SAVAT: A Tool for Visualizing the Impact of Changes in
Microservices*

Adam Kattan Rahmani', Gabriel Elijah Goulis?>®, David Kozak®*®, Tomas
Cerny?®, and Tom4s Vojnar!»3

! FI, Masaryk University, CZ ? SIE, University of Arizona, US
3 FIT, Brno University of Technology, CZ * Oracle Labs, CZ

Abstract. Change impact analysis is a vital process for managing changes in
complex systems. This becomes especially important in decentralized systems
like those based on microservices. The paper presents a SAVAT tool designed to
facilitate change impact analysis in microservice systems. SAVAT enables practi-
tioners to interact with visual exploration of microservice systems, both from two
architectural views (service and domain views), using the established notions of
context maps and service dependency graphs, along with a novel notion of inter-
microservice call graphs. Our tool can also automatically highlight changes in
different versions of microservice systems and provide support to explore how
the changes propagate through the system.

1 Introduction

Microservices have gained substantial popularity in the industry due to their advantages
in scalability, flexibility, and reliability. Decomposing monolithic applications into in-
dependently evolvable units offers significant flexibility to developers. However, this
architectural shift makes it more difficult to maintain a comprehensive, holistic view of
the system [8]. Even minor changes in one part of the system can trigger ripple effects,
potentially leading to major failures [5].

A similar kind of issue appears also in object-oriented programs where the change
impact analysis (CIA) approach has been proposed to provide feedback on the seman-
tic impact of program modifications [15]. More recently, CIA techniques specifically
tailored for microservice systems have emerged [6]. However, to the best of our knowl-
edge, currently there is no general-purpose tool that offers an intuitive interface to holis-
tically explore the system structure.

This paper introduces SAVAT (Software Architecture Visualization and Analysis
Tool), a tool for visualizing the impact of changes in microservice systems!. SAVAT
enables practitioners to interactively explore both the service and the domain architec-
tural views, represented by the established notions of service dependency graphs (SDG)
and context maps (CM), respectively. In addition, SAVAT introduces inter-microservice
call graphs (IMCGs), an extended form of classical call graphs that captures both local
method invocations within a single microservice and remote calls between methods in
different microservices. This allows for a more detailed exploration of the dependency

* The work was supported by the Czech Science Foundation project 23-06506S, the FIT BUT
project FIT-S-23-8151, and the FI MU project MUNI/A/1600/2024. This material is also based
upon work supported by the National Science Foundation under Grant No. 2409933.

! The SAVAT showcase video can be found at https://youtu.be/yR_YqUXRKjs.

http://orcid.org/0009-0004-1351-6310
http://orcid.org/0000-0002-8846-922X
http://orcid.org/0000-0002-5882-5502
http://orcid.org/0000-0002-2746-8792
https://youtu.be/yR_YqUXRKjs

chains compared to the SDG alone. Furthermore, SAVAT offers automated CIA capa-
bilities in all its views, enabling users to compare two versions of a system, identify
differences, and analyze how local changes will affect the overall system.

The visualization offered by SAVAT provides stakeholders with multiple views on
both the overall architecture of the system and the results of the analyses carried out on
it. This allows stakeholders to identify architectural antipatterns, such as low cohesion,
high coupling, or cyclic dependencies. Addressing these issues, stakeholders can pro-
pose architectural changes that eliminate potential antipatterns and reduce the risk of
bugs or the reappearance of antipatterns in future versions of the microservice system.

2 Preliminaries

Fundamental concepts and notation include microservices, software architecture recon-
structions, and change impact analysis.

2.1 Microservices Architecture

Systems designed using microservice architecture (MSA) consist of multiple autono-
mous services. Each of these services, known as a microservice, communicates with
others via various types of API [7]. A single microservice can be described as a dis-
tinct deployment unit. Ideally, microservices should have a single responsibility and be
contained within a specific context [13]. Their size may also be influenced by the tech-
nologies used, the types of API communication, and the deployment strategies [14].

2.2 Software Architecture Reconstruction

Software architecture reconstruction (SAR) is an approach that can be used to extract
key knowledge about a given microservice system, which can later be used to analyze
the impact of changes in the system [11]. In particular, we use this process to gener-
ate multiple views on the given microservice system, including its context map (CM),
service dependency graph (SDG), and inter-microservice call graph IMCG).

For our purposes, we use a tool called Prophet [3], which employs GraalVM Na-
tive Image [17], an ahead-of-time optimizing compiler. This tool is capable of extract-
ing the necessary knowledge from each microservice for the construction of the views
mentioned above. The extracted knowledge includes information on REST calls, end-
points, entities, and call graphs (CGs) that characterize the given microservice system.
Prophet consists of two parts: the first part is a plugin within GraalVM Native Image
that performs the extraction, while the second is a dedicated Java application that runs
Graal VM, along with the plugin, on top of each microservice to create multiple views
from the previously extracted knowledge.

The results of SAR can be presented from various perspectives. These perspectives
may include views centered on entities and bounded contexts (CMs), views that focus
on communication between different microservices (SDGs, IMCGs), and views that
examine the internal implementation of a specific microservice (microservice CGs).

To illustrate each type of SAR result, we begin with SDGs. These graphs demon-
strate how microservices communicate with each other through API calls. The edges of
the graph represent every pair of REST calls and endpoints between the microservices.
These pairs are formed by matching the target URI of the REST call with the URI of the

endpoints, as well as by matching the HTTP method of the REST call with the HTTP
method of the endpoint. We focus on REST calls at the moment as they are provided by
Prophet out of the box, but SAVAT is extensible in this regard.

CM:s provide a perspective that emphasizes the relationships between entities within
a microservice system. An entity is defined as an object that contains data and revolves
around a specific use case. Each entity has a unique identifier that sets it apart from
other entities in the CM. These entities can persist over time, and their structure may be
based on a template, like a class in Java.

A CG is a directed graph whose nodes represent the methods and the edges indi-
cate their caller-callee relationships [9]. Visualizing CGs provides users with an effi-
cient way to navigate the intricate relationships between calls. Below, we distinguish
between two types of CGs: individual microservice CGs and the IMCG that combines
individual microservice CGs with the SDG. This graph not only illustrates the caller-
callee relationships among all methods in the microservice system but also highlights
the API calls between different microservices, linking them to their specific methods.

2.3 Change Impact Analysis

Minor changes in projects written in object-oriented languages may have major and
global effects. Similar problems arise in microservice systems, made even worse by
their distributed nature. Indeed, a change in one microservice may break another distant
microservice and cause a ripple effect [6]. The goal of the CIA is to provide feedback on
the semantic impact of a set of program changes [15], enabling stakeholders to address
unwanted changes caused by the ripple effect.

The first step in CIA is to identify changes within a defined artifact. According to
[15], in object-oriented programming, changes can be categorized into various types
of atomic changes. These atomic changes can be classified into three main categories:
changes made to classes (such as adding or removing methods or fields), modifications
to the body of methods, or the behavior of method lookups, and changes that involve
the creation or deletion of a class. This categorization can naturally be extended to
microservice systems too.

3 Capabilities of SAVAT

We now describe the key capabilities of SAVAT that allow practitioners to assess the
impact of changes in microservice systems. The figures presented are based on data
obtained from running SAVAT on the well-established Train Ticket benchmark [18].

3.1 Change Impact Analysis in SAVAT
In SAVAT, CIA is performed only on CMs and IMCGs. We do not perform CIA on
SDGs since they are subsumed by IMCGs. Performing CIA in SAVAT involves multiple
steps. At first, we collect the changed artifacts. A changed artifact is either a method
whose bytecode hash differs or an entity with a modified field or field annotation.
After assessing the changes, the CIA begins to examine each change and trace its
propagation. This tracing relies on connections defined by the model being used. For
example, when tracking changes made to methods, the process follows the caller-callee
relationships within the call graph. In this case, it makes sense to perform a type of
reverse graph traversal starting from the initially changed method and collect all the
methods that are traversed, as each of them may eventually call the initially changed
method and therefore might be influenced by its change.

ts-contacts-service
ts-ticket-service

. ts-admin-basic-info-service ts-station-food-service
) I
ts-travel-service i

Fig. 1: An example of visualization of the LDA conducted on two different SDGs.

3.2 Links Difference Analysis in SAVAT

Unlike CIA, links difference analysis (LDA) operates exclusively with edges. The vi-
sualization highlights edges that have been added (shown in green), modified (shown
in blue), and deleted (shown in red). This visualization is available only for CMs and
SDGs. In SAVAT, users can easily access the LDA visualization using a utility bar lo-
cated above the visualized graph.

Figure 1 shows an example of what the visualized result of LDA can look like:

— The green edge indicates that a new connection has been added between #s-ticket-
service and ts-contacts-service, which means that at least one REST call was added
to ts-ticket-service that invokes an endpoint of ts-contacts-service.

— The red edge shows that the connection between ts-adminbasic-info-service and ts-
travel-service has been completely removed, meaning that all REST calls from ts-
admin-basic-info-service that invoke endpoints from zs-travel-service were deleted.

— The blue edge indicates a modified connection between ts-adminbasic-info-service
and ts-station-food-service, showing that at least one REST call has been changed
between them.

3.3 Antipatterns and Metrics

SAVAT is capable of not only demonstrating the impact of changes introduced in a
microservice system, but also of identifying and visualizing various types of antipat-
terns and metrics. The antipatterns that SAVAT can visualize include high coupling and
cyclic dependencies. The high coupling antipattern identifies which microservices have
a number of connections exceeding a user-defined threshold. The cyclic dependencies
antipattern highlights the microservices that are part of a cycle in the visualized graph.

3.4 Dependency Analysis in SAVAT

A rendered SDG can provide key insight into the dependency network drawn from the
architecture and how service dependencies evolve over time. The graph structure can be
traversed manually. During that, selecting nodes will highlight direct dependencies and
provide context on how the services are connected. Since changes to these dependencies
may induce breaking changes, our visualization brings attention to modifications made
specifically to the rest calls that form the dependencies alongside endpoints targeted by
rest calls. In addition to highlighting direct connections, SAVAT provides the ability to
visualize the communication graph up to the depth provided. This makes the impact of
modifications on downstream dependencies and on the overall system more obvious.

Furthermore, SAVAT provides automated reachability analysis, as depicted in Fig-
ure 2. When a user clicks on a given node, the node itself and all transitively reachable
nodes are highlighted in yellow.

difyContact v addContact addContacts
Tl .‘V'__.
EEEEEEEN
VL)
getAllContacts ’p

getAllContacts GET . ‘é\,)\

getAllConfi create! ContactsAdmin
createContacts
> getAllContacts getAllContacts .

Fig. 2: Highlighted reachability of getAllContacts methods.

getAllStations

3.5 Inter-Microservice Call Graph

Visualizing connections between microservices typically offers a broad and holistic per-
spective. However, to gain deeper insights, it is often more effective to visualize the in-
teractions between individual methods. The real challenge lies in accurately represent-
ing the caller-callee relationships between the methods located in different microser-
vices. To address this, we propose a more detailed view, called the inter-microservice
call graph IMCG).

In this directed graph, nodes encode individual methods, distinguished by color ac-
cording to their microservice. The edges denote caller-callee relationships that are either
within a single microservice or across microservices via API calls, capturing the precise
connections between methods in a way reflecting real inter-service communication.

SAVAT also supports CIA on IMCGs. The resulting graph visually displays nodes
with green, blue, or red dotted borders, indicating the type of change that happened: in
particular, green is used for addition, blue for modification, and red for deletion. The
graph also includes other nodes and edges that depend on the changed node. Figure 3
shows the result of a CIA conducted on two versions of IMCG where all three types of
changes are visible:

— Modification — indicated by the blue dotted border around the queryForTravel,
queryByld, and queryByldBatch methods. The modification of queryForTravel af-
fected another method of the same name that serves as an endpoint handler. This,
in turn, affected methods in different microservices that invoke the endpoint via
a REST call using the POST HTTP method. For example, among the impacted
methods are the preserve methods.

— Addition — indicated by the green dotted border around the createEvent methods.
The queryByldBatch method, which was modified due to calling the newly added
createEvent method, in turn impacted its direct caller, the queryForNameBatch
method.

— Deletion — indicated by the red dotted border around the updatePrice Config method.
The deletion impacted not only methods within the same microservice, but also
methods in other microservices.

This CIA result clearly shows that adding, deleting, or modifying a method can
impact many other methods, not only within the same microservice but also across
multiple microservices. Another observation is that the modified method queryByld is
not called by any other method.

createEvent

Pu
<

createEvent queryByldBatch queryForNameBatch
POST
> LTTTITI L
updatePriceConfig update PUT modifyPrice modifyPrice
'- .4----------.4—6

getTripAllDetailinformation

preserve preserve

T 9etTripAllDetailinfo getTripAllDetailinfo
UL LT T T

-.ﬂ9§;l'.fiueryForTravel

getTicke quenyByld
access$100 < > ;“IEPIS-I--.
Tick Q¥ *
getTickets fo Fl .§' .7~ preserve
«
call queryi._r.l'ravel ¥ preserve

REL
.dln
..

getTripAllDetailinformation

call - getTripAliDetailinfo getTripAliDetaillnfo

Fig. 3: A visualization of the CIA conducted on two different versions of IMCGs.

4 Architecture and Implementation of SAVAT

This section details the architecture of SAVAT in two parts: the first part describes the
extraction of preliminary data for visualization, and the second part explains how the
visualization process subsequently processes and displays this data.

4.1 Intermediate Representation

Before starting with visualization, it is necessary to extract relevant data from the ana-
lyzed projects and store them in a form that allows efficient automated analysis. SAVAT
uses a hierarchical JSON-based intermediate representation (IR) originally introduced
in [1]. It is extracted from the source code and describes holistically the structure of
the microservice system. It is the foundation for visualizing how the system evolves by
tracking how the source code changes over time. It can be broken up into code compo-
nents, which are source code structures, e.g. method declarations or method calls, and
an additional layer of context, which provides information on the microservices present
along with metadata on the overall system like the commit id.

The IR is created by iterating over project files and mapping source code to code
components. Contextual information like the individual microservices is based on pack-
age management files such as Gradle or Maven files. This is done over a series of com-
mits, forming a temporal data set that tracks changes in architecture and implementation
over time. The extraction process leverages the JavaParser library that forms AST struc-
tures from source code based on the Java language syntax (https://javaparser.org). The
JGit library (https://github.com/eclipse-jgit/jgit) is used to interface with Git version
control within Java, to locally clone projects, and to iterate over their version history.

4.2 Visualization

The related tools for visualizing the SAR data, which we present below, use libraries
that render the data in a 3D space. In contrast, SAVAT uses a different library called

https://javaparser.org
https://github.com/eclipse-jgit/jgit

Cytoscape.js, which focuses on graph visualization in a 2D space [16]. This library
provides a variety of layout algorithms, of which SAVAT specifically uses the fCoSE
layout algorithm [2]. This algorithm effectively calculates the positions of the nodes
and provides various attributes that allow further customization of the layout structure.

Each input or analysis output graph is managed through its own Cytoscape instance,
which contains information about: (1) Graph elements objects (nodes and edges) with
their metadata. (2) The container component in which the graph is visualized. (3) Styles
that define colors, shapes, and labels for graph elements. (4) Layout options, including
the layout algorithm and its attributes. These instances facilitate effective and customiz-
able visualizations of graphs. They are then used in React.js (https://react.dev/) compo-
nents with embedded data and a selected layout algorithm.

SAVAT utilizes several modern tools to create an intuitive user interface (UI). This
user interface facilitates graph data visualization and offers users robust data manage-
ment options, including the ability to add new graph data sources, remove existing ones,
filter the data, and perform analyses.

To implement the described functionality, SAVAT uses several helper tools. Axios
(https://axios-http.com/docs/intro) is a promise-based HTTP client that allows SAVAT
to make calls to the back-end REST API. Shadcn (https://ui.shaden.com/docs) is a li-
brary of UI components that provides various ready-to-use components. Tanstack Query
(https://tanstack.com/query/latest/docs/framework/react/overview) is a library that fa-
cilitates asynchronous fetching, caching, and the creation of state or mutation hooks for
making REST API calls to the back-end.

5 Related Works

Microvision [4] is a static analysis tool that brings visualization and observability to
microservice architectures by using augmented reality. It leverages augmented reality
to make viewing densely packed systems easier to manage. This seeks to address a well-
known concern in visualizing microservice systems: as the system expands, it degrades
visibility and makes navigating the system hard. Microvision functions by extracting a
model of parsed source code and then, through SAR, in multiple steps of extraction,
parsing, and manipulation. The visualization can be manipulated and traversed in 3D
space and provides pop-up displays of relevant information while navigating the graph.

Harris et al. [10] designed a prototype tool that compares 2D and 3D visualization
techniques with static analysis. SAR is used to generate an intermediate model from
source code that is visualized by the tool. The visualization features intractable nodes
that pop up relevant information and search features to navigate the system. A survey
of users revealed that 3D scenes may be hard to traverse due to scale and could unnec-
essarily prolong observation of the system.

Another tool capable of SAR is described in [12], which employs profiling tactics
in order to extract knowledge about a given microservice system.

6 Conclusion and Future Work

Although microservice systems provide significant advantages and have gained trac-
tion, managing architectural degradation in these systems has become challenging. With
SAVAT, we bridge the gap between what developers do and the consequences of their

https://react.dev/
https://axios-http.com/docs/intro
https://ui.shadcn.com/docs
https://tanstack.com/query/latest/docs/framework/react/overview

changes. SAVAT is capable of providing extensive impact analysis in distributed MSA’s
by visualizing structural changes to the system.

In future versions of SAVAT, we aim to provide customization of the user interface

and plan to incorporate more data into the existing visualization.

Data Availability. SAVAT is open source and is available in the following git repository
https://github.com/katyadam/SAVAT. Moreover, all the examples presented are based
on the openly available train ticket benchmark, as mentioned above.

References

1.

10.

12.

13.
14.

15.

16.

17.

18.

Adams, L., S. Abdelfattah, A., Hossain Chy, M.S., Perry, S., Harris, P., Cerny, T,
Amoroso d’Aragona, D., Taibi, D.: Evolution and Anti-patterns Visualized: MicroProspect
in Microservice Architecture. In: Proc. of ECSA’23. LNCS, vol. 14590. Springer (2023)

. Balci, H., Dogrusoz, U.: fCoSE: A Fast Compound Graph Layout Algorithm with Constraint

Support. Transactions on Visualization and Computer Graphics 28 (2021)

. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice Architecture

Reconstruction and Visualization Techniques: A Review. In: Proc. of SOSE’22. IEEE (2022)

. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microvision: Static

Analysis-based Approach to Visualizing Microservices in Augmented Reality. In: Proc. of
SOSE’22. IEEE (2022)

. Cerny, T., Chy, M., Abdelfattah, A., Soldani, J., Bogner, J., et al.: On Maintainability and Mi-

croservice Dependencies: How Do Changes Propagate? In: CLOSER’24. Scitepress (2024)

. Cerny, T., Goulis, G., Abdelfattah, A.S.: Towards Change Impact Analysis in Microservices-

based System Evolution (2025), https://arxiv.org/abs/2501.11778

. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R., Safina,

L.: Microservices: Yesterday, Today, and Tomorrow. Springer (2017)

. Granchelli, G., Cardarelli, M., Francesco, P., Malavolta, 1., Tovino, L., Di Salle, A.: Mi-

croART: A Software Architecture Recovery Tool for Maintaining Microservice-Based Sys-
tems. In: Proc. of ICSAW’17. IEEE (2017)

. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call Graph Construction in Object-Oriented

Languages. In: Proc. of OOPSLA’97. ACM (1997)
Harris, P., Gortney, M., Abdelfattah, A.S., Cerny, T., Rivas, P.: Designing a System-Centered
View to Microservices Using Service Dependency Graphs: Elaborating on 2D and 3D visu-
alization. In: Proc. of ICECCME’24. IEEE (2024)

. Hutcheson, R., Blanchard, A., Lambaria, N., Hale, J., Kozak, D., et al.: Software Architecture

Reconstruction for Microservice Systems Using Static Analysis via GraalVM Native Image.
In: Proc. of SANER’24. IEEE (2024)

Nakazawa, R., Ueda, T., Enoki, M., Horii, H.: Visualization Tool for Designing Microser-
vices with the Monolith-First Approach. In: Proc. of VISSOFT’18. IEEE (2018)

Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly (2021)
Pahl, C., Jamshidi, P.: Microservices: A Systematic Mapping Study. In: Proc. of
CLOSER’16. ACM (2016)

Ryder, B.G., Tip, F.: Change Impact Analysis for Object-Oriented Programs. In: Proc. of
PASTE’01. ACM (2001)

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N.,
Schwikowski, B., Ideker, T.: Cytoscape: A Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Research 13(11) (2003)

Wimmer, C., Stancu, C., Hofer, P., Jovanovic, V., Wogerer, P., Kessler, P.B., Pliss, O.,
Wiirthinger, T.: Initialize Once, Start Fast: Application Initialization at Build Time. In: Proc.
of OOPSLA’19. ACM (2019)

Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., Zhao, W.: Benchmarking Microservice
Systems for Software Engineering Research. In: Proc. of ICSE’18. ACM (2018)

https://github.com/katyadam/SAVAT
https://arxiv.org/abs/2501.11778

	SAVAT: A Tool for Visualizing the Impact of Changes in Microservices*-3mm

