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Abstract. This work deals with the 2LS program verification framework that
combines several verification techniques—namely, abstract domains, templated
invariants, k-induction, bounded model checking, and SAT/SMT solving. A dis-
tinguishing feature of the approach used by 2LS is that it allows for seamless
combinations of various program abstractions. In this work, we introduce a novel
abstract template domain allowing 2LS to reason about arrays, using an arbitrary
abstract domain to describe values that are stored inside the arrays (including
nested arrays and dynamic linked data structures), and with the arrays possibly
nested inside other structures. The approach uses array index expressions to split
each array into multiple contiguous, non-overlapping segments and computes a
different invariant for each of them. We illustrate the approach on a program deal-
ing with a list of arrays and subsequently present how the new domain allowed
2LS to improve in the international software verification competition SV-COMP.
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1 Introduction

Arrays are arguably one of the most fundamental data structures in software engineer-
ing. A majority of programs use them in one way or the other. This means that veri-
fication of array-manipulating programs has many potential applications. On the other
hand, it still faces a lot of challenges which often stem from the very essential features
of arrays.

One of such problems is that arrays are by definition compound data structures
which have an arbitrary underlying (element) data type, but at the same time their num-
ber of elements may be parametric and not bounded in advance. Moreover, the size
of an array can also change at runtime using low-level operations such as realloc.
Therefore, it is often not sufficient to directly use existing scalar value analyses, but it is
necessary to combine these with specialised techniques reflecting the way how arrays
are structured.
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In this work, we address this problem in a way which allows us to reuse as many
existing program analyses as possible. To this end, we develop our approach within the
framework of so-called template-based verification implemented in the 2LS tool [31, 9,
24]. One of the main ideas of this framework is that it uses abstract interpretation with
domains that are all required to have the same form of parametrized, fixed, quantifier-
free, first-order logic formulae. This allows 2LS to use an SMT solver to reason about
program properties and at the same time enables a straightforward combination of ab-
stract domains with delegating a lot of the complexity to the solver itself.

Our main contribution is a proposal of an abstract domain for reasoning about the
contents of arrays in 2LS. Thanks to the fact that 2LS already contains a number of
existing abstract domains (such as the template polyhedra domain or the heap shape
domain), our domain can be easily combined with them and can be used to reason about
arrays containing various kinds of elements as well as about complex data structures
containing arrays. One of such structures are unrolled linked lists, which we describe in
the running example introduced at the end of this section.

Since 2LS uses an original approach to implement its abstract interpretation, we
present its most important concepts in Section 2. After that, we propose our new ar-
ray abstract domain in Section 3 and show how the results of 2LS in the International
Competition on Software Verification (SV-COMP) improved once we implemented the
proposed domain (Section 4). Finally, Section 5 gives an overview of other existing ap-
proaches to verification of array-manipulating programs, some of which were a great
inspiration for our method.

Running Example In Figure 1, we introduce an example program, which we will use
to illustrate the mechanisms proposed in this paper. The program features initialization
of a data structure called an unrolled linked list [32], which is a linked list whose nodes
contain arrays of values (in our case, up to 1000 integer values with the number of cells
really in use given by the field size). To check correctness of operations over such a
data structure, the verification tool needs to be able to reason over linked heap structures
as well as the integer contents of arrays at the same time. 2LS already contains abstract
domains for analyzing integer values as well as the shape of the heap, and, in this paper,
we complement these with a new abstract domain for analyzing arrays.

2 Template-Based Verification of Programs

In this section, we present the most important concepts of 2LS that our work builds
upon—for more details, see [31, 9, 24]. In its main verification loop, 2LS gradually
unfolds program loops. Let k be the applied number of unfolding steps. Each version of
the program obtained this way is translated into a static single assignment (SSA) form
while approximating the (partially unrolled) program loops as described below. The
SSA form is then translated into a first-order logical formula, and an attempt to find a
k-inductive program invariant is done. If the discovered invariant is sufficient to show
safety of the program, the verification succeeds. Otherwise, bounded model checking
is used to see whether a real error can be reached in k steps. If so, the verification fails.
Otherwise, k gets increased, and another iteration of the main verification loop follows.
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1 struct node {

2 int data[1000];

3 int size;

4 struct node *next;

5 };

6

7 int main() {

8 struct node *list = NULL;

9 while (nondet()) {

10 struct node *n = malloc(sizeof(*n));

11 for (int i = 0; i < 1000; i++)

12 n->data[i] = 0;

13 n->size = 0;

14 n->next = list;

15 list = n;

16 }

17 int x = nondet(0,1000); // 0 <= x < 1000

18 assert(!list || list->data[x] == 0);

19 }

Fig. 1. Running example

Since the SSA form used in 2LS has several unusual features that cannot be found in
other verification approaches and since their understanding is important for understand-
ing the rest of this work, we present it in detail in Section 2.1. Likewise, in Sections 2.2
and 2.3, we present in more details the algorithm for inference of inductive invariants,
which is at the heart of the 2LS’ approach to abstract interpretation. The most impor-
tant one is that all abstract domains are required to have the same form of so-called
templates (hence, we denote the approach as template-based verification).

Templates are fixed, parametrized, first-order logic formulae, which allows 2LS to
use an SMT solver to reason about them. Additionally, the unified form of the templates
makes it easy to combine multiple abstract domains together (in the simplest form by
just taking a conjunction of their templates) since the heavy-lifting of abstract operation
combinators can be left to the underlying solver. Thanks to this feature, our newly
proposed domain for reasoning about array contents can be easily combined with other
domains already present in 2LS, which will, e.g., allow us to verify the running example
program from Figure 1.

2.1 Internal Program Representation

The 2LS framework is built upon the CPROVER infrastructure [14] and therefore uses
the same intermediate representation called GOTO programs. In this procedural lan-
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guage, any non-linear control flow, such as if or switch statements, loops, or jumps,
is translated to equivalent guarded goto statements. These statements are branch instruc-
tions that include (optional) conditions. CPROVER generates one GOTO program per
C function found in the parse tree. Furthermore, it adds a new main function that first
calls an initialization function for global variables and then calls the original program
entry function.

After obtaining a GOTO representation of the analyzed program from CPROVER,
2LS performs a light-weight static analysis to resolve function pointers to a case split
over all candidate functions, resulting in a static call graph. Furthermore, assertions
guarding against invalid pointer operations or memory leaks are inserted. In addition,
2LS uses a local constant propagation and expression simplification to increase effi-
ciency.

After running the mentioned transformations, 2LS performs a static analysis to de-
rive data flow equations for each function of the GOTO program. Struct types are de-
composed into their members. The result is a static single assignment (SSA) form which
we describe in detail in the following section.

The Static Single Assignment Form Program verification in 2LS is based on gener-
ating program abstractions using a constraint solver. In order to simplify the generation
of a formula representing the program semantics, 2LS uses the static single assignment
form (SSA) to represent programs. SSA is a standard program representation used in
many contexts including compilers as well as various program verifiers or analysers.
We use common concepts of SSA—introducing a fresh copy (version) xi of each vari-
able x at program location i in case x is assigned to at i, using the last version of x
whenever x is read, and introducing a phi variable xphii at a program join point i in case
different versions of x come from the joined program branches. For an acyclic program,
SSA yields a formula that represents exactly the post condition of running the code.

In 2LS, the traditional SSA is extended by two new concepts: (1) an over-approxi-
mation of loops in order to make the SSA acyclic and (2) a special encoding of the
control-flow [9]. These concepts allow a straightforward transformation of the SSA
form into a formula that can be passed to an SMT solver. In addition, 2LS leverages in-
cremental SMT solving, which means that it tries to reuse as large parts of the generated
formulae as possible for successive solver invocations.

Over-Approximation of Loops In order to be able to use a solver for reasoning about
program abstractions, 2LS extends the SSA by over-approximating the effect of loops.
As was said above, the value of a variable x is represented at the loop head by a phi
variable xphii joining the value of x from before the loop and from the end of the loop
body (here, we assume that all paths in the loop join before its end, and the same holds
for the paths before the loop). However, instead of using the version of x from the
loop end, it is replaced by a free “loop-back” variable xlbi . This way, the SSA remains
acyclic, and, since the value of xlbi is initially unconstrained, the effect of the loop is
over-approximated. To improve the precision, the value of xlbi can be later constrained
using a loop invariant that will be inferred during the analysis. A loop invariant is a
property that holds at the end of the loop body after any iteration and can therefore be
assumed to hold on the loop-back variable.



Template-Based Verification of Array-Manipulating Programs 5

To illustrate, let us take the variable list from the example in Figure 1. It is up-
dated in the outer loop, and so the value at the loop head is a join of the corresponding
SSA variables from before the loop (denoted list8) and from the end of the loop (de-
noted list15). In the loop head phi node listphi9 , we, however, use an unconstrained
loop-back variable listlb16 instead of list15 and join it non-deterministically with the
value from before the loop using a new free Boolean loop-select variable gls16. Overall,
the final phi node expression will have the form listphi9 = gls16 ? list8 : listlb16. 2LS will
then constrain the value of listlb16 by inferring an invariant in an appropriate domain.

Encoding the Control-Flow In 2LS, the program is represented by a single monolithic
formula. It is thus required that the formula encodes control-flow information. This is
achieved using so-called guard variables that track the reachability information for each
program location. In particular, for each program location i, we introduce a Boolean
variable gi whose value encodes whether i is reachable.

Memory Model As we have already indicated, an important property of the analysis
in 2LS is that it leverages incremental solving. This is a great benefit to the verification
performance, however, it comes with several drawbacks. The main one is related to
the encoding of pointer dereferencing operations since on-demand concretization of
heap objects is not possible (as the formula representing the program cannot change).
To overcome this limitation, 2LS uses a special memory model and representation of
memory-manipulating operations [29].

The model is object-based, and it distinguishes objects allocated statically (i.e., vari-
ables on the stack and global variables) and dynamically (i.e., on the heap). Whereas
2LS has a mode using summarization for handling procedures [2], we consider here
non-recursive programs with all functions inlined and, therefore, it does not need to
consider the stack. Hence, the set of static memory objects corresponds, in fact, to the
set of all program variables.

To represent dynamic memory objects (i.e., those allocated using malloc or some
of its variants), 2LS uses abstract dynamic objects. An abstract dynamic object repre-
sents a set of concrete dynamic objects allocated by the same malloc call. We refer to
a malloc call at a program location i as to an allocation site i.

Generally, a single abstract dynamic object is not sufficient to reasonably precisely
represent all concrete objects allocated by a single malloc call. This is due to the fact
that the analyzed program may use several concrete objects allocated at the same al-
location site at the same time. If such objects are, e.g., compared, the memory model
must allow us to distinguish them. This can be done either by concretization on de-
mand or by pre-materialization of a sufficient number of objects at the beginning of the
analysis. We have opted for the latter possibility since it matches better with the use of
incremental solving in 2LS4.

4 When the pre-materialization is used, all the variables needed to represent the semantics are
known at the start of the analysis, and the representation of the semantics of the program stays
constant. On the other hand, the approach used in 2LS would require new variables and a new
representation of the program be generated every time an on-demand concretization was found
necessary, making the solver to discard everything it discovered so far.
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The number of abstract dynamic objects pre-materialized for each allocation size is
determined using a simple may-alias analysis followed by choosing a sufficient number
for the particular site such that the analysis is guaranteed to remain sound. For details
on the exact algorithm, cf. [29].

Once the numbers of sufficient abstract memory objects are computed, each malloc
call (or any of its variants) is replaced by a non-deterministic choice among one of
these objects. Afterwards, 2LS performs a static may-points-to analysis which over-
approximates—for each program location i and for each pointer p—the set of memory
objects that p may point to at i. A dereference of p at i is then represented by a choice
among the pointed objects. This way, the memory manipulating operations are pre-
materialized and the formula representing the program may remain static for the rest of
the analysis.

2.2 Template-Based Predicate Inference

A key phase of the program verification in 2LS is the generation of Inv , an inductive in-
variant. Instead of using algorithms for solving the semantical fixed point equations [16,
17], e.g. as implemented in off-the-shelf abstract interpreters, 2LS implements an algo-
rithm for inferring such an invariant that exploits the power of incremental SMT solv-
ing.

When directly using a solver, 2LS would need to handle (the existential fragment
of) second-order logic. As such solvers with reasonable efficiency are not currently
available, the problem is reduced to a problem that can be solved by iteratively applying
a first-order solver. We restrict ourselves to finding inductive invariants Inv of the form
T (x, δ) where T is a fixed expression, a so-called template, over program variables x
and template parameters δ. Fixing a template reduces the second-order search for an
invariant to a first-order search for template parameters:

∃δ.∀x,x′. (Init(x)∧ ⇒ T (x, δ))∧
(T (x, δ) ∧ Trans(x,x′)⇒ T (x′, δ))

(1)

where Trans is the transition relation representing the semantics of the program, gen-
erated from the SSA form described in Section 2.1.

We resolve the ∃∀ problem by an iterative solving of the negated formula, particu-
larly of the second conjunct of (1), for different choices of constants d as the values of
the parameter δ:

∃x,x′.¬
(
T (x,d) ∧ Trans ⇒ T (x′,d)

)
. (2)

The reason why we concentrate on iteratively solving (2) instead of the entire (1)
is the usage of incremental solving combined with the internal program representation
of 2LS. Since the SSA of the program is pre-computed, Init and Trans are “learned”
by the solver and hence do not need to be re-solved for every iteration of the invariant
inference algorithm.

The formula (2) can be expressed in quantifier-free logics and efficiently solved by
SMT solvers. Using this as a building block, one can decide the mentioned ∃∀ problem
for finite types (e.g. fixed-size bitvectors).
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From the abstract interpretation point of view, d is an abstract value, i.e., it repre-
sents (concretizes to) the set of all program states s that satisfy the formula T (s,d)
where a state is a vector of values of variables from x. The choice of the template
is hence analogous to choosing an abstract domain in abstract interpretation. The ab-
stract values representing the infimum ⊥ and supremum > of the abstract domain
denote the empty set and the whole state space, respectively: T (s,⊥) ≡ false and
T (s,>) ≡ true [9].

Formally, the concretization function γ is:

γ(d) = {s | T (s,d) ≡ true}. (3)

In the abstraction function, to get the most precise abstract value representing the given
concrete program state s, we let

α(s) = {min(d) | T (s,d) ≡ true}. (4)

for templates that are monotonic in d, for instance. If the abstract domain forms a com-
plete lattice, existence of such a minimal value d is guaranteed.

The algorithm for the invariant inference takes an initial value of d = ⊥ and itera-
tively solves (2) using an SMT solver. If the formula is unsatisfiable, then an invariant
has been found, otherwise a model of satisfiability d′ is returned by the solver. The
model represents a counterexample to the current instantiation of the template being
an invariant. The value of the template parameter d is then updated by combining the
current value with the obtained model of satisfiability using a domain-specific join op-
erator [9].

For example, assume we have a program with a loop that counts from 0 to 10 in a
variable x, and we have a template x ≤ d. Let us assume that the current value of the
parameter d is 3, and we get a new model d′ = 4. Then we update the parameter to 4
by computing dtd′ = max(d, d′) because max is the join operator for the domain that
tracks numerical upper bounds.

In 2LS, we use a single template to compute all invariants of the analyzed program.
Therefore, typically, a template is composed of multiple parts, each part describing
an invariant for a set of program variables. With respect to this, we expect a template
T (x, δ) to be composed of so-called template rows Tr(xr, δr), each row r describing an
invariant for a subset xr of variables x and having its own row parameter δr. The overall
invariant is then a composition of individual template rows with computed values of the
corresponding row parameters. The kind of the composition (it can be, e.g., a simple
conjunction) is defined by each domain.

Guarded Templates Since we use the SSA form rather than control flow graphs, we
cannot use templates directly. Instead we use guarded templates. As described above, a
template is composed of multiple template rows, each row describing an invariant for a
subset of program variables. In a guarded template, each row r is of the form:

Gr(xr)⇒ T̂r(xr, δr) (5)

for the rth row T̂r of the base template domain (e.g., template polyhedra).Gr is the con-
junction of the SSA guards gr associated with the definition of variables xr occurring
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in T̂r. Since we intend to infer loop invariants, Gr(xr) denotes the guard associated to
variables xr appearing at the loop head. Hence, template rows for different loops have
different guards.

We illustrate the above on the variable i from the inner loop of the example program
from Figure 1. Let the phi node for i have the form iphi11 = gls12 ? i11 : ilb12. We use a
guarded interval template which has the form:

T (ilb12, (δ1, δ2)) =
g11 ∧ gls12 ⇒ ilb12 ≤ δ1 ∧
g11 ∧ gls12 ⇒ −ilb12 ≤ δ2.

(6)

Here, g11 is a boolean guard expressing the reachability of line 11 (i.e., the loop head),
and gls12 is a non-deterministic guard expressing that ilb12 is chosen as the value of iphi11 .
In this example, the inferred values of the template parameters would be δ1 = 1000 and
δ2 = −1.

2.3 Abstract Domains in 2LS

Reviewer 1: Give more complex concrete examples of domain
Over the past years, several abstract domains were introduced in 2LS. All of these

have the same form of templates as described in Section 2.2 and hence can be arbitrar-
ily combined. The list of the most important domains contains the template polyhedra
domain [9], the heap shape domain [29], and the ranking domains [13].

In this work, we will combine our newly proposed array abstract domain with the
interval domain (being the specialization of the template polyhedra domain) and with
the heap shape domain. The former is used for invariants over numerical variables and
the latter is used for pointer-typed variables (and numerical and pointer-typed fields of
dynamic objects, respectively). As for the combination itself, it is done using a so-called
product domain which allows to combine templates from multiple domains by taking a
conjunction of the corresponding formulae.

3 Abstract Domain for Arrays

In this section, we introduce our abstract domain for analyzing the contents of arrays—
we refer to it as the array domain.

Similarly to all other domains in 2LS, the array domain has the form of a template.
An important property of arrays is that they may have an arbitrary element type. There-
fore, using a simple domain is not sufficient and our array domain is a so-called com-
bination domain where the domain itself describes only the form (the memory layout)
of the array and it delegates reasoning about the actual array element values to another
abstract domain, which we denote as the inner domain. Note that the inner domain may
be any domain present in 2LS, including the array domain itself, which can be used to
analyze arrays with multiple dimensions.

The domain is intended to be used to deal with variables from the set Arr of all
array-typed variables of the given program. In particular, since we deal with loop in-
variants, we concentrate on arrays that are updated inside loops. In our SSA represen-
tation described in Section 2.1, such arrays are abstracted using so-called loop-back
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array variables. We denote Arr lb the set of such variables, and our array domain is then
limited to this set.

The primary idea of our array domain, inspired by [15], is that each array a ∈ Arr lb

is split into several segments, and an invariant is computed for each segment in the
appropriate inner domain (based on the element type of a). For each a, the set of seg-
ments is determined using so-called segment borders that we infer at the beginning of
the analysis (using the set of index expressions that the analyzed program uses to write
into a—cf. Section 3.2 for details). A segment border can be any valid SSA expression.

In the rest of this section, we describe different aspects of the array abstract do-
main and invariant inference using it. First, we show in Section 3.1 how, given a set of
borders, an array is split into segments and how the array domain template looks like.
Next, we introduce the way we determine array segment borders in Section 3.2. Last, in
Section 3.3, we present how invariants are computed in the array domain and how they
can be used to verify program properties. To facilitate understanding of the presented
concepts, we illustrate all of them on our running example in Section 3.4.

In the rest of this chapter, let us assume that we compute a loop invariant for an
array a ∈ Arr lb updated in a loop l. We useNa to denote the size (number of elements)
of a.

3.1 Array Domain Template

We now describe the form of our array domain template. As outlined before, each array
is split into multiple segments, and an invariant for each segment is computed in the ar-
ray inner domain. Hence, the form of the array template is given by array segmentation,
i.e., the way that each array is split into segments.

Let us denote Ba the set of segment borders for the array a. Prior to creating the
segments, we perform two pre-processing steps: (1) making the borders unique and
(2) ordering the borders.

Making the Borders Unique In order to decrease the number of segment borders and
avoid empty segments, we first remove duplicate borders. This is done using an SMT
solver—in particular, for each pair of segment borders b1, b2 ∈ Ba, we check whether
the formula

b1 6= b2 ∧ Trans (7)

is satisfiable. In Eq. (7), Trans denotes the transition relation formula created from the
SSA form of the analyzed program and representing the (over-approximated) program
semantics. If Eq. (7) is unsatisfiable, then the values of the borders are always equal and
hence one of them can be removed from Ba. By repeating this process for each pair of
borders, we obtain the set of unique borders.

Ordering Borders After making Ba contain unique indices only, we try to order them.
Again, we query the SMT solver, this time using two formulae:

¬(b1 ≤ b2) ∧ Trans, (8)
¬(b2 ≤ b1) ∧ Trans. (9)
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If exactly one of Equations (8) and (9) is unsatisfiable for each pair of b1, b2 ∈ Ba, then
a total ordering over Ba can be found. Otherwise, Ba is left unordered.

Array Segmentation Once the array segment borders are unique and possibly ordered,
we create the array segmentation. We distinguish two situations:

1. Ba cannot be totally ordered. In such a case, we create multiple segmentations, one
for each b ∈ Ba:

{0} Sb
1 {b} Sb

2 {b+ 1} Sb
3 {Na}. (10)

The idea here is that if a[b] is written to in a loop with gradually incrementing b,
then, for any iteration b of the loop, Sb

1 will abstract all array elements that have
already been traversed, Sb

2 will be the element accessed in the current iteration, and
Sb
3 will abstract elements to be traversed in the following iterations.

2. Ba can be totally ordered s.t. b1 ≤ . . . ≤ bn for Ba = {b1, . . . , bn}. In such a case,
we create a single segmentation for the entire array a:

{0} S1 {b1} S2 {b1 + 1} · · · {bn} S2n {bn + 1} S2n+1 {Na}. (11)

Array Segments A single array segment S denoted

{bl} S {bu} (12)

is an expression abstracting the elements of a between the indices bl (inclusive) and bu
(exclusive). We refer to bl and bu as to the lower and upper segment bounds, respec-
tively. In addition, for each S, we define two special variables: (1) the segment element
variable elemS being an abstraction of the array elements contained in S and (2) the
segment index variable idxS being an abstraction of the indices of the array elements
contained in S.

Template Form Having the set of loop-back arrays Arr lb and a set of segments Sa for
each a ∈ Arr lb, we define the array domain template as:

T A ≡
∧

a∈Arr lb

∧
S∈Sa

(
GS ⇒ T in(elemS)

)
(13)

where T in is the inner domain template and GS is the conjunction of guards associated
with the segment S.

The inner domain template abstracts the elements within a segment S. It is typically
chosen based on the data type of elemS (e.g., we usually use the interval domain for
numerical types and the shape domain for pointer types).

The purpose of GS is to make sure that the inner invariant is limited to the elements
of the given segment {bl} S {bu}. In particular, GS is a conjunction of several guards:

bl ≤ idxS < bu ∧ (14)

0 ≤ idxS < Na ∧ (15)

elemS = a[idxS ] (16)
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where Eq. (14) makes sure that the segment index variable stays between the segment
borders, Eq. (15) makes sure that the segment index variable stays between the array
borders (since segment borders are generic expressions, they may lie outside of the
array, hence Eq. (14) is not sufficient), and Eq. (16) binds the segment element variable
with the segment index variable.

Using the above template, 2LS is able to compute a different invariant for each
segment. For example, for a typical array iteration loop, this would allow to infer a
different invariant for the part of the array that has already been traversed than for the
part of the array that is still to be visited.

3.2 Computing Array Segment Borders

In the previous section, we assumed that we already have the set of segment borders
for each array. In this section, we describe how this set is obtained. As we outlined
earlier, the verification approach of 2LS requires the domain template to be a fixed,
parametrized, first-order formula. To be able to fulfil the “fixed” property, we need to
determine the set of segments at the beginning of the analysis so that we are able to
create a finite set of array segments which will form the array domain template.

The main idea of our approach is that the segment borders should be closely related
to the expressions that are used to access array elements in the analyzed program (we
denote these as array index expressions). Therefore, we perform a static array index
analysis which collects the set of all expressions occurring as array access indices (i.e.,
expressions that appear inside the square bracket operators). In addition, we distinguish
between read accesses (occurring on the right-hand side of assignments and in condi-
tions) and write accesses (occurring on the left-hand side of assignments).

Once the array index analysis is complete, for each loop-back array a, we determine
the set of its segment borders by taking the set of all index expressions used to write
into a in the corresponding loop. In addition, if some of those expressions contain a
variable whose value is updated inside the same loop, we also take the pre-loop value
of the expression as a segment border.

To illustrate the above, let us have a simple loop initializing the second half of an
array:

1 for (int i = N / 2; i < N; i++)

2 a[i] = 0;

The set of index expressions used to write into the array is {i}, but we would also use
N/2 (the initial value of i) as a segment border. Hence, the segmentation of a would
be:

{0} · · · {N/2} · · · {N/2+ 1} · · · {i} · · · {i+ 1} · · · {N}. (17)

Thanks to this segmentation, 2LS is able to differentiate three important parts of
the array: (1) the first half of the array (which is untouched in the loop), (2) the part
between N/2 and i which in any iteration represents the already initialized part, and
(3) the part from i to the array end which represents the part to be initialized in future
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iterations. In particular, 2LS would be able to infer an invariant stating that all elements
in part (2) are equal to 0, which would mean that the entire second half of the array is
set to 0 once the loop ends.

3.3 Array Domain Invariant Inference

Once the array domain template is created, the invariant inference algorithm of 2LS (see
Section 2.2) is used to compute loop invariants for individual segments. As we already
described, most of the work is delegated to the inner domain, and the array domain is
mainly responsible for making sure that the segment element variables, for which the
inner invariants are computed, are properly constrained.

Additionally, there is one more necessary step after the array invariants are com-
puted. The problem is that the invariants describe properties of the segment element
and index variables, however, these variables are not actually used inside the analyzed
program. Therefore, in order for the invariant to properly constrain the program seman-
tics, we bind the computed invariants with all index expressions used to read from the
arrays. We do not need to constrain the array elements that are written by the program
since their value gets overridden, hence binding with read elements is sufficient. The
set of expressions to bind the invariant with is obtained using the array index analysis
introduced in Section 3.2.

In particular, for each segment S of each loop-back array a, we create a binding
between the segment element and index variables elemS and idxS and each index ex-
pression ir used to read from a as follows. We take the computed invariant for S and
replace all occurrences of idxS by ir and all occurrences of elemS by a[ir]. Then, the
obtained formula is passed to the solver which constrains the values of a for the given
access through ir. This process is done for the final invariant as well as for each can-
didate invariant found during the analysis to allow the invariant inference algorithm to
account for the already computed constraints.

3.4 Running Example

Reviewer 1: Demonstrate impact of incrementality
We now illustrate usage of the array domain on the running example from Fig-

ure 1. The arrays in the program are contained within dynamically allocated objects.
For simplicity, let us assume that all objects allocated by the malloc on line 10 are
represented by a single abstract dynamic object ao105. We demonstrate inference of a
loop invariant for the inner loop of the program, hence the SSA object that we work
with is ao10.datalb12.

First, 2LS runs the array index analysis to determine the set of indices used to access
the array. In this case, there is a single index used for writing (i on line 12) and one
index used for reading (x on line 18).

After the array index analysis is run, the analyzed array must be segmented. There is
a single written index, hence there will be three segments in total. In addition, the index

5 In practice, we would need at least 2 abstract dynamic objects to distinguish between the
current node pointed by n and the next node pointed by n->next.
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is updated inside the same loop, hence we will use its loop-back variant (ilb12) inside the
segmentation

{0} S1 {ilb12} S2 {ilb12 + 1} S3 {1000}. (18)

For each segment Sj , j ∈ {1, 2, 3}, we introduce a segment element variable elemj

and a segment index variable idx j .
Since the array is of integer type, we will use the interval abstract domain as the

inner domain. The interval domain has two template rows for each variable, hence our
template will contain 6 rows in total (two for each segment element variable). For the
sake of legibility, we only give the two rows for elem1:

g11 ∧ gls12 ∧ 0 ≤ idx 1 < ilb12 ∧ 0 ≤ idx 1 < 1000 ∧ elem1 = ao10.data
lb
12[idx

1]

⇒ elem1 ≤ d1 ∧
g11 ∧ gls12 ∧ 0 ≤ idx 1 < ilb12 ∧ 0 ≤ idx 1 < 1000 ∧ elem1 = ao10.data

lb
12[idx

1]

⇒ −elem1 ≤ d2.
(19)

Both rows have the same guard (the implication antecedent) consisting of multiple
parts:

– The first two conjuncts (g11 ∧ gls12) are standard row guards used in other domains
that guard the reachability of the loop and the definition of the loop-back variable.

– The second part (0 ≤ idx 1 < ilb12) guards that the segment index variable stays
within the segment bounds.

– The third part (0 ≤ idx 1 < 1000) guards that the segment index variable stays
within the array bounds.

– The last part (elem1 = ao10.data
lb
12[idx

1]) binds the segment element variable with
the analyzed array object and the segment index variable.

The properties of interest to be computed (the implication consequences) are deter-
mined from the inner domain, in this case the interval abstract domain.

Using the above template in the invariant inference algorithm of 2LS, we will obtain
values of d1 = d2 = 0 (i.e., values of all array elements in the segment S1 are equal to
0). After the loop ends, the value of ilb12 will be 1000 (thanks to the loop condition and
the invariant computed for ilb12 from the template given in (6)), which will effectively
prove that all elements of the given array are equal to 0 at that moment.

The remaining part of the array domain usage is binding of the invariant onto in-
dices used to read from it. Our example program features one array read at line 18
(list->data[x]). At this point of the program, list may point to the dynamic
object ao10, hence an access to ao10.data is possible in this expression. Therefore, we
bind the invariant computed from the template from Eq. (19) with the read index x17 as
follows:

g11 ∧ gls12 ∧ 0 ≤ x17 < ilb12 ∧ 0 ≤ x17 < 1000⇒ ao10.data
lb
12[x17] ≤ 0 ∧

g11 ∧ gls12 ∧ 0 ≤ x17 < ilb12 ∧ 0 ≤ x17 < 1000⇒ −ao10.datalb12[x17] ≤ 0.
(20)

The equation has been obtained from Eq. (19) by supplying the actual computed values
of d1 and d2 and by replacing occurrences of idx 1 by x17 and the occurrences of elem1
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by ao10.datalb12[x17]. We removed the last part of each row guard as elem1 is no longer
used. Also, note that we bind the invariant to ao10.datalb12 rather than to the SSA version
of ao10.data valid on line 18 (which would be ao10.data

phi
9 ) because we only want to

constrain the value of the array coming from the loop that the invariant is computed for.
In other words, Eq. (20) allows to leverage the computed array invariant during further
program analysis.

As we already mentioned, the last step would be done after each round of the in-
variant inference algorithm, however, we omit that here for the sake of simplicity and
give the binding for the final invariant only.

When combined with a heap invariant computed for the next field of ao10, our
array invariant will allow us to prove that all array elements of all the unrolled list
nodes are equal to zero.

4 Experimental Evaluation

We have implemented our proposed array domain in the 2LS framework. In this chapter,
we evaluate the impact of this implementation. Since 2LS regularly competes in the
International Competition on Software Verification (SV-COMP), we present results of
2LS from this competition. In particular, we check results in the ReachSafety-Arrays
category which features verification tasks requiring reasoning about (mainly numerical)
contents of arrays.

2LS has traditionally received negative score in this category (-28 in 2020–2022)
which has only changed in 2023 with the introduction of our proposed domain into
2LS [30]. Using the new array domain, 2LS was able to successfully verify 176 and 16
error-free tasks from this category in 2023 and 2024, respectively (as opposed to 2 from
the previous years).

While these are not large numbers, they show that our new domain is a good first
step towards better analysis of array contents in 2LS. In addition, due to the nature
of program analysis in 2LS, the domain may leverage from combination with other
abstract domains (e.g., the shape domain), however, SV-COMP benchmarks do not yet
feature tasks requiring such a combination.

Reviewer 2: provide experimental results with comparison to other tools of the SV-
COMP

5 Related Work

There exists a vast body of works aimed at analysis of array contents and verification
of programs manipulating arrays. We describe the most important works in this section.

6 The given number for 2023 is different from the official results of 2LS in SV-COMP 2023.
The reason is that a number of tasks was last-minute disqualified due to past-deadline changes
which were often related to the tasks being added to new categories (e.g., NoOverflows) rather
than real modifications of the tasks or their verdicts. Hence, we present results from the entire
benchmark instead of the competition benchmark set as those results are more representative
and can be better compared to the previous year results.
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Many of the works are related and use a similar principle, hence we divide the overview
into three categories.

Reviewer 2: distribute some references from section 5 to section 3

5.1 Methods Based on Array Segmentation

One of the first works in the area [8] introduced two basic techniques for reasoning
about the contents of arrays: (1) array expansion where each array element is repre-
sented using a single abstract value and (2) array smashing (also presented in [19])
where all elements of the array are abstracted using a single value. These approaches
represent two extremes in approaching the arrays—while the first one often does not
scale due to unbounded nature of the arrays, the second one abstracts away too much
information that is often crucial for proving the required array properties.

An approach to overcome these problems, which we also take in our work, is to split
arrays into multiple parts, usually called segments. This technique was first introduced
in [20] where it was combined with simple numerical domains and was mainly able to
reason about array initialization loops. This method was improved in [22] by extending
it to handle relational abstract properties and consequently in [15] which proposed to
use an arbitrary abstract domain for reasoning about array elements. Our approach is
heavily based on the latter work, mainly due to the fact that it is compatible with the ver-
ification approach in 2LS. The proposed method uses automatic inference of segment
bounds based on semantic pre-analysis of the array usage in the program.

Compared to all of these works, which are mainly aimed at analysis of numerical
contents of arrays, we leverage other domains present in 2LS. In particular, the com-
bination with our newly introduced shape domain allows us to expand program verifi-
cation to analysis of structures combining arrays and linked structures on the heap. In
addition, it was necessary to formulate our approach in the very specific 2LS frame-
work, hence the introduced domain has several unique features that cannot be found in
other approaches.

The segmentation-based approaches were further extended to non-contiguous and
overlapping segments [28, 10] but these are much more difficult to be described using
first-order logic formulae, and therefore we did not consider them for our approach.

5.2 Methods Based on Analysis of Array-Manipulating Loops

A completely different approach to the typical array verification problems is taken by
the VERIABS verification tool [1]. Instead of trying to describe the contents of (poten-
tially huge) arrays in an abstract way, the tool focuses on analysis of loops manipulating
the arrays. In particular, VERIABS features two important techniques related to verifi-
cation of array contents: (1) loop shrinking [25] and (2) full-program induction [11].

The first technique automatically analyzes loops that manipulate program arrays
and for each loop it determines the so-called shrink factor k—the sufficient number of
iterations that are necessary to prove the property being checked. After k is obtained, the
processed array is reduced to the size k and filled with k non-deterministically chosen
elements of the original array. The reduced program is then verified using state-of-the-
art BMC tools.
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In some cases, the shrink factor is not sufficiently low for BMC to scale and prove
or refute program correctness. In such a case, VERIABS transforms the arrays to be of
symbolic size N and performs so-called full-program induction. This technique, given
a program PN parametrized by the array size N and pre- and post-conditions denoted
ϕ(N) and ψ(M), respectively, is able to very efficiently check validity of the Hoare
triple {ϕ(N) PN ψ(N)} for all values of N > 0.

The above methods have proven very effective since VERIABS has been the most
successful tool in the ReachSafety-Arrays sub-category of SV-COMP in the recent
years [4–6]. On the other hand, VERIABS does not compete in memory safety, so the
effectiveness of these methods on programs combining arrays and linked structures re-
mains questionable. Still, we may consider implementing modified versions of the pro-
posed techniques in future to improve efficiency of verification of array-manipulating
programs in 2LS.

5.3 Predicate Abstraction and Non-Automatic Methods

In the last group of works, we present those that use completely different verification
approaches than 2LS does, and hence were not considered for our case.

First, there is a large group of works [27, 26] based on predicate abstraction [18],
possibly improved by counterexample guided refinement [7] and Craig interpolants [23].
It is, however, not clear how to combine predicate abstraction efficiently with the com-
putation loop of 2LS. Moreover, we note that methods based on predicate abstraction
make use of the property to be proved while our approach allows one to also discover
(previously unknown) existing properties.

Second, besides fully automated works, there exist approaches which require some
user intervention. For instance, [21] also specifies abstract domains using templates, but
their domains are universally quantified (as opposed to our quantifier-free templates).
This naturally makes the domains much stronger, however, the verification approach
requires all the abstract domains to be specified manually. In contrary, the verification
approach of 2LS is fully automatic. Other techniques based on deductive methods [3,
12] suffer from a similar issue when they require users to provide loop invariants (which
our method is able to infer automatically).

6 Conclusions and Future Work

We have presented a new abstract template domain for the 2LS verification framework.
In particular, the domain allows 2LS to compute invariants of programs dealing with
arrays that can be storing various types of data (including nested arrays and dynamic
linked data structures) and that can be themselves nested in other structures. The do-
main is based on segmenting arrays according to array index expressions (computed
statically) and on computing an invariant for each array segment independently. We
have illustrated the approach on a program with linked lists whose cells contain arrays,
and we have shown that the implementation of the approach within 2LS significantly
improved its score on benchmark programs dealing with arrays.
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Reviewer 3: give some example of array-manipulating program that cannot be dealt
with easily in this framework

Nevertheless, the array abstract template domain and the techniques for dealing
with it that we have introduced are so far still rather simple. Further improvements are
needed to handle an even wider spectrum of array-manipulating programs. Also, in the
future, it might be interesting to attempt to combine some of the techniques introduced
in VERIABS [1] with those we proposed for 2LS in this work.
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