
PB138 — XML Processing in general
programming languages (XML APIs)

(C) 2019 Masaryk University --- Tomáš Pitner, Luděk Bártek, Adam Rambousek

API for XML Processing (to repeat)
• APIs offer simple standardized XML access.

• APIs connect application to the parser and applications together.

• APIs allow XML processing without knowledge of physical document structure (entities).

• APIs optimize XML processing.

XML APIs Fundamental Types
Tree-based API

tree representation in constructed and processed

Event-based API

events are produced and handled

Pull API

events are pulled off the document

Tree-based API
• They map an XML document to a memory-based tree structure.

• It allows to traverse the entire DOM tree.

• Best-known is Document Object Model (DOM) from W3C, http://www.w3.org/DOM)

Programming Language Specific Models
• Java JDOM - http://jdom.org

• Java dom4j - http://dom4j.github.io

• Java XOM - http://www.xom.nu

• Python 4Suite - http://4suite.org

• PHP SimpleXML - http://www.php.net/simplexml

Document Object Model (DOM)
• Basic interface to process and access the tree representation of XML data

• Three versions of DOM: DOM Level 1, 2, 3

• DOM - does not depend on the XML parsing.

• Described using IDL + API descriptions for particular programming languages (C++, Java, etc.)

1

http://www.w3.org/DOM
http://jdom.org
http://dom4j.github.io
http://www.xom.nu
http://4suite.org
http://www.php.net/simplexml

DOM Levels
• DOM Level 1 — provides low-level set of fundamental interfaces as well as extended interfaces

those can represent any structured document (Document, Element, DocumentFragment, etc, see
DOM Level 1 Specification).

• DOM Level 2 — defines platform- and language neutral interface that allow to dynamically
access and update the content and structure of documents (see DOM Level 2 Specification)

• DOM Level 3 — enhances DOM Level 2 by completing mapping between DOM and XML
Information Set, by including support for XML Base, allows to attach user information to DOM
Nodes, etc (see DOM Level 3 Specification)

HTML Documents Specific DOM
• The HTML Core DOM is more less consolidated with the XML DOM

• Designated to CSS

• Used for dynamic HTML programming (scripting using VB Script, JavaScript, etc)

• Contains the browser environment (windows, history, etc) besides the document model itself.

DOM references
• JAXP Tutorial, part dedicated to the DOM Part III: XML and the Document Object Model (DOM)

(http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/dom/index.html)

• Portal dedicated to the DOM http://www.oasis-open.org/cover/dom.html

• DOM 1 Interface visual overview http://www.xml.com/pub/a/1999/07/dom/index.html

• Tutorial ”Understanding DOM (Level 2)” available at https://www.ibm.com/developerworks/xml/

Using DOM in Java
• Native DOM support in the new Java versions (JDK and JRE) - no need of additional library.

• Applications need to import needed symbols (interfaces, classes, etc.) mostly from package
org.w3c.dom.

What we frequently need
Most often used interfaces are:

• Element corresponds to the element in a logical document structure. It allows us to access name
of the element, names of attributes, child nodes (including textual ones). Useful methods:

• Node getParentNode() - returns the parent node

• String getTextContent() - returns textual content of the element.

2

https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
https://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
https://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/dom/index.html
http://www.oasis-open.org/cover/dom.html
http://www.xml.com/pub/a/1999/07/dom/index.html
https://www.ibm.com/developerworks/xml/

• NodeList getElementsByTagName(String name) - returns the list of ancestors (child nodes and their
ancestors) with the given name.

What we frequently need (2)
• Node super interface of Element, corresponds to the general node in a logical document structure,

may contain element, textual node, comment, etc.

• NodeList a list of nodes (a result of calling getElementsByTagName for example). It offers the
following methods for its processing:

• int getLength() - returns the number of nodes in a list

• Node item(int index) - returns the node at position index

• Document corresponds to the document node (its a parent of a root element)

Example 1 - creating DOM tree from file

 public class Task1 {
 public Task1(URL url) throws SAXException,
 ParserConfigurationException, IOException {
 // We create new instance of factory class
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 // We get new instance of DocumentBuilder using the factory class.
 DocumentBuilder builder = factory.newDocumentBuilder();
 // We utilize the DocumentBuilder to process an XML document
 // and we get document model in form of W3C DOM
 Document doc = builder.parse(url.toString());
 }
 }

Example 2 - DOM tree modification

3

public class Task1 {
 private Document doc;
 public void adjustSalary(double minimum) {
 NodeList salaries = doc.getElementsByTagName("salary");
 for (int i = 0; i < salaries.getLength(); i++) {
 Element salaryElement = (Element) salaries.item(i);
 double salary = Double.parseDouble(
 salaryElement.getTextContent());
 if (salary < minimum) {
 salaryElement.setTextContent(String.valueOf(minimum));
 }
 }
 }
}

Example 3 - storing a DOM tree into an XML
file
Example of the method storing a DOM tree into a file (see Homework 1). The procedure utilizes a
transformation we do not know yet. Let use it as a black box.

public class Task1 {
 private Document doc;
 public void serializetoXML(File output) throws IOException,
 TransformerConfigurationException {
 TransformerFactory factory
 = TransformerFactory.newInstance();
 Transformer transformer
 = factory.newTransformer();
 DOMSource source = new DOMSource(doc);
 StreamResult result = new StreamResult(output);
 transformer.transform(source, result);
 }
}

Event-based API
• Generates Sequence of Events while parsing the Document.

• Technical implementation: using callback methods [1: The Hollywood Principle: Do not call us,
we will call you!]

• Application implements handlers (which process generated events).

• Works on lower-level than tree-based.

• Application should do further processing.

4

• It saves memory - does not itself create any persistent objects.

Event Examples
• start document, end document

• start element - contains the attributes as well, end element.

• processing instruction

• comment

• entity reference

• Best-known event-based API: SAX http://www.saxproject.org

SAX - Document Analysis Example

<?xml version="1.0"?>
<doc>
<para>Hello, world!</para>
<!-- that’s all folks -->
<hr/>
</doc>

SAX - Document Analysis Example
It generates following events:

start document start element: doc
list of attributes: empty
start element: para
list of attributes: empty
characters: Hello, world!

SAX - Document Analysis Example (2)

end element: para
comment: that’s all folks
start element: hr
end element: hr
end element: doc
end document

5

http://www.saxproject.org

When to use event-based API?
• Easier to parser programmer, more difficult to application programmer.

• No complete document available to application programmer.

• Programmers must keep the state of analysis themself.

• Suitable for tasks, that can be solved without the need of entire document.

• The fastest possible processing usually.

• Difficulties while writing applications can be solved using extensions like Streaming
Transformations for XML (STX), http://stx.sourceforge.net

Optional SAX Parser Features
• The SAX parser behavior can be controlled using so called features a properties.

• For optional SAX parser’s features see http://www.saxproject.org/?selected=get-set

• For more details on properties and features see Use properties and features in SAX parsers (IBM
DeveloperWorks/XML).

SAX filters
• The SAX filters (implementation of org.xml.sax.XMLFilter interface) can be programmed using

the SAX API.

• Such a class instance accepts input events, process them and sends them to the output.

• For more information on event filtering see Change the events output by a SAX stream
http://www.ibm.com/developerworks/xml/library/x-tipsaxfilter/ (IBM DeveloperWorks/XML) for
example.

Additional SAX References
• Primary source: http://www.saxproject.org

• SAX Tutorial on JAXP: http://java.sun.com/webservices/reference/tutorials/jaxp/html/sax.html

Pull-based APIs
• Application does not process incoming events, but it pulls data from the processed file.

• Can be used when programmer knows the structure of an input data and she can pull them off
the file.

• As opposite to event-based API.

• Very comfortable to an application programmer, but implementations are usually slower the
push event-based APIs.

6

http://stx.sourceforge.net
http://www.saxproject.org/?selected=get-set
http://www.ibm.com/developerworks/xml/library/x-tipsaxfilter/
http://www.saxproject.org
http://java.sun.com/webservices/reference/tutorials/jaxp/html/sax.html

Java Pull-based APIs
• Java offers the XML-PULL parser API - see Common API for XML Pull Parsing

http://www.xmlpull.org/ and also

• newly develop API - Streaming API for XML (StAX) http://www.jcp.org/en/jsr/detail?id=173
developed like a product of JCP (Java Community Process).

Streaming API for XML (StAX)
• The API may become the part of the Java API for XML Processing (JAXP) in the future.

• It offers two ways to pull-based processing:

• pulling the events using iterator - more comfortable

• low-level access using so called cursor - it is faster.

StAX - an Iterator Example
• from Oracle Java Tutorials http://docs.oracle.com/javase/tutorial/jaxp/stax/example.html

• In this example, the client application pulls the next event in the XML stream by calling the next
method on the parser.

StAX - source XML document

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">
 <Book>
 <Title>Yogasana Vijnana: the Science of Yoga</Title>
 <author>Dhirendra Brahmachari</Author>
 <Date>1966</Date>
 <ISBN>81-40-34319-4</ISBN>
 <Publisher>Dhirendra Yoga Publications</Publisher>
 <Cost currency="INR">11.50</Cost>
 </Book>

StAX - source XML document

7

http://www.xmlpull.org/
http://www.jcp.org/en/jsr/detail?id=173
http://docs.oracle.com/javase/tutorial/jaxp/stax/example.html

 <Book>
 <Title>The First and Last Freedom</Title>
 <Author>J. Krishnamurti</Author>
 <Date>1954</Date>
 <ISBN>0-06-064831-7</ISBN>
 <Publisher>Harper & Row</Publisher>
 <Cost currency="USD">2.95</Cost>
 </Book>
</BookCatalogue>

StAX - Java code

try {
 for (int i = 0 ; i < count ; i++) {
 // pass the file name.. all relative entity
 // references will be resolved against this
 // as base URI.
 XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
 new FileInputStream(filename));
 // when XMLStreamReader is created,
 // it is positioned at START_DOCUMENT event.
 int eventType = xmlr.getEventType();
 printEventType(eventType);
 printStartDocument(xmlr);
 // check if there are more events
 // in the input stream

StAX - Java code

 while(xmlr.hasNext()) {
 eventType = xmlr.next();
 printEventType(eventType);
 // these functions print the information
 // about the particular event by calling
 // the relevant function
 printStartElement(xmlr);
 printEndElement(xmlr);
 printText(xmlr);
 printPIData(xmlr);
 printComment(xmlr);
 }
 }
 }

8

Tree and event-based access combinations
• Events → tree

• Tree → events

Events → tree
• Allow us either to skip or to filter out the ”uninteresting” document part using the event

monitoring and then

• create memory-based tree from the ”interesting” part of a document only and that part process.

Tree → events
• We create an entire document tree (and process it) and

• we go through the tree than and we generate events like while reading the XML file.

• It allows us easy integration of both processing types in a single application.

Virtual object models
• Document DOM model is not memory places, but is created on-demand while accessing

particular nodes.

• combines event-based and tree-based processing advantages (speed and comfort)

• There is an implementation: the Sablotron processor, http://www.xml.com/pub/a/2002/03/13/
sablotron.html

Alternative tree-based models
• XML Object Model (XOM)

• DOM4J

XML Object Model (XOM)
• XOM (XML Object Model) created as an one man project (author Elliote Rusty Harold).

• It is an interface that strictly respect XML data logical model.

• For motivation and specification see the XOM home page (http://www.xom.nu).

• You can get there the open-sourceXOM implementation and

• the API documentation, too.

9

http://www.xml.com/pub/a/2002/03/13/sablotron.html
http://www.xml.com/pub/a/2002/03/13/sablotron.html
http://www.xom.nu

DOM4J - practically usable tree-based model
• comfortable, fast and memory efficient tree-oriented interface

• designed and optimized for Java

• available as open-source at http://dom4j.github.io

• perfect ”cookbook” available

10

http://dom4j.github.io
https://github.com/dom4j/dom4j/wiki/Cookbook

	PB138 — XML Processing in general programming languages (XML APIs)
	API for XML Processing (to repeat)
	XML APIs Fundamental Types
	Tree-based API
	Programming Language Specific Models
	Document Object Model (DOM)
	DOM Levels
	HTML Documents Speciﬁc DOM
	DOM references
	Using DOM in Java
	What we frequently need
	What we frequently need (2)
	Example 1 - creating DOM tree from file
	Example 2 - DOM tree modification
	Example 3 - storing a DOM tree into an XML file
	Event-based API
	Event Examples
	SAX - Document Analysis Example
	SAX - Document Analysis Example
	SAX - Document Analysis Example (2)
	When to use event-based API?
	Optional SAX Parser Features
	SAX filters
	Additional SAX References
	Pull-based APIs
	Java Pull-based APIs
	Streaming API for XML (StAX)
	StAX - an Iterator Example
	StAX - source XML document
	StAX - source XML document
	StAX - Java code
	StAX - Java code
	Tree and event-based access combinations
	Events → tree
	Tree → events
	Virtual object models
	Alternative tree-based models
	XML Object Model (XOM)
	DOM4J - practically usable tree-based model

