T)
is expanded, s(CASP) will check the current derivation looking for predicates happens(E,T1) and
happens (E,T2), such as: (i) all three have the same event E, the variables T1 and T2 are constrained
to the same interval (Low < Tx < high), (ii) happens (E,T1) was expanded earlier than happens (E,T2),
and (iii) T2 is strictly smaller than T1, i.e., there is a constraint T2 < T1. E.g., the Zeno chain shown in
Fig. 3 between lines 6 and 11 would be detected (see the full detection trace in ex2/logs/zeno_halt.log).

We validated the ability of this technique to (quickly) detect Zeno-like behaviors with each of the
examples listed in Table 1 (their detection traces are available in the repository).
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Table 1: Summary of examples and their problem composition.

Repeated Trajectory related problems Zeno Behaviors
trigger Self-ending Circular With inequal. Trivial Paradoxes
7 Light on/off Ex. 1
7 Simpl. bank account Ex. 2 *
7 Bank account *
7 Light trigger off *

|9}

7 Fading light Ex.
7 Train gate

(7 Falling object

(7 Filling vessel

KKK KX KX X X X

7 Pulsing light Ex. 4 *

7 No-loss water tanks *

7 No-loss bouncing ball *

7 Simpl. water tanks Ex. 5 * *

7 Blinking light Ex. Al * *

7 Water tanks Ex. 6 * * * * *
7 Bouncing ball * * *

4 Preventing Repeated Triggering of Events

A common concept in EC is preventing events from triggering repeatedly [12]. However, reasoning
in continuous time introduces issues. Consider Ex. 2 from the previous section. A service fee should
be charged if two conditions are met: (i) the balance is below some minimum value and (ii) the fee
has not been charged yet. When money is withdrawn at time T1, the new balance will be provable via
holdsAt (ballance(X),T2) for any T2 such that T2 > T1 (recall the axiom from Fig. Ic). Should the
withdrawal make the balance go below the minimum, Condition (i) would hold for all T2’s (a continuous
interval). Without Condition (ii), the fee would be charged infinitely many times. With Condition (ii), the
first occurrence prevents any subsequent ones. However, there is a problem when we consider continuous
time—it is impossible to find the first occurrence due to the non-inclusive lower bound, in our case T2
such that T2 > T1. As a consequence, it is inherently impossible to answer the query from Fig 2c
considering continuous time, causing non-termination in s(CASP) due to its attempt to find the smallest
T2 (recall Fig. 3). To solve this problem we propose two solutions:

Solution 1 (Add Epsilon): An epsilon in time is introduced and the fee is charged after a delay (see
Fig. 4a). This is achieved using a new predicate holdsAt(F, T, EPS, E) (see its encoding in Fig. 4b).
The third argument makes the predicate provable only at time T = T1 + EPS where T1 is the timepoint of
occurrence of the event E, specified by the fourth argument, that initiates the fluent F. The fourth argument
is not strictly needed but helps avoid a slowdown from exploring irrelevant events. This solution ensures
that the trigger rule proves happens (withdraw(X), T1) first and only then triggers the serviceFee at
some T2 = T1 + EPS. Since withdraw(X) is not a triggered event, there only is a finite number of T1’s
to explore. Hence, non-termination through this rule is no longer possible, and the query terminates (see
ex2/logs/fix-holdsAt4.log). Introducing an epsilon here is not like discretizing since T1 and T2 can still
take any value in the continuous domain (and there is no impact on reasoning time).

Solution 2 (Remodel Behavior): We remodel the example with continuous time in mind to charge
the fee at the same time as the withdrawal and combine the effects of the two events (see Fig. 4c). The
fee is charged at the originally lower bound instead of infinitely close to it, and the query terminates (see
ex2/logs/fix-remodel.log). In this example, the effect of the serviceFee is to initiate a new balance by
combining both the amount subtracted by the fee and the event which caused it. The withdraw(X) event
has no effect if the fee is charged at the same time. This solution is closest to the original behavior, but it
is only suitable for examples where the effects of the events can be combined.
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1 happens(serviceFee, T) :- happens(withdraw(Amount), T),
holdsAt(noServiceFeeYet, T), NewB #< 1000,
NewB #= 01dB - Amount, holdsAt(balance(0ldB), T).
initiates(withdraw(X), balance(NewB), T) :-
not_happens(serviceFee, T), ...
terminates(withdraw(_), balance(01dB), T) :-
not_happens(serviceFee, T), ...
initiates(serviceFee, balance(NewB), T) :-
happens (withdraw(X), T),
0 NewB #= (01dB - X) - 10, holdsAt(balance(01dB), T).

1 happens(serviceFee, T2) :-

2 EPS #= 1/1000000, B #< 1000,

3 holdsAt(balance(B), T2, EPS, withdraw(_)),
4 holdsAt(noServiceFeeYet, T2).

(a) Solution 1: Add Epsilon (ex2/fix-holdsAt4.pl).
1 holdsAt(Fluent, T2, Dur, Event) :-

2 T2 #=T1 + Dur, ..., happens(Event, T1),
3 initiates(Event, Fluent, T1), ...

2
3
4
5
6
7
8
9

(b) New axiom (axioms/bec_scasp.pl, line 118). (c) Solution 2: Remodel Behavior (ex2/fix-remodel.pl).

Figure 4: Two solutions to the problem in Example 2 (simplified bank account).

Using the above solutions, we modeled additional examples that feature the same problem: (i) the
full bank account 7 models multiple accounts and transactions and adds a monthly reset for the service
fee (encoding in other/1-bank_account). (ii) the light trigger off (7, a version of Ex. 1 where the light
automatically turns off when it is on (encoding in other/2-light_trigger_off).

S Trajectory-Related Problems

EC represents continuous change via trajectories. A trajectory, defined using trajectory(F1,T1,F2,

T2) : - body, starts when its control fluent F1 is initiated at T1 by an event and stays active until the fluent
is terminated. While the trajectory is active, it is used to determine the value of the continuous fluent F2
at any T2. Below, we discuss three non-termination problems with trajectories that we have encountered.

5.1 Self-Ending Trajectory Problem

Autotermination is a common modeling pattern where a trajectory ends via an event triggered based on
the continuous value defined by the trajectory. We call such trajectories self-ending. Modeling these in
S(CASP) can lead to non-termination. Consider the following example:

Example 3 (Fading light 7, cont. Ex. 1): When the light is turned on, its brightness gradually fades in
from O until it reaches full brightness of 10. The continuous change of the fluent brightness(X) is
modeled by a trajectory controlled by the fluent fading_in and ends automatically via a triggered
event fade_in_end. The event triggers when full brightness is reached and initiates brightness(10)
as the new discrete value of the fluent. Fig. 5 shows the new parts of the s(CASP) encoding (compared
to Ex. 1) and an example narrative with a few queries. The code is available at ex3/model.pl.

All queries in Fig. 5c¢ non-terminate, looping through the trigger rule (Fig. 5a, line 13) and the trajec-
tory axiom (Fig. 5b, lines 1-4). The Zeno chain looks like this: happens(fade_in_end,T1), holds-
At (brightness(10),T1), T2<T1, can_initiates(fade_in_end,brightness(10),T2), happens(fa-
de_in_end,T2) (see ex3/logs/non_term_summary.log). This chain can be detected automatically
(see ex3/logs/zeno_halt.log). The problem is that the effect of the event is considered as a way to prove
its own trigger. This is a limitation of goal-directed reasoning as the example does not inherently contain
any Zeno(-like) behavior. We propose one solution:

Solution 1 (Restrict HoldsAt): When reasoning about ending a trajectory, we assume that it is
active; otherwise we would not need to reason about its end. We restrict that holdsAt (brightness(10),
T) should only be proven via the trajectory controlled by the fluent fading_in (see Fig. 6a) using a new
predicate holdsAt (F,T,CF) (Fig. 6b), which limits the choice of control fluents when proving the value
of a fluent. his prevents the original loop, and the query terminates (see ex3/logs/fix-holdsAt3.log).


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex2-simplified_bank_account/fix-holdsAt4.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp.pl#L118
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex2-simplified_bank_account/fix-remodel.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/1-bank_account
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/1-bank_account
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/2-light_trigger_off
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/2-light_trigger_off
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/logs/non_term_summary.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/logs/zeno_halt.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/logs/fix-holdsAt3.log
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holdsAt(Fluent2, T2):- T1 #> 0, T1 #< T2,
can_trajectory(Fluentl, T1, Fluent2, T2),
can_initiates(Event, Fluentl, T1),
happens(Event, T1),
initiates(Event, Fluentl, T1),
trajectory(Fluentl, T1, Fluent2, T2),
not_stoppedIn(T1, Fluentl, T2).

event(fade_in_end). fluent(light_on).
fluent(brightness(X)). fluent(fading_in).
initiates(turn_light_on, fading in, T).
releases(turn_light_on, brightness(X), T).
terminates(fade_in_end, fading in, T).
initiates(fade_in_end, brightness(10), T).
terminates(fade_in_end, brightness(X), T):- X ## 10.

P Y O

(b) Trajectory axiom (axioms/bec_scasp.pl).

R Y I VR SR

trajectory(fading_in, T1, brightness(NewB), T2) :-
10 NewB #= 01dB + ((T2-T1) * 1), initiallyP(brightness(0)).
11 holdsAt(brightness(01dB), T1). happens (turn_light_on, 10).

1

2
12 3 7- holdsAt(brightness(X), 25). 7 10
13 happens(fade_in_end, T) :- holdsAt(brightness(10), T). 4 7- happens(fade_in_end, T). 7 20
(a) Domain model additions (ex3/model.pl). (c) Narrative and some queries.

Figure 5: s(CASP) encoding of Example 3 (fading light), extension of Example 1 (light on/off)

1 happens(fade_in_end, T) :- 1 holdsAt(Fluent2, T2, Fluentl) :- ...,
2 holdsAt(brightness(10), T, fading in). 2 trajectory(Fluentl, T1, Fluent2, T2), ...
(a) Solution: Restrict HoldsAt (ex3/fix-holdsAt3.pl). (b) New axiom (axioms/bec_scasp.pl, line 51).

Figure 6: Solution for the problem in Example 3 (fading light).

The above problem is present in all the trajectory-related examples in the rest of this paper. The so-
lution from this section is applied in all of them by default. In addition, we have modeled the following
examples that feature the same problem: (i) the filling vessel 7 [ 16] which stops filling and starts spilling
once it fills up to its maximum level (encoding in other/5-filling_vessel/). (ii) The train gate (7 con-
troller [1] models a railway crossing with trajectories for lowering/raising the crossing gates (encoding
in other/3-train_gate/). (iii) The falling object 7 example [12] models an object that is dropped from
some height and falls to the ground (encoding in other/4-falling_object/).

5.2 Circular Trajectory Problem

This section introduces a problem of circular dependency between trajectories—the end of one starts
the other and vice versa. The following example does not inherently contain any Zeno(-like) behavior;
however, it is a problem for goal-directed, top-down reasoning in continuous time.

Example 4 (Pulsing light 7, cont. Ex. 3): The light fades in and out repeatedly. As soon as the light
reaches maximum brightness, it will start fading out back to zero. Once zero is reached, the light will
start fading in again, repeating the process. Fig. 7 shows the modification of the s(CASP) encoding
(compared to Ex. 3) and a narrative with a few queries. The code is available at ex4/model.pl.

All the queries from Fig. 7b non-terminate. To prove the effect of a trajectory at some T2, we first
need to find its start time T1 (see the axiom in Fig. 5b). However, due to the circularity, the rea-
soning will proceed as follows: (i) try to prove the effect of trajectory A at TA2, (ii) need to prove
its start time TA1 such that TA1 < TA2, (iii) trajectory A can start via the end of an earlier trajec-
tory B, (iv) need to prove the effect of trajectory B at TB2 such that TB2 = TA1, which is Step (i)
with TB2 < TA2. The loop contains the trajectory axiom (Fig. 5b lines 1-4) and the trigger rules of
the trajectory start/end events (Fig. 7a lines 6-7, Fig. 6a lines 1-2). The Zeno chain looks as fol-
lows: happens(fade_out_end,T1), holdsAt (brightness(0),T1), T2<T1, happens(fade_in_end,T2),
holdsAt (brightness(10),T2), happens(fade_out_end,T3) (see ex4/logs/non_term_summary.log);
and it can be automatically detected (see ex4/logs/zeno_halt.log). The problem is that the reasoning
never reaches the body of the trajectory/4 predicate which means that there is no knowledge of the
potential duration of the trajectory, i.e., the reasoning is exploring an infinite number of infinitely short
trajectories. We propose two solutions for this problem:


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex3-fading_light/fix-holdsAt3.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp.pl#L51
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/5-filling_vessel
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/5-filling_vessel/
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/3-train_gate
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/3-train_gate/
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/4-falling_object
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/4-falling_object/
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/logs/non_term_summary.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/logs/zeno_halt.log
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1 fluent(fading_out). event (fade_out_end) .
2 terminates(fade_out_end, fading out, T). 1 initiallyP(brightness(0)).
3 initiates(fade_out_end, fading in, T). > happens(turn_light_on, 10).
4 trajectory(fading_out, T1, brightness(NewB), T2) :- 3
5 NewB #= 01dB - (T2-T1), holdsAt(brightness(01dB), T1). 4 7- happens(fade_in_end, T). % 20
6 happens(fade_out_end, T) :- 5 % and 40
7 holdsAt(brightness(0), T, fading out). 6 7- happens(fade_out_end, T). 7 30
(a) Encoding additions (ex4/model.pl). (b) Narrative and some queries.
Figure 7: s(CASP) encoding of Example 4 (pulsing light), extension of Example 3 (fading light).
1 happens(fade_in_end, T) :- Dur #= 10,
2 holdsAt(brightness(10), T, fading_in, Dur). | incr_event(fade_in_end).
3 happens(fade_out_end, T) :- Dur #= 10, » incr_event(fade_out_end) .
4 holdsAt(brightness(0), T, fading out, Dur). 3 - -7
(a) Solution 1: Add Duration (ex4/fix-holdsAt4.pl). 4 can_initiates(fade_in_end, fading out, T) :-
5 incr_happens(fade_in_end, T).
1 holdsAt(Fluent2, T2, Fluentl, Duration) :- 6
2 T2 #=T1 + Duration, ... 7 can_initiates(fade_out_end, fading in, T) :-
3 trajectory(Fluentl, T1, Fluent2, T2), ... 8 incr_happens(fade_out_end, T).
(b) New axiom (axioms/bec_scasp.pl, line 65). (c) Solution 2: Incremental Reasoning (ex4/fix-incr.pl).

Figure 8: Two solutions for the problem in Example 4 (pulsing light).

Solution 1 (Add Duration): Introduces duration information into the event trigger rules (see Fig. 8a)
using a new predicate holdsAt (F1,T,F2,Duration) (see Fig. 8b) which is based on the holdsAt/3 pred-
icate from Ex. 3 and extended with a duration similarly to the holdsAt/4 predicate from Ex. 2. It
specifies a trajectory control fluent F2 and a Duration for which the fluent must hold. This introduces
the duration of the trajectories into the loop and the query terminates (see ex4/logs/fix-holdsAt4.1og).
This approach is suitable for cases where the trajectories always have the same duration; for cases with
variable duration, we could specify a minimum duration or use the next solution.

Solution 2 (Incremental Reasoning): Uses forward reasoning for trajectories and accurately deals
with trajectories with variable duration. The reasoning starts with the first trajectory. Once we prove
its end, we can start reasoning whether it caused the start of some second trajectory and so on. This
is achieved by taking the trajectory ending events (Fig. 8c, lines 1-2) and decoupling all their effects,
other than terminating the trajectory, using incr_happens(E, T) (Fig. 8c, lines 4-8). The reasoning
repeatedly executes queries to see if any of the events happen. If an occurrence of E1 is found at T1,
then a fact incr_happens(E1, T1) is added to the knowledge base. The next increment will then query
events at times greater than T1. If multiple occurrences are found in an increment, only the earliest ones
are saved as they could impact the occurrence of the later ones in the next increment. This process is
repeated until no more occurrences are found or until a time limit is reached. The original query is then
executed (see ex4/logs/fix-incr.log) with the knowledge base of occurrences of all incremental events.
This approach is implemented in S(CASP) and can be enabled via the --incremental cmd-line option.

Using the above, we have modeled two additional examples: (i) The no-loss bouncing ball (7 is a
simplified bouncing ball that bounces up to the original height on every bounce (encoding in other/7-no_
loss_bouncing_ball). (ii) The no-loss water tanks 7 models two water tanks which are being slowly
drained and one at a time is being refilled by a water input arm, while only considering narratives where
the combined draining rate is the same as the input rate (encoding in other/6-no_loss_water_tanks).

5.3 Self-Ending Trajectory with End Condition Based on Inequality

In the previous trajectory examples, we considered trajectories whose end events were triggered based on
equality, e.g., the light stops fading in when its brightness is equal to 10. In the case of strictly monotonic


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/fix-holdsAt4.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp.pl#L65
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/fix-incr.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/logs/fix-holdsAt4.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex4-pulsing_light/logs/fix-incr.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/7-no_loss_bouncing_ball
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/7-no_loss_bouncing_ball
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/7-no_loss_bouncing_ball
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/6-no_loss_water_tanks
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/6-no_loss_water_tanks

10 On Zeno-like Behaviors in EC with Goal-directed ASP

initiallyP(water_left(100)).
happens(start(right), 10).
happens (switch_right, 16.25).

fluent (water_left(X)).
fluent(left_filling). fluent(left_draining).
event(switch_left). event(switch_right).

?- happens(switch_left, T). % 12.5, 18.125
?- holdsAt(water_left(X), 12.5). % 50

?7- holdsAt(water_left(X), 16.25). % 87.5

?7- holdsAt(water_left(X), 18.125).7% 50

7- holdsAt(water_left(X), 19.5). Y% 50.625

10 trajectory(left_filling, T1, water_left(NewW), T2) :- (b) Working narrative (ex5/model-narl.pl).
NewW #= 01dW + ((T2-T1) * 10), % rate 30 - 20

12 holdsAt(water_left(01dw), T1).

13 trajectory(left_draining, T1, water_left(NewW), T2) :-
14 NewW #= 01dW - ((T2-T1) * 20), % out rate 20

15  holdsAt(water_left(01dw), T1).

initiates(switch_left, left_filling, T).

terminates(switch_left, left_draining, T).
terminates(switch_right, left_filling, T).
initiates(switch_right, left_draining, T).

o - N T N VSR
I IR Y N VU ORI

initiallyP(water_left(0)).
happens(start(left), 10).
happens(switch_right, 13).

?- holdsAt(water_left(X), 13).% 30 (term.)
7- happens(switch_left, T). 7 smallest T>13
7- holdsAt(water_left(X), 15).% 50

17 happens(switch_left, T):- W #=< 50, 7, target 1vl 50
18 holdsAt(water_left(W), T, left_draining).

D Y N

(a) Partial domain model (full at ex5/model.pl). (c) Non-term. narrative (ex5/model-nar2.pl).

Figure 9: s(CASP) encoding of Example 5 (simplified water tanks).

1 terminates(switch_right, left_filling, T) :-
happens(switch_left, T) :- W #= 50, 7 = target 1lvl 2 X #>50, % > target level 50
holdsAt(water_left(W), T, left_draining). 3 holdsAt(water_left(X), T, left_filling).
happens(switch_left, T) :- Dur #=1, 4 initiates(switch_right, left_draining, T) :-
W #< 50, % < target 1vl 5 X #>50, % > target level 50
holdsAt(water_left(W), T, left_draining, Dur). 6  holdsAt(water_left(X), T, left_filling).

[ T

(a) Solution 1: Add Duration (ex5/fix-split_holdsAt4.pl). (b) Solution 2: Remodel Beh. (ex5/fix-split_no_start.pl).

Figure 10: Two solutions for the problem in Example 5 (simplified water tanks).

trajectories, the brightness will be exactly 10 only at one timepoint, and so the end event can only occur
once. However, sometimes an end condition with inequality may be called for. In such cases, we can
face a manifestation of the repeated trigger problem from Ex. 2 where an event was defined to occur
infinitely close to some non-inclusive bound. Consider the following example:

Example 5 (Simplified water tanks (7): A simplified version of the well-known example of two leaking
water tanks [2], where the tanks share one input arm that switches back and forth between them in
an attempt to keep their water levels above a target level. Our simplified version only models the
left tank, and any switches to the right tank come only as facts in the narrative. There is a trajectory
for draining the left tank via a draining rate (20 units) and a second trajectory for filling it via a
combination of an input rate (30 units) and the draining rate. A triggered event switch_left causes
the input arm to switch to the left tank. It is triggered while the tank is draining if the current water
level is equal to or below the target level (50 units) —the draining trajectory has an end condition with
inequality. Fig. 9 shows most of the s(CASP) encoding of this example and two example narratives
with a few queries. The code is available at ex5/model.pl.

Queries for the first narrative (Fig. 9b) all terminate.” However, the second and third query in the second
narrative (Fig. 9c) do not. In the first narrative, the arm starts in the right tank meaning that the tank is
initially draining, from its starting level 100, drops to the target level 50 at time 12.5, and a switch_left
is triggered. A switch_right happens at time 16.25, when the tank is already filled up to 87.5 (above
the target level). In the second narrative, the tank starts empty and is filling. A switch_right happens at
time 13 while the left tank is only at level 30—still below the target level. The filling trajectory ends at
time 13, but a switch_left is triggered as soon as possible at some T > 13. However, this is a problem

3However, a more complex impl. of not_stoppedIn/3 is needed (in axioms/bec_scasp-interval _not.pl, line 194).


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/model-nar1.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/model-nar2.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/fix-split_holdsAt4.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/fix-split_no_start.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp-interval_not.pl#L194
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because an infinitely short draining trajectory is created. The reasoning non-terminates due to its attempt
to find an event infinitely close to a non-inclusive lower bound (see ex5/logs/non_term_summary.log
and detection in ex5/logs/zeno_halt.log). Such an event cannot be found in continuous time, hence, it
is impossible to answer the query. This is a manifestation of the repeated trigger problem from Ex. 2
in the context of a trajectory. We propose two solutions, similar to the ones from Ex. 2. Both solutions
split the reasoning into two situations: (a) the trajectory starts when its end condition is not met yet (1st
narrative) and (b) the trajectory starts when its end condition already is met (2nd narrative). In Case (a),
the trajectory reaches the equality first and ends before the inequality becomes applicable , therefore,
the inequality is not needed. Similarly, in Case (b), the equality is never reached (it has been already
exceeded) and hence not needed.

Solution 1 (Add Duration): Uses an equality-based trigger condition for Case (a) and introduces a
minimum duration for the trajectory in Case (b) using the holdsAt/4 predicate from Ex. 4 (see Fig. 10a).
The fixed duration prevents the occurrence of an infinitely short trajectory, removing the non-termination
problem (see ex5/logs/fix-split_holdsAt4.log). The duration is inherently required by this example and
does not lead to the inaccuracies that would arise if we discretized.

Solution 2 (Remodel Behavior): Also uses an equality-based trigger condition for Case (a) but a
different approach for Case (b). An infinitely short trajectory only makes an infinitely small difference,
thus, should not start at all. This can be achieved by limiting all the effects of the switch_right event
only to Case (a) (see Fig. 10b) and the query terminates (see ex5/logs/fix-split_no_start.log).

6 True Zeno Behavior

We say the prior examples contain Zeno-like behaviors as they do not fully meet the definition of Zeno
behavior—the reasoning was considering an infinite number of events in finite time, but they never
needed to happen. This section presents a true Zeno behavior in the water tanks (7 [2] where an infinite
number of events occurs due to delays between them getting shorter and shorter. In addition, we modeled
two more examples: (i) the bouncing ball 7 [9] which looses energy with each bounce. (ii) The blinking
light c7 which blinks with an infinitesimal delay, showing trivial Zeno behavior (detailed in A).

Example 6 (Water tanks 7, cont. Ex. 5): The full version of the water tanks [2], where the tanks and
the arm switches are modeled via triggered events based on reasoning about both water levels. The
Zeno behavior [2, 20, 9] manifests when the input flow rate is higher than the output flow rates of
each tank but lower than their combined output rates—the arm is able to fill each tank, but overall the
amount of water in the system is decreasing. The arm switches instantaneously and, thus, will keep
both tanks from going below the target level by switching for shorter and shorter durations as they
both drop closer to their target levels. Fig. 11 sketches s(CASP) encoding (full code in ex6/model.pl).

Queries shown in Fig. 11b non-terminate (see ex6/logs/non_term_summary.log) due to a combination
of the problems that we have presented so far: (a) real Zeno behavior, (b) the repeated trigger problem
from Ex. 2 manifested in a trajectory, (c) the self-ending trajectory problem from Ex. 3, (d) the circular
trajectory problem from Ex. 4, and (e) the inequality end condition problem from Ex. 5. All the sub-
problems, except (a), cause non-termination through a Zeno chain and, thus, can be detected (ex6/logs/
zeno_halt.log). Like the two prior examples, the initial encoding already solves Problem (c) via the
holdsAt/3 predicate. We further propose three solutions:

Partial Solution 1 (Incremental Reasoning): This solution addresses Problem (d), which is due to
reasoning limitations, and terminates up to Problem (a). We solve Problem (d) via incremental reasoning
(see Fig. 12a). The incremental events are the events for switching the arm left and right. Due to the


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/logs/non_term_summary.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/logs/zeno_halt.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/logs/fix-split_holdsAt4.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex5-simplified_water_tanks/logs/fix-split_no_start.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/8-bouncing_ball
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/non_term_summary.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/zeno_halt.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/zeno_halt.log
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fluent(right_filling). % renamed fluent(left_draining) initiallyP(water_left(100)).

1 1

2 fluent(water_right(X)). 2 initiallyP(water_right(100)).

3 3 happens(start(right), 10).

4 trajectory(right_filling, T1, water_right(NewW), T2) :- 4 7- T #=<19.5,

5 ... % similar to trajectory for water_left 5 happens(switch_left, T). 7% 12.5, 18.125

6 trajectory(right_filling, T1, water_right(NewW), T2) :- 6 7- T#=<19.5,

7 ... % similar to trajectory for water_left 7 happens(switch_right, T).} 16.25, 19.0625

8 8§ 7- holdsAt(water_left(X), 12.5). % 50

9 happens(switch_right, T) :- 9 ?7- holdsAt(water_right(X), 16.25). % 50

10 CurrW #=< 50, 7 target level 10 7- holdsAt(water_right(X), 19.5). 7 54.375

11 holdsAt(water_right(CurrW), T, left_filling). 11 7- holdsAt(water_left(X), 19.5). ¥ 50.625
(a) Domain model additions (ex6/model.pl). (b) Narrative and some queries.

Figure 11: s(CASP) encoding of Example 6 (water tanks), full version of Example 5.

incr_event(switch_left).  incr_event(switch_right).

can_initiates(switch_left, left_filling, T) :-
incr_happens(switch_left, T).

can_initiates(switch_right, right_filling, T) :-
incr_happens(switch_right, T).

?- lincr_max_time(19.5), ...

% same as Solution 1
incr_event(...).
can_initiates(...) :- incr_happens(...).

% similar to Sol 2., but split trigger rules
happens(switch_right, T) :- MinD #= 1,
D #>=MinD, W #=50, 7 target level 50
holdsAt(water_right(W), T, left_filling, D).
happens(switch_right, T) :- D #=1,

[ Y N O N

(a) Partial Solution 1: Incremental (ex6/partfix-incr.pl).

© N U AW D =

| happens(switch_right, T) :-  MinD #= 1,
2 D #>=MinD, W #=< 50, % target level 50 W #< 50, % target level 50

3 holdsAt(water_right(W), T, left_filling, D). holdsAt(water_right(W), T, left_filling, D).
4 % same for happens(switch_left, T) :- ... 12 % same for happens(switch_left, T) :- ...

= 3

(b) Solution 2: Add Duration(ex6/fix-holdsAt4.pl). (c) Solution 3: Combined (ex6/fix-incr_holdsAt4.pl).

Figure 12: Three solutions for the problem in Example 6 (water tanks).

Zeno behavior, typical narratives will not run into Problems (e) and (b) as the tanks never go below the
target level (cf. ex6/logs/partfix-incr.log).

Solution 2 (Add Duration): This solution addresses the Zeno-like behavior of Problems (b) and (e),
and the Zeno behavior of Problem (a). Problem (b) manifests as part of Problem (e), and so we only
have to focus on the latter. We solve Problem (e) by defining a minimum duration for the trajectories
using the holdsAt/4 predicate (see Fig. 12b). This introduces a delay between the switch events which,
additionally, solves Problem (a)—highlighting the similarity of Zeno and Zeno-like behaviors. Moreover,
solving Problem (e) via a minimum duration is also an alternative solution to Problem (d), meaning that
incremental reasoning is no longer necessary for termination (see ex6/logs/fix-holdsAt4.log). However, a
smaller value of the minimum negatively impacts reasoning time as it allows more iterations of the loop.

Solution 3 (Combined): This solution combines Solutions 1 and 2 (see Fig. 12c and ex6/logs/
fix-incr_holdsAt4.log), while Solution 1 is only a partial solution, the combination of both solutions
leads to better performance (from 30 min to 10 seconds).

Note that other Zeno behaviors may require still other solutions. For example, a minimum duration
for the trajectory of a bouncing ball 7 results in it falling through the floor. In this case, a suitable
solution is to make it stop bouncing when the last bounce was shorter than a minimum duration or to
introduce a flat loss of velocity on each bounce (modeled in other/8-bouncing_ball).

7 Conclusion and Summary

We have implemented a novel technique, made available as a feature of s(CASP), that automatically
detects Zeno-like behaviors based on the presence of a Zeno-descending chain of events. We have further
identified and characterized a set of non-termination problems, caused by Zeno-like behaviors, that can
be encountered in common Event Calculus modeling tasks in continuous time and have proposed four


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/partfix-incr.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/fix-holdsAt4.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/fix-incr_holdsAt4.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/partfix-incr.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/fix-holdsAt4.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/fix-incr_holdsAt4.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/ex6-water_tanks/logs/fix-incr_holdsAt4.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/8-bouncing_ball
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/other/8-bouncing_ball
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Table 2: Summary of the proposed solutions and their applicability to the presented problems.

Repeated Trajectory related problems Zeno Behaviors
trigger Self-ending Circular With inequal. Trivial Paradoxes
Automated Detection (Sect. 3.2) v v v v v
Restrict HoldsAt (Ex. 3,4, 5, 6) v
Incremental Reasoning (Ex. 4, 6) v
Add Epsilon / Duration (Ex. 2, 4, 5, 6, Al) v v v v v
Remodel Behavior (Ex. 2,5) v v v

types of solutions that can be used to solve them without discretizing. We believe that this set of problems
(and solutions) is enough to cover a wide range of real use cases, such as a safety-critical system [18].

As shown in Table 2, the detection technique works for all classes of problems, except for nontrivial
Zeno behaviors because those feature a descending chain of events with delays between them getting
shorter and shorter (instead of infinitesimally small). Additionally, it summarizes the proposed solutions,
in which examples they have been applied, and which classes of problems are solved by each of them.
The Restrict HoldsAt solution uses external knowledge of the example to guide EC reasoning by re-
stricting the search rule to chose a specific clause of the predicate holdsAt. Incremental Reasoning
addresses circularity via forward reasoning which is particularly suitable for EC due to its need to recon-
struct history. The Add Epsilon / Duration solution introduces a time epsilon into the loop, replacing
infinitesimal time steps without causing inaccurate behaviors (as would be the case if we discretized).
The Remodel Behavior solution tunes the model of the example for reasoning in continuous time to
avoid infinitesimal time steps while preserving the intended behavior.
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A Trivial Zeno Behavior: Zero Delay Circular Events

This appendix presents an example that did not quite fit into the paper. The example shows trivial Zeno
behavior but it is a modeling pattern that is easily encountered in EC. When reasoning in continuous
time, it is easy to introduce event trigger rules which will cause an infinite number of events to occur in
a finite time interval. Events have no duration and their effects are instantaneous, unless we explicitly
introduce some duration or delay. Consider the following example:

Example A1 (Blinking light, cont. Ex. 1): Both the events for turning the light on and off were
changed into triggered events. The trigger rules define that the light should be turned off when it
is on and vice versa. However, the encoding does not define a frequency for the blinking. The trig-
gered events are defined to turn the light off/on as soon as it is on/off. Fig. 13 shows the encoding
additions for this example (compared to Ex. 1 and an example narrative with a few queries. The code
is available at apx 1/model.pl.

All the queries in Fig. 13b will non-terminate and, furthermore, their expected answers are unknown.
There are two problems: (i) two instances of the repeated trigger problem (from Ex. 2) one for each
triggered event and (ii) trivial zeno behavior since the light is defined to blink infinitely quickly. Problem
(i1) means that while the light is blinking we are unable to conclude whether it is on or off. The problem
manifests as a circular dependency between the two triggered events without any delay in between (see
apx1/logs/non_term_summary.log) and it can be automatically detected (see apx1/logs/zeno_halt.log).

We present our solution in Fig. 14. To address Problem (i) we utilize a simplified version of the first
solution from Ex. 2. The second one is not suitable here because the turn on/off events have opposite
effects. Solving Problem (i) leads to Problem (ii) being solved as well.

The solution (Fig. 14a) adds a delay to the event trigger rules using a new predicate holdsAt/3
(Fig 14b), which is the same as the holdsAt/4 introduced in Ex. 2 except without the fourth argument,
which is not needed here (there is only one event to consider for each rule).

To address Problem (ii), the Zeno behavior, we need to define some blinking frequency for the light.
Notice that the solution to Problem (i) already introduced a delay between the events and, thus, it solves
this problem as well. This shows the similarity between Zeno behaviors and the Zeno-like behaviors that
we have presented in this paper.

1 happens(turn_light_off, T) :- happens (turn_light_on, 10).

2 holdsAt(light_on, T). 7- holdsAt(light_on, 15). % 7 (unknown)

3 happens(turn_light_on, T) :- ?- happens(turn_light_off, T). % 7 (unknown)

4  not_holdsAt(light_on, T). 7- happens(turn_light_on, T). 7% 10 and 7 (unknown)
(a) Domain model additions (apx1/model.pl). (b) Narrative and queries with unknown answers.

Figure 13: s(CASP) encoding of Example A1 (blinking light), based on Example 1 (light on/off).
1 happens(turn_light_off, T) :- holdsAt(light_on, T, 1). 1 holdsAt(Fluent, T2, Dur) :- T2 #= T1 + Dur,
2 happens(turn_light_on, T) :- not_holdsAt(light_on, T, 1). 2 ..., happens(Event, T1), ...

(a) Solution (apx1/fix-holdsAt3.pl). (b) New axiom (axioms/bec_scasp.pl, line 80).
Figure 14: Solution for the problem in Example A1 (blinking light).


https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light/logs/non_term_summary.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light/logs/zeno_halt.log
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light/model.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/apx1-blinking_light/fix-holdsAt3.pl
https://github.com/ovasicek/iclp25-scasp-zeno/blob/master/examples/axioms/bec_scasp.pl#L80
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