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API for XML Processing (to repeat)
• APIs offer simple standardized XML access.

• APIs connect application to the parser and applications together.

• APIs allow XML processing without knowledge of physical document structure (entities).

• APIs optimize XML processing.

XML APIs Fundamental Types
Tree-based API

tree representation in constructed and processed

Event-based API

events are produced and handled

Pull API

events are pulled off the document

Tree-based API
• They map an XML document to a memory-based tree structure.

• It allows to traverse the entire DOM tree.

• Best-known is Document Object Model (DOM) from W3C, http://www.w3.org/DOM)

Programming Language Specific Models
• Java JDOM - http://jdom.org

• Java dom4j - http://dom4j.github.io

• Java XOM - http://www.xom.nu

• Python 4Suite - http://4suite.org

• PHP SimpleXML - http://www.php.net/simplexml

Document Object Model (DOM)
• Basic interface to process and access the tree representation of XML data

• Three versions of DOM: DOM Level 1, 2, 3

• DOM - does not depend on the XML parsing.

• Described using IDL + API descriptions for particular programming languages (C++, Java, etc.)
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DOM Levels
• DOM Level 1 — provides low-level set of fundamental interfaces as well as extended interfaces

those can represent any structured document (Document, Element, DocumentFragment, etc, see
DOM Level 1 Specification).

• DOM Level 2 — defines platform- and language neutral interface that allow to dynamically
access and update the content and structure of documents (see DOM Level 2 Specification)

• DOM Level 3 — enhances DOM Level 2 by completing mapping between DOM and XML
Information Set, by including support for XML Base, allows to attach user information to DOM
Nodes, etc (see DOM Level 3 Specification)

HTML Documents Specific DOM
• The HTML Core DOM is more less consolidated with the XML DOM

• Designated to CSS

• Used for dynamic HTML programming (scripting using VB Script, JavaScript, etc)

• Contains the browser environment (windows, history, etc) besides the document model itself.

DOM references
• JAXP Tutorial, part dedicated to the DOM Part III: XML and the Document Object Model (DOM)

(http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/dom/index.html)

• Portal dedicated to the DOM http://www.oasis-open.org/cover/dom.html

• DOM 1 Interface visual overview http://www.xml.com/pub/a/1999/07/dom/index.html

• Tutorial ”Understanding DOM (Level 2)” available at https://www.ibm.com/developerworks/xml/

Using DOM in Java
• Native DOM support in the new Java versions (JDK and JRE) - no need of additional library.

• Applications need to import needed symbols (interfaces, classes, etc.) mostly from package
org.w3c.dom.

What we frequently need
Most often used interfaces are:

• Element corresponds to the element in a logical document structure. It allows us to access name
of the element, names of attributes, child nodes (including textual ones). Useful methods:

• Node getParentNode() - returns the parent node

• String getTextContent() - returns textual content of the element.
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• NodeList getElementsByTagName(String name) - returns the list of ancestors (child nodes and their
ancestors) with the given name.

What we frequently need (2)
• Node super interface of Element, corresponds to the general node in a logical document structure,

may contain element, textual node, comment, etc.

• NodeList a list of nodes (a result of calling getElementsByTagName for example). It offers the
following methods for its processing:

• int getLength() - returns the number of nodes in a list

• Node item(int index) - returns the node at position index

• Document corresponds to the document node (its a parent of a root element)

Example 1 - creating DOM tree from file

  public class Task1 {
    public Task1(URL url) throws SAXException,
      ParserConfigurationException, IOException {
      // We create new instance of factory class
      DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
      // We get new instance of DocumentBuilder using the factory class.
      DocumentBuilder builder = factory.newDocumentBuilder();
      // We utilize the DocumentBuilder to process an XML document
      // and we get document model in form of W3C DOM
      Document doc = builder.parse(url.toString());
    }
  }

Example 2 - DOM tree modification
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public class Task1 {
  private Document doc;
  public void adjustSalary(double minimum) {
    NodeList salaries = doc.getElementsByTagName("salary");
    for (int i = 0; i < salaries.getLength(); i++) {
      Element salaryElement = (Element) salaries.item(i);
      double salary = Double.parseDouble(
          salaryElement.getTextContent());
      if (salary < minimum) {
        salaryElement.setTextContent(String.valueOf(minimum));
      }
    }
  }
}

Example 3 - storing a DOM tree into an XML
file
Example of the method storing a DOM tree into a file (see Homework 1). The procedure utilizes a
transformation we do not know yet. Let use it as a black box.

public class Task1 {
    private Document doc;
    public void serializetoXML(File output) throws IOException,
    TransformerConfigurationException {
      TransformerFactory factory
        = TransformerFactory.newInstance();
      Transformer transformer
        = factory.newTransformer();
      DOMSource source = new DOMSource(doc);
      StreamResult result = new StreamResult(output);
      transformer.transform(source, result);
    }
}

Event-based API
• Generates Sequence of Events while parsing the Document.

• Technical implementation: using callback methods [1: The Hollywood Principle: Do not call us,
we will call you!]

• Application implements handlers (which process generated events).

• Works on lower-level than tree-based.

• Application should do further processing.
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• It saves memory - does not itself create any persistent objects.

Event Examples
• start document, end document

• start element - contains the attributes as well, end element.

• processing instruction

• comment

• entity reference

• Best-known event-based API: SAX http://www.saxproject.org

SAX - Document Analysis Example

<?xml version="1.0"?>
<doc>
<para>Hello, world!</para>
<!-- that’s all folks -->
<hr/>
</doc>

SAX - Document Analysis Example
It generates following events:

start document start element: doc
list of attributes: empty
start element: para
list of attributes: empty
characters: Hello, world!

SAX - Document Analysis Example (2)

end element: para
comment: that’s all folks
start element: hr
end element: hr
end element: doc
end document
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When to use event-based API?
• Easier to parser programmer, more difficult to application programmer.

• No complete document available to application programmer.

• Programmers must keep the state of analysis themself.

• Suitable for tasks, that can be solved without the need of entire document.

• The fastest possible processing usually.

• Difficulties while writing applications can be solved using extensions like Streaming
Transformations for XML (STX), http://stx.sourceforge.net

Optional SAX Parser Features
• The SAX parser behavior can be controlled using so called features a properties.

• For optional SAX parser’s features see http://www.saxproject.org/?selected=get-set

• For more details on properties and features see Use properties and features in SAX parsers (IBM
DeveloperWorks/XML).

SAX filters
• The SAX filters (implementation of org.xml.sax.XMLFilter interface) can be programmed using

the SAX API.

• Such a class instance accepts input events, process them and sends them to the output.

• For more information on event filtering see Change the events output by a SAX stream
http://www.ibm.com/developerworks/xml/library/x-tipsaxfilter/ (IBM DeveloperWorks/XML) for
example.

Additional SAX References
• Primary source: http://www.saxproject.org

• SAX Tutorial on JAXP: http://java.sun.com/webservices/reference/tutorials/jaxp/html/sax.html

Pull-based APIs
• Application does not process incoming events, but it pulls data from the processed file.

• Can be used when programmer knows the structure of an input data and she can pull them off
the file.

• As opposite to event-based API.

• Very comfortable to an application programmer, but implementations are usually slower the
push event-based APIs.
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Java Pull-based APIs
• Java offers the XML-PULL parser API - see Common API for XML Pull Parsing

http://www.xmlpull.org/ and also

• newly develop API - Streaming API for XML (StAX) http://www.jcp.org/en/jsr/detail?id=173
developed like a product of JCP (Java Community Process).

Streaming API for XML (StAX)
• The API may become the part of the Java API for XML Processing (JAXP) in the future.

• It offers two ways to pull-based processing:

• pulling the events using iterator - more comfortable

• low-level access using so called cursor - it is faster.

StAX - an Iterator Example
• from Oracle Java Tutorials http://docs.oracle.com/javase/tutorial/jaxp/stax/example.html

• In this example, the client application pulls the next event in the XML stream by calling the next
method on the parser.

StAX - source XML document

<?xml version="1.0" encoding="UTF-8"?>
<BookCatalogue xmlns="http://www.publishing.org">
  <Book>
    <Title>Yogasana Vijnana: the Science of Yoga</Title>
    <author>Dhirendra Brahmachari</Author>
    <Date>1966</Date>
    <ISBN>81-40-34319-4</ISBN>
    <Publisher>Dhirendra Yoga Publications</Publisher>
    <Cost currency="INR">11.50</Cost>
  </Book>

StAX - source XML document
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  <Book>
    <Title>The First and Last Freedom</Title>
    <Author>J. Krishnamurti</Author>
    <Date>1954</Date>
    <ISBN>0-06-064831-7</ISBN>
    <Publisher>Harper &amp; Row</Publisher>
    <Cost currency="USD">2.95</Cost>
  </Book>
</BookCatalogue>

StAX - Java code

try {
   for (int i = 0 ; i < count ; i++) {
      // pass the file name.. all relative entity
      // references will be resolved against this
      // as base URI.
      XMLStreamReader xmlr = xmlif.createXMLStreamReader(filename,
         new FileInputStream(filename));
         // when XMLStreamReader is created,
         // it is positioned at START_DOCUMENT event.
         int eventType = xmlr.getEventType();
         printEventType(eventType);
         printStartDocument(xmlr);
         // check if there are more events
         // in the input stream

StAX - Java code

         while(xmlr.hasNext()) {
            eventType = xmlr.next();
            printEventType(eventType);
            // these functions print the information
            // about the particular event by calling
            // the relevant function
            printStartElement(xmlr);
            printEndElement(xmlr);
            printText(xmlr);
            printPIData(xmlr);
            printComment(xmlr);
         }
      }
   }
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Tree and event-based access combinations
• Events → tree

• Tree → events

Events → tree
• Allow us either to skip or to filter out the ”uninteresting” document part using the event

monitoring and then

• create memory-based tree from the ”interesting” part of a document only and that part process.

Tree → events
• We create an entire document tree (and process it) and

• we go through the tree than and we generate events like while reading the XML file.

• It allows us easy integration of both processing types in a single application.

Virtual object models
• Document DOM model is not memory places, but is created on-demand while accessing

particular nodes.

• combines event-based and tree-based processing advantages (speed and comfort)

• There is an implementation: the Sablotron processor, http://www.xml.com/pub/a/2002/03/13/
sablotron.html

Alternative tree-based models
• XML Object Model (XOM)

• DOM4J

XML Object Model (XOM)
• XOM (XML Object Model) created as an one man project (author Elliote Rusty Harold).

• It is an interface that strictly respect XML data logical model.

• For motivation and specification see the XOM home page (http://www.xom.nu).

• You can get there the open-sourceXOM implementation and

• the API documentation, too.
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DOM4J - practically usable tree-based model
• comfortable, fast and memory efficient tree-oriented interface

• designed and optimized for Java

• available as open-source at http://dom4j.github.io

• perfect ”cookbook” available
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