
A Developer’s
Notebook™

Brett McLaughlin
David Flanagan

Java 1.5
Tiger

70

Chapter 5CHAPTER 5

varargs

One of the coolest features of Java, and of any object-oriented language,
is method overloading. While many might think Java’s strengths are its
typing, or all the fringe APIs it comes with, there’s just something nice
about having the same method name with a variety of acceptable argu-
ments:

Guitar guitar = new Guitar("Bourgeois", "Country Boy Deluxe",
 GuitarWood.MAHOGANY, GuitarWood.ADIRONDACK,
 1.718);

Guitar guitar = new Guitar("Martin", "HD-28");

Guitar guitar = new Guitar("Collings", "CW-28"
 GuitarWood.BRAZILIAN_ROSEWOOD, GuitarWood.ADIRONDACK,
 1.718,
 GuitarInlay.NO_INLAY, GuitarInlay.NO_INLAY);

This code calls three versions of the constructor of a (fictional) Guitar
class, meaning that information can be supplied when it’s available,
rather than forcing a user to know everything about their guitar at one
time (many professionals couldn’t tell you their guitar’s width at the nut).
Here are the constructors used:

 public Guitar(String builder, String model) {
 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth) {
 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth,
 GuitarInlay fretboardInlay, GuitarInlay topInlay) {
 }

In this chapter:

• Creating a
Variable-Length
Argument List

• Iterating Over
Variable-
Argument Lists

• Allowing Zero-
Length
Argument Lists

• Specify Object
Arguments Over
Primitives

• Avoiding
Automatic Array
Conversion

Enums, which are
used in these
examples, are
detailed in
Chapter 3.

Creating a Variable-Length Argument List 71

However, things start to get a little less useful when you want to add
information that isn’t finite. For example, suppose you want to allow
additional, unspecified features to be added to this constructor. Here are
some possible invocation examples:

Guitar guitar = new Guitar("Collings", "CW-28"
 GuitarWood.BRAZILIAN_ROSEWOOD, GuitarWood.ADIRONDACK,
 1.718,
 GuitarInlay.NO_INLAY, GuitarInlay.NO_INLAY,
 "Enlarged Soundhole", "No Popsicle Brace");

Guitar guitar = new Guitar("Martin", "HD-28V",
 "Hot-rodded by Dan Lashbrook", "Fossil Ivory Nut",
 "Fossil Ivory Saddle", "Low-profile bridge pins");

For these two cases alone, you’d have to add another constructor that
takes two additional strings, and yet another that takes four additional
strings. Try and apply these same versions to the already-overloaded
constructor, and you’d end up with 20 or 30 versions of that silly con-
structor!

It’s here where variable arguments, more often called varargs, come in.
Another of Tiger’s additions, varargs solve the problem detailed here
once and for all, in a pretty slick way. This chapter covers this relatively
simple feature in all its glory, and will have you writing better, cleaner,
more flexible code in no time.

Creating a Variable-Length
Argument List
Variable arguments allow you to specify that a method can take multiple
arguments of the same type, and don’t require that the number of argu-
ments be pre-determined (at compile- or runtime). This is one of the
integral parts of Tiger, in fact, as several of the new features of the lan-
guage actually incorporate varargs..

How do I do that?
First, get used to typing the ellipsis (...). Those three little dots are the
key to varargs, and you’ll be typing them quite often. Here’s a version of
the Guitar constructor that uses varargs to allow for an indeterminate
number of String features:

 public Guitar(String builder, String model, String... features);

All these
constructors are
shown,
completed, in the
source code for
the com.oreilly.
tiger.ch05.Guitar
class.

All of the new
formatting
methods, which
are detailed in
Chapter 9, use
varargs.

72 Chapter 5: varargs

The argument String... features indicates that any number of String
arguments may be supplied. So all of the following invocations are legal:

Guitar guitar = new Guitar("Martin", "HD-28V",
 "Hot-rodded by Dan Lashbrook", "Fossil Ivory Nut",
 "Fossil Ivory Saddle", "Low-profile bridge pins");

Guitar guitar = new Guitar("Bourgeois", "OMC",
 "Incredible flamed maple bindings on this one.");

Guitar guitar = new Guitar("Collings", "OM-42",
 "Once owned by Steve Kaufman--one of a kind");

You could add the same variable-length argument to the other construc-
tors:

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth, String... features)

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth,
 GuitarInlay fretboardInlay, GuitarInlay topInlay,
 String... features)

Example 5-1 shows a simple class that puts this all together, and even
uses delegation to pass some varargs around.

Example 5-1. Using varargs in constructors

package com.oreilly.tiger.ch05;

public class Guitar {

 private String builder;
 private String model;
 private float nutWidth;
 private GuitarWood backSidesWood;
 private GuitarWood topWood;
 private GuitarInlay fretboardInlay;
 private GuitarInlay topInlay;

 private static final float DEFAULT_NUT_WIDTH = 1.6875f;

 public Guitar(String builder, String model, String... features) {
 this(builder, model, null, null, DEFAULT_NUT_WIDTH, null, null, features);
 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth, String... features) {
 this(builder, model, backSidesWood, topWood, nutWidth, null, null, features);

Creating a Variable-Length Argument List 73

What just happened?
When you specify a variable-length argument list, the Java compiler
essentially reads that as “create an array of type <argument type>”. You
typed:

 public Guitar(String builder, String model, String... features)

However, the compiler interprets this as:

 public Guitar(String builder, String model, String[] features)

This means that iteration over the argument list is simple (as shown in
“Iterating Over Variable-Length Argument Lists”), as is any other pro-
gramming tasks you need to undertake. You can work with varargs just
as you would with arrays.

However, there are some limitations. First, you can only use one ellipsis
per method. Thus, the following is illegal:

public Guitar(String builder, String model,
 String... features, float... stringHeights)

Additionally, the ellipsis must appear as the last argument to a method.

What about...
...if you don’t have any features to pass in? That’s fine. Just call the con-
structor in the old way:

Guitar guitar = new Guitar("Martin", "D-18");

 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth,
 GuitarInlay fretboardInlay, GuitarInlay topInlay,
 String... features) {

 this.builder = builder;
 this.model = model;
 this.backSidesWood = backSidesWood;
 this.topWood = topWood;
 this.nutWidth = nutWidth;
 this.fretboardInlay = fretboardInlay;
 this.topInlay = topInlay;
 }
}

Example 5-1. Using varargs in constructors (continued)

You’ll get a
compiler error
from this, and
one that’s not all
that descriptive
of the real
problem.

74 Chapter 5: varargs

Look closely, though—there is no constructor with the following signature:

 public Guitar(String builder, String model)

So, what gives? Well, as an added bonus to varargs, not passing in an
argument is a legitimate option. So when you see String... features,
you should think “zero or more String arguments.” That saves you from
creating another constructor without the varargs parameter.

Iterating Over Variable-Length
Argument Lists
All this varargs business is well and good, but unless you can actually
use them in your methods, it’s obviously just eye-candy and window
dressing. However, you can work with vararg parameters just as you do
an array, making usage a piece of cake.

How do I do that?
Make sure you read “Creating a Variable-Length Argument List,” which
lets you know the most important piece of information relating to vararg
methods—variable-length arguments are treated just as arrays. So, con-
tinuing with the previous example, you could do something like this:

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth,
 GuitarInlay fretboardInlay, GuitarInlay topInlay,
 String... features) {

 this.builder = builder;
 this.model = model;
 this.backSidesWood = backSidesWood;
 this.topWood = topWood;
 this.nutWidth = nutWidth;
 this.fretboardInlay = fretboardInlay;
 this.topInlay = topInlay;

 for (String feature : features) {
 System.out.println(feature);
 }
 }

This isn’t particularly sexy, but it should get the point across. As another
example, here’s a simple method that calculates the maximum from a set
of numbers:

The for/in loop is
covered in detail
in Chapter 7.

This example is
yanked straight
out of Java in a
Nutshell, Fifth
Edition (O’Reilly).

Iterating Over Variable-Length Argument Lists 75

public static int max(int first, int... rest) {
 int max = first;
 for (int i : rest) {
 if (i > max)
 max = i;
 }
 return max;
}

Simple enough, right?

What about...
...storing variable-length arguments? Since the Java compiler treats these
like arrays, an array is obviously a great choice for storage, as seen in
Example 5-2, which is a modified version of Example 5-1.

Example 5-2. Storing variable-length arguments as member variables

package com.oreilly.tiger.ch05;

public class Guitar {

 private String builder;
 private String model;
 private float nutWidth;
 private GuitarWood backSidesWood;
 private GuitarWood topWood;
 private GuitarInlay fretboardInlay;
 private GuitarInlay topInlay;
 private String[] features;

 private static final float DEFAULT_NUT_WIDTH = 1.6875f;

 public Guitar(String builder, String model, String... features) {
 this(builder, model, null, null, DEFAULT_NUT_WIDTH, null, null, features);
 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth, String... features) {
 this(builder, model, backSidesWood, topWood, nutWidth, null, null, features);
 }

 public Guitar(String builder, String model,
 GuitarWood backSidesWood, GuitarWood topWood,
 float nutWidth,
 GuitarInlay fretboardInlay, GuitarInlay topInlay,
 String... features) {

76 Chapter 5: varargs

You could also store these in Java collection classes easily:

// Variable declaration
private List features;

// Assignment in method or constructor body
this.features = java.util.Arrays.asList(features);

Allowing Zero-Length Argument
Lists
One particularly nice feature about varargs is that a variable-length argu-
ment can take from zero to n arguments. This means that you can actu-
ally invoke one of these methods without any parameters, and things still
behave. On the other hand, this means that, as a programmer, you better
realize you must safeguard against this condition.

How do I do that?
Remember in “Iterating Over Variable-Length Argument Lists,” you saw
this simple method:

public static int max(int first, int... rest) {
 int max = first;
 for (int i : rest) {
 if (i > max)
 max = i;
 }
 return max;
}

You can call this method in several ways:

int max = MathUtils.max(1, 4);
int max = MathUtils.max(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
int max = MathUtils.max(18, 8, 4, 2, 1, 0);

 this.builder = builder;
 this.model = model;
 this.backSidesWood = backSidesWood;
 this.topWood = topWood;
 this.nutWidth = nutWidth;
 this.fretboardInlay = fretboardInlay;
 this.topInlay = topInlay;
 this.features = features;
 }
}

Example 5-2. Storing variable-length arguments as member variables (continued)

The java.util.
Arrays class has
several nice
methods for
working with
arrays, all of
which are of
interest in varargs
methods.

Allowing Zero-Length Argument Lists 77

What’s not so nice is that there are many cases where you may already
have the numbers to pass in stored as an array, or at least in some col-
lected form:

// Get the numbers from some method
int[] numbers = getListOfNumbers();

It’s impossible to just pass these numbers on to the max() method. You
would need to check the list length, and strip off the first object (if it’s
available), then check the type to ensure it’s an int. That would be
passed in, along with the rest of the array (which can be iterated over, or
converted manually to a suitable format). In general, this process is a real
pain and is a lot of work for what should be trivial. To get around this,
remember that this method is treated by the compiler as the following:

public static int max(int first, int[] rest)

So, by extension, you could convert max() to look like this:

public static int max(int... values) {
 int max = Integer.MIN_VALUE;
 for (int i : values) {
 if (i > max)
 max = i;
 }
 return max;
}

You’ve now created a method that can easily be used with arrays:

// Get the numbers from some method
int[] numbers = getListOfNumbers();

int max = MathUtils.max(numbers);

While using a single variable-length argument made this task easier, it
introduces problems if you pass in a zero-length array—in the best case,
you’re going to get unexpected results. To account for this, you now need
a little error checking. Example 5-3 is a complete code listing for the
MathUtils class, which at this point is more of a MathUtil class!

Example 5-3. Handling zero-argument methods

package com.oreilly.tiger.ch05;

public class MathUtils {

 public static int max(int... values) {
 if (values.length == 0) {
 throw new IllegalArgumentException("No values supplied.");
 }

Autounboxing
helps some, as
“Integer” objects
are freely
converted to” int”
primitives. Autoun-
boxing is covered in
Chapter 4.

78 Chapter 5: varargs

Anytime you have the possibility for a zero-length argument list, you
need to perform this type of error checking. Generally, a nice informative
IllegalArgumentException is a great solution.

What about...
...invoking this same method with normal non-array arguments? That’s
perfectly legal, of course. The following are all legitimate ways to invoke
the max() method:

int max = MathUtils.max(myArray);
int max = MathUtils.max(new int[] { 2, 4, 6, 8 });
int max = MathUtils.max(2, 4, 6, 8);
int max = MathUtils.max(0);
int max = MathUtils.max();

Specify Object Arguments Over
Primitives
As discussed in Chapter 4, Tiger adds a variety of new features through
unboxing. This allows you, in the case of varargs, to use object wrapper
types in your method arguments.

How do I do that?
Remember that every class in Java ultimately is a descendant of java.
lang.Object. This means that any object can be converted to an Object;
further, because primitives like int and short are now automatically
converted to their object wrapper types (Integer and Short in this case),
any Java type can be converted to an Object.

Thus, if you want to accept the widest variety of argument types in your
vararg methods, use an object type as the argument type. Better yet, go
with Object for the absolute most in versatility. For example, take a
method that did some printing:

 int max = Integer.MIN_VALUE;
 for (int i : values) {
 if (i > max)
 max = i;
 }
 return max;
 }
}

Example 5-3. Handling zero-argument methods (continued)

Whatever you do,
please don’t
throw a checked
exception—you
just add hassle
for programmers
using your code,
and for what is a
fringe case,
rather than a
normal problem.

Avoiding Automatic Array Conversion 79

 private String print(Object... values) {
 StringBuilder sb = new StringBuilder();
 for (Object o : values) {
 sb.append(o)
 .append(" ");
 }
 return sb.toString();
 }

The basic idea here is to print anything and everything. However, the
more obvious way to declare this method is like this:

 private String print(String... values) {
 StringBuilder sb = new StringBuilder();
 for (Object o : values) {
 sb.append(o)
 .append(" ");
 }
 return sb.toString();
 }

The problem here is that now this method won’t take Strings, ints,
floats, arrays, and a variety of other types, all of which you might want
to legitimately print.

By using a more general type, Object, you obtain the ability to print any-
thing and everything.

Avoiding Automatic Array
Conversion
Tiger adds all sorts of automatic conversions and conveniences, which is
pretty cool...about 99% of the time. Unfortunately, there are times when
all those helps turn into hindrances. The conversion of Object... to
Object[] in a varargs method can be one of those cases, and you’ll find
that in rare cases, you need to work around Java.

How do I do that?
Before getting into the details of getting around this issue, be sure you
understand the problem. Take Java’s new printf() method, a real con-
venience:

System.out.printf("The balance of %s's account is $%(,6.2f\n",
 account.getOwner().getFullName(), account.getBalance());

80 Chapter 5: varargs

If you look at the Javadoc for printf(), you’ll see its a varargs method,
with two parameters: a String for the formatting string, and then
Object... for all the arguments passed in for use in that formatting
string:

PrintStream printf(String format, Object... args)

By now, you can mentally convert this to the following:

PrintStream printf(String format, Object[] args)

All good, right? Well, most of the time. Consider the following code:

Object[] objectArray = getObjectArrayFromSomewhereElse();
out.printf("Description of object array: %s\n", obj);

This might seem a bit far-fetched—however, consider this as normal fare
for introspective code. That’s a ten-cent word for code that investigates
other code. If you are writing a code analysis tool, or an IDE, or anything
else that might use reflection or a similar API to figure out what objects
an application uses, this suddenly becomes a normal usecase. Here,
you’re not really interested in the contents of the object array as much as
you are with the array itself. What type is it? What’s its memory address?
What is its String representation? Keep in mind that all these questions
apply to the array itself, and not to the contents of the array. For exam-
ple, let’s say the array is something like this:

public Object[] getObjectArrayFromSomewhereElse() {
 return new String[] {"Hello", "to", "all", "of", "you"};
}

In that case, you might write some code like this to begin to answer
some questions about this array:

out.printf("Description of object array: %s\n", obj);

However, the output isn’t what you expect:

 run-ch05:
 [echo] Running Chapter 5 examples from Java Tiger: A Developer's
Notebook

 [echo] Running VarargsTester...
 [java] Hello

What in the world? This is hardly what you’d expect to see—however,
the compiler did just what it always did—it converted Object... in the
printf() method to Object[]. When it read your method invocation, it
saw an argument that was, in fact, Object[]! So instead of treating the
array as an object itself, it broke it up into its various parts. The first
argument became the String “Hello”, which was passed to the format
string (%s), and the result was “Hello” being printed out.

printf(), along
with the other
new Tiger format-
ting methods, are
detailed in
Chapter 9.

I realize this isn’t
the most common
scenario. Then
again, if all I
covered were
common scenar-
ios, we’d all be
debugging right
now, wouldn’t we?

Avoiding Automatic Array Conversion 81

To get around this, you need to tell the compiler that you want the entire
object array, obj, treated as a single object, and not as a grouping of
arguments. Here’s the magic bullet:

out.printf("Description of object array: %s\n", new Object[] { obj });

Alternatively, here’s an even shorter approach:

out.printf("Description of object array: %s\n", (Object)obj);

In both cases, the compiler no longer sees an array of objects, it simply
sees a single Object (which just happens to be an array of objects). The
result is what you should want (at least in this rather odd scenario):

run-ch05:
 [echo] Running Chapter 5 examples from Java Tiger: A Developer's
Notebook

 [echo] Running VarargsTester...
 [java] [Ljava.lang.String;@c44b88

While this may look like gibberish to you, it’s probably what reflection-
based or other introspective code wants to take a look at.

