
CEWebS

A Distributed Approach to Share Process
Oriented eLearning Modules

eingereicht von:

Jürgen Mangler

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Magister rerum socialium oeconomicarumque

Magister der Sozial- und Wirtschaftswissenschaften
(Mag.rer.soc.oec.)

Fakultät für Informatik der Universität Wien
und der

Technischen Universität Wien

Studienrichtung: Wirtschaftsinformatik

Begutachter:
Ao. Univ.-Prof. Dipl.-Ing. Dr. Renate Motschnig

Wien, im Februar 2005

Statement of Authentication:

The work presented in this thesis is, to the best of my knowledge and belief, original except
as acknowledged in the text. I hereby declare that I have not submitted this material, either in
whole or in part, for a degree at this or any other institution.

Vienna, February 2005 Jürgen Mangler

Acknowledgements and Preface:

The creation of my masters’s thesis was the final point of an adventure that began 1995, and
has lasted for 10 years. My merits as a student were quite often not as aureate as my instructors
wanted them to be, and I spent more time trying to adopt the latest and greatest technology
I’ve heard of than learning for exams. I always liked the time in lab courses more than the
time alone with books and scripts. Around 2000 I attended the courseSoftware Engineering,
at this time held byRenate Motschnig, and became somehow involved with the institute, first
as a tutor, later as a student assistant and technician. When thinking back I suppose that it was
the fact, that I can never keep my mouth shut that lead to my now very close relations to the
group aroundRenate Motschnigand the other members of the Faculty of Computer Science of
the University of Vienna.

So I want to thankRenate Motschnig, for supporting me in creating a system although it would
have been maybe easier to sit back and use existing tools, and for being always empathic,
helpful, and supportive of my ideas. I also want to thankMichael Derntlwho encouraged me
to write the system that my thesis is all about. He provided we with lots of feedback during
design, and testing phases and really is more helpful than it sometimes appears to me :-). The
third person that influenced my work isChristine Bauer, who was the person that did most of
quality assurance work. She provided feedback about the usability of almost each part of the
system, and sometimes noticed errors even faster than I liked them to be noticed.

Following a long tradition I also want to thank my parents, my mother for providing a crisis
telephone line and for sharing my enthusiasm, and my father for keeping calm most of the time
and for providing council regarding profane things.

Finally I’d like the thank the students that had to live with some bugs, but hopefully also with
a system that helped them to concentrate on the subject of the course not on some learning
technology.

I want to write something original that is not only an instrument to get a master’s grade, but is
also inspiring to read and provides you with insight into personal views, my work and my vision
about a better world without complexity for both, users and instructors.Renate Motschnig
fortunately was in favour of my personal style of addressing professional issues as long as the
purpose of the thesis, namely to document ”A Distributed Approach to Share Process Oriented
eLearning Modules” was fulfilled. She likes to hear my ”whole message” (Honestly! She said
so :-). So don’t hesitate to join me in our adventure and read on.

Should you like to share the technical adventure of testing CEWebS, send an email to «juer-
gen.mangler@univie.ac.at».

mailto:juergen.mangler@univie.ac.at
mailto:juergen.mangler@univie.ac.at

Table of Contents:

1 Introduction 1

1.1 Motivation. 1

1.2 The Task. 2

1.3 The Structure. 3

2 The Situation 4

2.1 TeleWIFI Communities. 4

2.2 Dayta . 5

2.3 WebCT . 8

2.4 Summary . 10

3 CEWebS? What is it? 12

3.1 The Idea. 12

3.1.1 The Art of Choosing a Solution. 12

3.1.2 Homegrown and Open-Source. 15

3.2 Usage of The Term CEWebS. 16

4 The Architecture 18

4.1 A Concrete Scenario: The Process of Building Teams. 20

4.2 Action Research. 22

4.3 The Transformation Engine. 23

4.3.1 How a Document is Delivered to The User. 24

4.3.2 How File Up-/Downloads Are Handled. 28

4.3.3 CEWebS Links. 29

4.3.4 The Format of the XML Data Provided by a CEWebS. 31

4.3.5 The Structure of An Example Implementation. 33

4.3.6 Performance. 34

4.4 The Delivery Interface . 36

4.5 The Administration Interface. 41

4.5.1 The Service Manager (SerMan). 44

4.5.2 The Administration Manager (AMan). 45

4.6 The Maintenance Interface. 48

4.7 The Notification Interface and the Notification Manager (NoMan). 51

4.8 The Report Interface. 53

4.8.1 The Report Manager (ReMan). 55

5 Services 58

5.1 WIKIs .59

5.2 Team- and Person-Contributions. 64

5.3 Evaluations . 66

5.4 Discussion Forums. 70

5.5 Keeping a Diary. 75

5.6 Team-Building and Communities. 78

5.7 XML, BugTracker, GraphTalk. 80

5.7.1 XML . 80

5.7.2 BugTracker. 82

5.7.3 GraphTalk . 84

6 Conclusion and Outlook 87

7 Attachment: Installation 88

1 Introduction

1.1 Motivation

When I started my work as a tutor, I took over from a colleague a small webpage, that consisted
of static HTML pages that were updated during the semester. In the beginning of the semester
it showed the names of the participants, then it was updated to show the teams the participants
formed during the first face to face (f2f) meeting. Later, when the students wrote their contri-
butions, they sent their work to me (or a link to their self maintained homepage) and I put the
work or the link online for the other students to see their fellows work.

After this the students read all the contributions of their fellow students and sent me an essay via
email. These emails where structured to cover some topics like readability, structure, relevance
of content, and so on. I then put the data from these emails together to write a survey about the
work each team accomplished the term, which again was put online. As you can imagine this
was an awful lot of work, in particular given the fact that:

• The collection of the information about the team structure often took weeks when handled
via email

• Errors in students’ names and email addresses were common, due to the fact that I sim-
ply couldn’t read their handwriting, when the information about the team structure was
collected via pieces of paper during a f2f meeting

• I got not only one version of a document, but between five and ten

• The team members often have not been able to coordinate their efforts, so I got different
versions from different team members

• Some people ignored the proposed structure for the feedback emails, etc.

This procedure also just was not scalable for courses with more than thirty students. So I started
to hack together some PHP pages that handled the above use-cases through simple HTML
forms. The original motivation to build a piece of learning technology was, to just ease my
work. It has to be said that this ease did not happen. Not because the system could not handle
the above tasks, but because the requirements changed constantly, and the habit that the students
had their own webpage and sent just links, vanished. At some point in the past all documents
were uploaded, and then there were not only single documents but milestones with multiple
documents and more complex reviewing processes following each milestone.

Now responding to the email for courses with 200 students and looking at the special cases
where the students complained that they couldn’t do this, and the system did not do that, is in
fact twice the work than the standard cases were in the past. But ...

• The numbers of students in the courses has increased by a factor of ten

1

• The possibilities provided by CEWebS (for both, the students and the facilitator) are infi-
nite compared to the approach five years ago

• Looking at special cases is not as exhausting as assembling large standard datasets into
something useful by hand

So in fact the workload increased, but I like the tasks better and can carry out them more
efficiently.

The motivation to develop CEWebS was to replace the hackish solution with something more
durable and manageable, that is not only a loose set of PHP pages which has to be copied from
one directory to another at the beginning of a term. It is an attempt to build something that is
easy to use, usable in different environments and easy to manage.

1.2 The Task

So the task that I want to solve is given by the work I’m doing. I want to document my work
and the system I created, regarding the following characteristics:

• Web-services are a useful technology, when used appropriately

• To design a modular distributed system pays off not only regarding scalability but also
maintainability

• Learning is a process for each student or team, not a series of duties and exams for a
group

The first two characteristics focus on the software engineering part of the problem. I’ve a strong
feeling that web-services are often misused these days. They are part of a distributed hype and
are used to connect parts of software that could be otherwise connected much more efficiently.
What is the benefit of connection between two java systems through web-services, when it is
foreseeable that they will never be connected with anything else? RMI would have been more
appropriate in this case. The same goes for .NET solutions. I think I have found an application
where web-services are very appropriate and have a benefit of their own: bringing together
different technologies to form an optimal solution.

On the other side, the web-services allow us to embed the result of our work into existing
platforms and thus allow us to concentrate on supporting students, not on building surrounding
infrastructure by implementing just another platform. The system also helps to build a network
and a community, because we can offer services to others and equally allow them to consume
our services in their platform, as well as consume the work of others.

The last point regards the way how platforms often work. The BLESS [5] model of Michael
Derntl andRenate Motschnigdescribes the coherences between didactical theories and an actual
implementation in a learning environment through a layered model. It has five layers, with to

2

the topmost layer describing the learning theory behind a course, in our case Blended Learning
[6]. In the second layer course scenarios are identified and modelled through activity diagrams.
In the third layer course scenarios are decomposed into learning patterns. The last two layers
are all about realisation. Web templates are identified that help developers to implement the
functionality. I think that todays learning platforms provide a loose collection of material and
tools without trying to establish an overall concept for a course. The task of explaining the
purpose of elements of the platform is left to a tutor or the course designer. The platforms work
like a digital cupboard where all things fit into well defined compartments. But if one wants to
find something in the cupboard he / she has to know the right compartment (given that everyone
has put everything into the right place) or to search through all compartments. This comes
from the fact that these systems are often derived from Content Management Systems or were
designed just with single tasks in mind and not the whole picture of a course scenario.

This does not seem to be the right way. I tried to make the system as a whole as flexible as
possible. Every part can be interlinked with every other part, to support the flow of a course and
to support the findings resulting from an application of the BLESS model. In the second part of
this thesis I will show actual examples of services. I try to detach the user from the task of find-
ing the right compartment. The system also has additional interfaces that allow an aggregated
view on the course. The course should be no longer a cupboard but a multidimensional data
cube, a data warehouse that lets us extract and interconnect information about the students.

1.3 The Structure

This thesis has three main parts (see Fig.1). The structure is derived from how the system was
designed and used during the last two years (its roots are more than three years old).

The first part concentrates on the software engineering aspects. In fact the system is not only
usable for Blended Learning purposes but could be applied to every area where flexibility and
scalability are necessary. This part focuses on the technical aspects of my work. The technical
terms that are used are explained the first time we encounter them, to not bore the reader with a
chapter that is solely about technical perquisites.

The second part tries to show how the system is used and performs in the Blended Learning
context. It contains use-cases for most of our services, shows how they are used in real life, and
highlights also fields where they could be improved.

The third part will be not as voluminous as the first two and focuses on the consequences the
Action Research approach had on the development.

3

The System

Th
e

D
es

ig
n

P
ro

ce
ss

Introduction
 Motivation, Task, Structure.

The Situation
 Requirements analysis.

CEWebS
 The Idea for the system.
 Non functional requirements.
 Design issues.
 A first example how it works.

The Architecture
 Detailed overall design.
 The Interfaces.
 How everything works together.

The Implementation

Use-cases and services, that are
used in courses.

Screenshots and real life
experience.

Outlook and Installation

Conclusion and Outlook.
Installation.

Figure 1: The Structure of This Thesis

2 The Situation

To illustrate the situation I try to give some information about recent courses and how we tried
to support them by technology.

2.1 TeleWIFI Communities

In the summer term 2002 we tried to support our advanced course onPlanung und Realisierung
von Informatikprojekten(PRI II). The course setting was as follows:

• The students formed teams of three to four persons

• The goal was to create a portal for Business Informatics Students called WinLearn

• Most work-packages where done by the teams individually (e.g. Requirements Engineer-
ing) and then discussed in the group to form a final proposal for the portal

• For each work-package one team was assigned to the task of merging the results

• There were also several work-packages that were elaborated by the individual teams (in
the form of prototypes)

4

• the TeleWIFI Communities(TWC) platform was available for the second half of the
course (from mid April to the end of the course)

The TWC had two categories available, one of which was calledMedia, the other was called
Forum. I use the past tense here, to signal that this was a prototype that definitely has evolved
and is maybe no longer existing in its previous form. WithinForumone could write messages
(and attach any file to it). One problem was, that if the person who wanted to write a message
forgot the subject, that message silently just not appeared in the forum. This was a bug though,
not a missing feature.Media was a filesystem abstraction, where one could deposit arbitrary
files.

We were very thankful to Mühllehner and Tavolato GmbH who made it possible for us to gain
hands on experience with a simple community platform. In exchange we provided feedback to
allow for improvement. Indeed TWC caused some fundamental inconveniences:

• There was no access restriction at all: every user could delete / modify / add files every-
where inside the media category. We had to establishsocial rules, a guideline that users
should not modify or delete anything that other users created. This worked, but some
mistakeswere made, that lead to missing files.

• The forum functionality was not very intuitive.

• The system required ActiveX (see [19], [33]) (a technology tightly integrated into Mi-
crosoft browsers) to be installed and working and therefore required a recent Internet
Explorer.

• The included functionality was just too simple to realise e.g. Peer Reviews in an intuitive
way (solved through uploading files)

All these points relate to the fact that the TWC platform was designed with a different setting
in mind, focusing on courses held in an adult education environment with a small number of
participants, where its is presumably working very well. For a university lab course with high
numbers of students a more guarded approach is needed i think.

As a side note it has to be said that the most notable event of the course was a discussion if an
optimal solution has to be data-centred (like TWC) or function-centred (strong focus on tasks
and workflow). A function-oriented approach arose as clear winner.

2.2 Dayta

After using TWC for two semesters we were curious to use Dayta and we also got a dedicated
server from our departments resources for it to help us intensify usage and research of learning
technology. Dayta is based on the Zero Object Programming Environment (ZOPE) which is
written in Python (see [28]), an object oriented interpreted language. ZOPE is described as
follows (see [41]):

5

”Zope is an open source application server for building content management sys-
tems, intranets, portals, and custom applications.”

Later Plone (see [27]) with some additional components was reused to create the eLearning
environment. Again we sincerely thank the providers (TomCom GmbH) to have given us the
opportunity to use their object-oriented platform and gain hands-on experience with a very
elaborated tool.

We used it for various courses, including the above mentioned PRI II. For the following example
I will concentrate on a course calledWeb Engineering, held during the summer term 2003:

• The students formed teams of three to four people.

• The lecture notes were available on the platform from the beginning.

• Every team selected and elaborated its own project, including planning and realisation.

• Every team had its own working directory where they had full access-rights (add / change
/ delete everything as well as giving access permission for certain content to other people)

• Every team had to design its home directory so that other students could see the achieved
progress during the advance of the course

• Every team had to contribute documents defined by milestones

• There was also a forum where discussion took place concerning issues that were raised
during the lecture or lab hours

• Peer reviews took place after each milestone

Plone is a ”Content Management System” (CMS) that provides a traditional filesystem hierar-
chy with the ability to add content to directories. Special objects like chats exist and appear
also as files in the directory. The forum functionality can be attached to every file that is created
inside the platform. Content can be created by utilising an integrated HTML editor. Images can
be uploaded to directories and used inside the HTML editor.

For being a CMS at heart the system is naturally data-oriented. For a course the course designer
had to take the following steps:

• Create a directory to hold the course.

• Create a directory for each group (the course consisted of multiple groups of about 30
people each).

• Import the users (from a handcrafted text-file).

• Create group and team objects (collections of users) and add the users to these objects.

• Create the team folders inside each group folder.

6

• Assign the appropriate team/group objects to each team/group-folder.

• Change the permissions of each folder so that the owning team only could change the
content.

• Create the content for the course, and each group.

• Create an administrative forum for the course and for each group (a document with a
forum attached).

We decided that the teams should keep all data in their directory. As said before each team had
to design an index (page) for their own directory (with the integrated HTML editor). In their
team-folders they collaborated to create the documents for each milestone. After the document
was ready they added a link to to the index (page) of their folder.

The following problems appeared:

• The creation of the directory structures and the assigning of the appropriate permissions
for 300 students was exhausting and took about three days. Many errors slipped in be-
cause my concentration faded away.

• The permission system proofed to have many flaws and was quite inflexible. Although
there were some predefined roles for users, these roles had to be tied to operations for
every single object. The inheritance of permissions often did not work as expected for
sub-directories and the objects inside them.

• Also the students had to learn how to use the permission system to maintain their own
folders.

• The students did not obey the rules of publishing milestones. The design of every page
was different, determined by their own interpretation of the milestone structure. They had
to put quite some energy into maintaining their work-directories.

• The facilitator had to browse through hundreds of directories only to check if the mile-
stones documents were available and was confronted with ever changing structures inside
the teams directories.

We concluded that the approach that dayta took is highly useful for small groups of people that
work in a creative way, but not for mass lectures or lab courses. The static nature of the system
was not appreciated by both, the students and the facilitators.

Although we had a dedicated server the system performed poorly in 2003. For more than
ten concurrent users, the access time was often more then twenty seconds. Additionally the
operations involved in the process of creating directories and assigning users often took several
seconds. In general we found the system to be quite unstable, with regular crashes. When we
asked the company that provided us with the product, they told us that the speed problems are
created due to a misconfiguration (debug style logging turned on), but were not able to fix it. We
admit though that this could be individual problems, as Zope in general is known to be stable
and scalable.

7

Despite this difficulties the adoption of Dayta for free allowed us to gain insight that we could
not have acquired without. We also hope that our feedback proved helpful for improving Dayta
for future use and are open towards potential cooperation with the EduPlone initiative.

2.3 WebCT

In the winter term 2004 we had the chance to work with WebCT Vista, a service which is pro-
vided by the Vienna University Computer Center. WebCT Vista is a professional platform by
WebCT Incorporated (see [32]) and is used by over 1000 institutions in over 80 countries. It
is from the bottom up designed to be a learning platform and therefore promised to have many
advantages. We tried it out for a course calledProjektmanagement: Grundlagen und Tech-
niken” with about 25 students. There was also the advantage of getting help from professional
eLearning tutors (thanksPetra Dryml”). We had about the same course setting as before:

• The students formed teams of three to four people, who were enlisted in the platform

• We collected the students expectations about the course

• The students had to plan a project and submit multiple documents grouped into milestones

• The students did peer reviews of a partner team

• There was no need for a working prototype

• The students did several multiple choice tests, that were not graded though

• The users did self evaluations

WebCT proved to be very capable and everything we wanted from it could be solved. Although
there were some bugs, which can be attributed to the fact that the platform was installed for the
first term, everything went nice. However we noticed some (I think) severe design issues in the
system:

• WebCT has big usability problems. Multiple ways of navigating inside a course were
confusing for the students, the facilitator and the course designer.

• WebCT tries to resemble workflows from real life. When looking at the procedure for
submission from a student we discover the following:

– The student can enter text and can append multiple files.

– He / she then has to post off the submission.

– When he / she wants to make some changes after this, he has to move it back from
Eingereichtto Posteingang(see Fig.2).

• The page the students see when they enter the course can’t be modified to show arbitrary
objects. It is only possible to put HTML header and footer text on this page, accompanied
by symbols that lead to the functionality. The usage of symbols that are not always easily
recognisable, which adds to the usability problems.

8

Figure 2: Accomplishing a Task From a Students’ Point of View

• Although it is possible to link to external pages it is not possible to take advantage of
WebCT’s authentication mechanisms in external applications.

• The WebCT whiteboard has a focus on painting lines and primitives (modifying pixel
graphics), in computers science there is a need for more elaborated drawing and modelling
facilities (we will concentrate on this issue later).

• Peer Evaluation can be realised as submission but is not obviously related to the peer-
reviewed object.

• Although there is the ability to create reports that show for all students status of their
submissions, it is not possible to notify them according to certain criteria (e.g. write a
message to all that have only provided one file, ...)

• When working in teams, the team has to coordinate internally who submits. Only the
person who first changes and submits a task can alter it.

• For a given task it is not possible to per default make all submissions visible to all students.
For this behaviour one has to reuse the discussion forum which results in a not so clearly
arranged structure and is not optimal regarding reports and grading.

We think that WebCT for trying to be everything to everyone has a tendency of being over
complicated. Many simple workflows are quite obfuscated because the platform is so powerful,
and the power is not hidden from the user. Modelling things after sequences from real life is a
nice idea, but (I think) not necessary. The platform should hide things from the user he / she
does not need. Another issue for us is that, for WebCT being a proprietary system, we are not
able to modify it. E.g. the system has only the ability for the facilitator to grade students or
write comments. Providing an add-on module that can handle the use-case of students grading
other students is not possible (at least not the easy way). There are at least three reasons for the
fact that we possibly can’t modify WebCT:

• We have no access to the system because the University of Vienna can not afford to set
up multiple test systems

9

• The changes should also go back into the main version after extensive testing of the whole
system, which is not possible during operative usage (presumed we had the resources for
doing the testing). So our changes maybe can only be merged from release to release
(every 2 years?).

• The internal API’s supposedly are not designed for 3rd party additions, and suspected to
be quite complex (and undocumented?).

Another problem we see is the focus on technology. WebCT heavily relies on Java applets
which has the effect that the back button of the browser is unusable.”Breaking or Slowing
Down the Back Button”is the number one mistake of web design according to Jakob Nielsen
(see [25]). I broke WebCT more often than I can count because out of a reflex I clicked on the
back button. The focus on Java inside the WebCT server also imposes the problem that one
possibly can’t reuse already existing code. Everything has to be rewritten in Java.

2.4 Summary

After using different systems we can conclude several things.Noneof the used systems sup-
ported our course settings in an optimal way, we always had to make some sacrifices due to
limitations of the used platform. We had to adopt our setting to the platform. I want to recapit-
ulate (what I think are) the most serious shortcomings:

• To keep it simple(KIS), in other words provide the students with only minimalistic and
self explaining tools, under the precondition of optimal support of a learning scenario
wasn’t possible.

• There were missing parts of functionality that would have eased the handling of a course
(support for creating teams only instead of collecting data through emails or paper)

• The systems focused on tasks, not on the workflow inside a course (peer-review is possible
but not integral part of the submission).

• The systems were either proprietary (TWC, WebCT) or derived from highly complex
general systems (Dayta) and impossible or very difficult to extend.

• The systems were not flexible and locked to a certain technology like Java or Python.
There is no easy way to extend one of the existing platforms.

• There was a lack of / unsatisfactory support of authentication and / or user models. All
platforms were weak when dealing with changing teams/multiple teams.

• There was a specialisation on content management/presentation, rather than user interac-
tion.

• There was no easy way to keep data about instructor-student interaction (e.g. searching
through archives) and generate reports that e.g. show trends over multiple terms.

• There was no easy or standardised way to separate the data that specifies the structure of
the course from the data that is generated and accumulated throughout the course.

10

• There was no easy or standardised way to support/generate courses with several concur-
rent groups, but identical structure.

• There was a general lack of usability.

I found the platforms to be static, inflexible and monolithic. I think this is a design issue with
all of the platforms. They deal with data structures in traditional databases, and these data
structures are also manifested in the user-visible structure.

11

3 CEWebS? What is it?

3.1 The Idea

In order to overcome the difficulties we encountered with other platforms we began to create a
framework that would allow us to embed components into existing platforms at the University
of Vienna (e.g. Plone [27] , ILIAS open source [14] , BSCW [1], ...) to bring in the flexibility
we needed. The seven corners of our framework are:

• Keep it simple - Implement a minimal interface to get the desired functionality.

• Freedom of choice - Given the correct implementation of the interface, one should be
able to use whatever programming language / framework one prefers in order to add
functionality.

• Scalability, flexibility - Easy distribution of functionality across servers on the Internet
and various server platforms.

• Open source - Everyone should be free to use our repository of existing components,
everyone should be free to implement the interfaces. That allows for integrating new
services into the product.

• Reusable patterns - In our concrete case, this means support for blended learning sce-
narios modelled conceptually by using UML activity diagrams [5] that can be saved and
reused. Structural data and data that accumulates during the course are separated.

• Embedable - The components can be embedded in and interact with existing systems

• Interaction - The components can share data and interact with each other transparently
without knowing of each other.

Building on research on Person-Centered e-learning [22] and blended learning patterns [6] we
decided to create a framework using recent technologies like Web Services [4], SOAP [38],
XML [37], and XSLT [39]. The latter should be able to provide us with the flexibility we need
to combine the components we need, and react to the needs of blended learning in very short
time periods.

The name for our system is CEWebS - Cooperative Environment Web-Services. This indicates
that the system is not eLearning specific, although this document deals mostly with a set of
services that belongs to this field. The system is more of an enabler for Enterprise Application
Integration (EAI) in the sense that it can package all sorts of applications and tools and allow
them to interact with each other, and behave for the user like a highly personalised environment.

3.1.1 The Art of Choosing a Solution

The first decision one has to make is whether touse an existing solution orto create a new
one.

12

Existing solutions have a given architecture and feature set, and it is sometimes difficult for
them to live up to the expectations (one has to sacrifice usability, cannot achieve the exact target
or has to cut back one’s expectations). The following real-life examples illustrate this quite
well:

In summer term 2001, we used a platform called TeleWIFI communities supplied
by Mühllehner and Tavolato GmbH, used for courses in the WIFI environment. It
provided us with the functionality of forums for discussion and workspaces to share
documents and other files. Forums and workspaces were strictly separated. There
was no permission system whatsoever, so a logged in user could change everything
and delete every message in the course. This proved not to be a problem in the
given course because the 15 participants were a manageable group. We adapted
to the system and established social guidelines for the usage, where a fine grained
access control would have been a solution.

For the next one and a half years, we used a Dayta / Zope / Plone / Eduplone
derivative supplied by TomCom GmbH. It was a real leap forward in functionality
and overall productivity. It is based on Zope, which is in fact a content management
system, with the Dayta and later Plone and Eduplone trying to add easy to use
components. For being a content management system at heart, it focuses on files
and folders. Every file a user uploads needs its place in the filesystem hierarchy,
having its own permissions and visibility. Custom functionality like forums can be
added to each object, chats can be added to folders, and so on. The main course
were we used it, had then about 300 participants, with team based projects but
also individual contribution, it was necessary to create a place where teams could
upload their files, and to ensure that everyone had only permission to access only
appropriate folders. Creating the whole infrastructure was quite exhausting (about
400 directories, each individually supplied with a plethora of access restrictions
and user information). We accustomed to the setting, but the recreation of the
structures for new students each term, and the constant browsing through countless
folders to just check if a contribution has been made created some resentments for
both, students and instructors.

In the summer term 2004 the University of Vienna switched over to WebCT, which
is in fact a whole new experience as being from bottom up designed to be a Learn-
ing Environment (LE). It has features like ”Multiple Choice Tests”, ”Chat + White-
boards” and the ability for generic duties, be they team based or individual. The
contributions are listed in concise manner, one can check easily which student has
made a specific contribution. What remains, is the lack of aggregation: one can-
not print out a list of all contributions made for a single duty, or the results of all
”Multiple Choice Tests” for all users (for ”Multiple Choice Tests” there is also the
problem that the instructor cannot check easily which students did which test). Re-
garding content the platform is inferior to the solution we used before. Managing
course structures is again not possible for the instructor (the technical staff offered
to copy the structure of whole courses). Again we accustomed ourselves to the way
courses can be structured in a WebCT environment.

13

The above examples illustrate what I consider a serious problem: We adapt to a way of using
technology and get accustomed to it. Then our material and courses are kind of locked to
a single piece of technology, that holds our minds captive. Behind each approach stands a
dogma, that can not be changed and affects the real life, i.e. the courses’ structure. In my mind,
technology should support real life, not shaping it.

Homegrown solutionson the other hand can be designed to do exactly what you want. They
support exactly your style of teaching, but have a whole world of problems of their own.

• Not everyone can write one’s own solution. The resources and the knowledge involved in
writing something unique and useful are quite expensive.

• Homegrown solutions tend to be specific and inflexible, because they are very tightly
designed systems, architectural changes aren’t easy to accomplish.

• They may die when persons leave or loose interest

• It may occur that they are not useful for anyone else

For large organisations like the University of Vienna it is (oder zumindest it’s) clearly easier
to buy a commercial product with support and a planned upgrade path, for being much more
transparent cost-wise, and also for providing the basic support everyone needs. The specialised
needs that arise from the different focuses of the faculties cannot be taken care of anyway (in
my opinion).

The second question that arises nowadays is if to useClosed-Source(commercial)or anOpen-
Source product. Assuming that there exist two equally suitable products there are as well
reasons pro and contra.

Regarding traditional Closed-Source productions, there is the advantage of support and persis-
tence. If one chooses a product from a well known company one wants also to rely on the
support the company provides for the product. There is also the advantage of planability.

Furthermore there often exists some uncertainty regarding Open-Source projects:

• Do they take the right direction?

• Do they continue to exist?

• Can I build up enough known-how for an own support team?

I think these fears are weak. Open-Source projects are surrounded by communities, and like
commercial projects, one can take part by stuffing money in it. In Open-Source projects the
money is used to pay human-resources for actively participating in the community. This also
solves the other two problems, as long as the project has human-resources it will at least con-
tinue to exist, and the payed human-resources can also double as a very efficient support team.
The difficult part is, to not too much affect the project, so that other parties will not start their

14

own effort, because the project gets too specific. But i think there is a plethora of projects
that show that they can handle this problem and be even more successful than every existing
Closed-Source application (e.g. the Apache web-server).

3.1.2 Homegrown and Open-Source

When writing an own system that is not too specific (or does not include information that is
vital for an organisation) it is definitely wise to start an Open-Source project. The possibility
to create a community that adds additional human-resources, experience, expertise and ideas
should be priceless.

I think the creation of a loose framework rather than another complete platform combines the
benefits of all four models and can be a valuable addition to todays existing infrastructure.
CEWebS was created because of the following reasons:

• Individual combinable services can help to keep the environment simple, for both the user
and the facilitator.

• In the field of computer science (and in fact for all natural sciences) there is a need for
special tools; CEWebS allows for the encapsulation of existing tools to provide a web-
interface for students.

• There is a strong tendency in the European Union (see [8]) to support Open Source. De-
veloping an Open Source framework for the exchange of standardised Blended Learning
components can help to establish new cooperations with other universities.

• We want others to join our efforts. Open Source is a way to transparently share work with
others.

• The learning platform provided by the University of Vienna offers tools that are also
valuable for cooperations and projects with other universities or companies. We are not
allowed to use it for other purposes. With embedable components one can bring students
in touch with persons from outside the university without breaking the rules. Furthermore
one can use synergy effects and reuse tools for projects.

• To explore the effects of the Person Centered Approach we need a flexible framework
to experiment with. For our research to be effective we need a framework that can be
changed and customised in the short-term.

• Investigation into new technologies and applications that also provide easements for our
daily work seemed a good idea.

When creating an Open-Source project, one has to choose a license under which it is published.
In our case I decided for a mixture between LGPL [13] and GPL [12], to allow also for embed-
ding into commercial Closed-Source projects.

The GNU General Public License (GPL) basically allows everyone to freely use, change and
distribute as long as the copyright statement and the license text is included. Changes to the

15

source are permitted, as long as they are also made available via GPL. In other words: any
derivative work has to be also Open Source and has also to be released under the GPL. Quote
from the preamble of the GPL:

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

The GNU Lesser General Public License (LGPL) on the other hand is less restrictive. It allows
for the inclusion in a commercial product without the restriction of releasing this product as
open source. But there are no changes to code allowed, that is released under LGPL. All these
changes again have to be released under the LGPL. In other words: it allows for the linking to a
library or in our case the implementation of an interface, without the necessity of releasing the
final product as Open-Source. When an interface is implemented, it is part of the final product
which (when released under GPL) would require to that software to also be released. This may
not be possible because the product includes code from other copyright holders. So we chose
the LGPL.

Our test-implementation and the services are released under the GPL, all interfaces are released
under the LGPL. This has also the benefit that in the case of violations of the (L)GPL, one can
report [11] them to the Free Software Foundation which eventually takes legal action against
the violator. These actions have so far always had the consequences of convincing the violator
to release the code.

3.2 Usage of The Term CEWebS

The term CEWebS should be used in its pure form after a short explanation. Under no circum-
stance one should use CEWebS Services oder CEWebS Web Services. Examples for correct
usage of the term:

• CEWebS (plural) are made to be integrated into existing solutions. They can help to
abstract problems that exist in heterogeneous environments, and create an integrated so-
lution.

16

• Different departments in a company have their own specialised software, tools, and servers,
but can provide a CEWebS (singular) to be integrated in a company wide intranet solution.

• All CEWebS (plural) share a common interface, data exchange, and message passing
format.

• A CEWebS (singular) can share its configuration data with other CEWebS (plural) over
the Internet. When its configuration changes, it can send a notification to a central broker
that distributes the changed configuration to all affected CEWebS (plural)

17

Web Server D

Web Server A

Maintenance

Transformation
Engine (TE)

Platform

Web Server B
Administration Website

Report
Manager (ReMan)

Service Manager
(SerMan) (UDDI)

Web Server C

Administration

DeliveryReport

CEWebS
(functionality)

 Notification

SOAP

HTTP

SOAP

Instructor / Admin

HTML
Response

RAW
Response

Student / User

SOAPSOAP

HTTP

Notification
Manager (NoMan)

Administration
Manager (AMan)

SOAP

SOAP

Figure 3: The CEWebS Architecture

4 The Architecture

The framework (see Fig.3) consists of four main parts:

• The Administration Website

• The Transformation Engine (TE) (implementation of a simple standardised SOAP inter-
face)

• CEWebS - the web-services that implement the functionality

• The Notification Manager - allows the services to exchange data

Initially there is an empty container (i.e., the course platform), which is dedicated to hold var-
ious components according to an initial course design. The administrator initialises the TE
(container) with the CEWebS it should show and the users that should be allowed to use them.
Then he or she initialises (configures) every service with the user information and additional
data that is required by the service.

The Administration Website itself is a centralised service and user repository that additionally
holds information about all available TEs. Administrators are assigned to these engines and can
distribute users and services to them. The pieces inside the Administration Website are itself
CEWebS and have the same interfaces. They also exchange data about available services, users,
and TEs by using the Notification Manager (although the arrows describing this functionality
are left out to not complicate Fig.3.

The Transformation Engine (TE) is the link between all users and the framework. It has two
main functions:

18

• translating user requests to CEWebS invocations

• transforming the response via XSL or CSS to meet the user-interface guidelines given by
the surrounding environment (e.g. a commercial learning platform)

The second function implies also that for being easily embedable into third party products the
TE can be realised using different technologies. By embedding it can enable extensible single
log-on for intranets or learning platforms.

The response from a CEWebS is a raw XML document, which is defined as a subset of XHTML
1.0. It consists roughly of<h?>’s, <div>’s, <a>’s, ’s, <form> ’s and<input> ’s that can be
styled via special attributes. The goal was, again, to keep it simple as well as to allow developers
an easy entry to CEWebS based development.

The CEWebS are the central parts of the architecture. Every TE can communicate with an
arbitrary number of CEWebS through a well-defined interface. The interface gives the TE the
ability to:

• Get XML data that can be transformed into a specific user interface

• Get data that is embedded in a specific user interface (applets, images, data / documents
for plugins, ...)

• Get binary data (clickable downloads)

• Decide whether a request requires authentication

• Cache data to keep the data flow between a CEWebS and TE low

Every CEWebS can hold multiple instances of user / configuration data, corresponding to each
TE through which it is used.

By using the Service Manger (SerMan) the Administrator can register new services (by pro-
viding a description and the URLs of the interfaces of the new service). He / she provides this
information to the Administration Manager and which acts like a UDDI for the Administration
Website.

The Administration Manger (AMan) is the central configuration tool. With the AMan an ad-
ministrator can add new TEs (by providing a link to the maintenance interface). These TEs can
then be initialised with a set of users. Adding new (or existing) CEWebS instances is also pos-
sible. All parts (CEWebS and the TE) are provided with the user information and also access
keys (only a TE that possess the correct keys can access a particular instance of a CEWebS).
The concrete form of a TE holding several CEWebS in our case is a course. The structure of all
courses (participated CEWebS) is provided to the Report Manger.

The Report Manager (ReMan) connects to every CEWebS Report interface. This interface sim-
plifies the querying of reports for a CEWebS instance. It allows the administrator to collect

19

analyses of certain incidents, e.g. users that missed the submission deadline for their contri-
butions. Through the report interface the administrator can always receive binary data, e.g.
standalone HTML pages, EXCEL Sheets, PDF’s, or JPEG’s containing the solicited informa-
tion.

The components of the Administration Website are also CEWebS and share the information
about available services and the course structure by using the Notification Manager.

The Notification Manager (NoMan) provides means to transparently exchange information for
the CEWebS similar to the Blackboard approach (see [3]) that is also used in todays mobile
agent systems. A CEWebS can send information that could be important for other CEWebS to
the NoMan. The NoMan then selects services inside the same TE that could be interested, and
forwards them the information. The same principle is also applied to user information. For the
CEWebS to share information they need a common understanding about the semantics of the
exchange data. For this to be transparent all services that share a particular understanding of
semantics belong to a group, in our casePCeL which stands forPerson-Centered e-Learning
[23].

The main concept of this architecture is, that the CEWebS in a TE know nothing about the other
services. Only the TE, the NoMan, and the AMan (and ReMan) know about the coherences.
For the services themselves everything is transparent, which makes them easy to implement.
Interlinking between the CEWebS inside a particular TE is possible though, but has to be ex-
plicitly configured by the maintainer of the course through special links (CEWebS://, which is
elaborated in more detail in the next chapter)

4.1 A Concrete Scenario: The Process of Building Teams

By using the concrete example of a CEWebS that enables students to build teams online, we
want to show how the interaction between a User and a CEWebS works.

The basic data flow is defined as follows (see Fig.4):

The user selects ”Participants” from the menu: The container (Transformation Engine (TE))
holds a list of all CEWebS (location, name, visibility, description) locally (note that in Fig.
4 there is only one CEWebS in the container). The name of a CEWebS is a container-
unique identifier that can be used to implement container-internal cross-CEWebS links.
Each CEWebS also carries a visibility status, that tells whether its link should appear (in
our case as a menuitem in the navigation bar). It is up to the TE whether it shows the
visible menu items or whether it passes them to the surrounding environment.

The TE selects the responsible CEWebS:The TE selects the location and the initial com-
mand for the CEWebS in question. CEWebS use identifiers calledcommandsto refer to
certain parts of their functionality. The container also holds information about the de-
fault command that is used when a CEWebS is initially called. Together with CEWebS
location and information about the CEWebS internal data instance and optional default
parameters, the connection can be initialised and the data can be addressed.

20

Figure 4: Building Teams

The TE collects initial information about the document: Each TE is intended to do local
caching to keep the data load at a minimum. So first, the methodprepare is invoked,
which returns a cache key by which cached documents can be identified, and a boolean
value that indicates whether authentication for this command is required.

The TE requests the document:The Information about the last modification of the cached
document and additional parameters are sent to the CEWebS via thedoCommandmethod,
which returns a new document plus a new modification date, or nothing if the cache holds
the current version. If a document is returned, it is saved in the cache and the modification
date is set according to the provided date.

The TE delivers the document to the user:The document from the cache is then optionally
XSL-transformed and sent back to the user. Due to the structural similarities between the
document and ordinary XHTML, the styling job can also be done by CSS, which is less
resource-intensive.

The user selects a link that leads to a group view:Basically the same process is repeated with
additional parameters. Although links in the platform appear like normal URLs to the
user, in fact the document holds the links in a special format, which is transformed to a
browser-readable URL.
In the given case, a document showing participants of group 1 is returned (or served from
cache).

21

The user selects a link, to start the team-building process:For the first timepreparerequires
authentication. The TE container holds information about all users that are allowed to ac-
cess the CEWebS and shares it with the surrounding environment. The platform is now
forced to authenticate the user, or to return the current user’s identity if it is already au-
thenticated. From now on the user information is provided with every invocation of the
prepareanddoCommandmethods.

The user selects a person in the pool:Inside the CEWebS the two persons (the current user
and the clicked-on participant) are assigned to a new team. The information about the
team change is propagated to the AC part of the Administration Website, which in turn
distributes the information to all affected CEWebS (the ones in the same container).

4.2 Action Research

Our blended-learning strategy is guided byAction Research[7]. Action research tries to com-
pare different conditions and practices in social environments and how they change over time.
In our case these social environments are supported by a technical solution, in other words
blended learning courses are supported by a learning platform. One of the characteristics of so-
cial environments is, that there are constant changes, and that it acts very dynamic and flexible.
So there is a pressure for the supporting technical solution to also be very flexible and to some
extent it also is constantly changing.

Constant change is considered poison in traditional software development for the following
reasons:

• Constant changes introduce new errors that affect the overall stability and performance of
the system as well as the user satisfaction.

• Different groups of users (in our case different courses) that use the same system are also
affected by the changes, although they maybe do not want them.

• Data structures (from previous terms) can no longer be read by the system.

• Old data (from previous terms) can no longer be compared to current data.

The proceeding that is forced on us to keep the system up-to-date and incorporate the constant
user input, is similar to the iterative waterfall model and includes elements of exploratory pro-
gramming [31, p. 8-12]. The introduced architecture is well suited to take care of constant
changes. Errors in components can not affect the overall performance of the system. It will now
be explained in more detail, how we are dealing with the demands:

• Every CEWebS is a truly independent component, it takes care of its own data and re-
sources, and only is accessible to the outside world through a well-defined interface. The
CEWebS can even reside on its own machine. It includes its own web-server.

22

• The TE aggregates all services, if one service fails an error is shown for only this service,
all other services continue to work as expected. The user can at least use the rest of the
system, not everything is down.

• When a improved version of a CEWebS is needed for a course, the service is forked. The
new service runs on a different port, is accessible through a different path, or runs on a
completely different machine. The process of changing to a different CEWebS is as easy
as changing the URL for the WSDL / endpoint. The original service can happily continue
to run on its own location. Archived data from previous terms can have its own CEWebS
running, that allows everything to be conserved and kept in exactly the state it was in the
term it was used.

• Through the NoMan parts of data can be migrated at runtime to different CEWebS, the
new service can add missing pieces by using default values. Implementing a mechanism
in the AMan that tells a service to migrate and then deactivates it is easy.

• The system is very scalable, the CEWebS are true objects that can be moved out of the
way to a new machine if performance bottlenecks occur.

The ability to develop the CEWebS independently accounts for the relative stability and reli-
ability from the user’s point of view. Huge changes in data-structures can be intercepted by
forking the CEWebS and conserving the data that was accumulated up to the forking-point. So
the migration of old data can be delayed and planned, because everything is still accessible.

4.3 The Transformation Engine

The Transformation Engine (TE) is the central piece that glues the web-services together and
gives them their appearance. Each TE has the following attributes:

• It holds0..nCEWebS

• Each CEWebS is identified by a unique name

• Each CEWebS is described by a location (WSDL) (see [36])

• The location is further described by an instance, a command, and parameters to call

• Each CEWebS has a description that is shown as text on a menuitem

• Each CEWebS has an error text, that is shown when the service is not reachable

• Each CEWebS has a visibility flag which defines if a menuitem is shown for the service

• Each CEWebS has a usability flag that defines if a click on the menuitem triggers a call
to the service, or the error message is shown

• Security is implemented through a key that is unique for an instance of a CEWebS. Only
the TE that is in possession of the key can talk to the instance.

23

The XML data that is used to store this information looks as follows (in our prototype):

<service name=’I-KNOW’ visible=’true’ usable=’true’>
<error>This Service is currently under maintenance.</error>
<description>I-KNOW</description>
<wsdl>http://localhost:2017/Delivery/wsdl</wsdl>
<instance>17</instance>
<command>show</command>
<parameters></parameters>
<key>8a76450rr14d6d07b1740666e45f18dce9</key>

</service>

4.3.1 How a Document is Delivered to The User

When a user clicks on a menuitem, the TE decides according to the attribute usable, if the
CEWebS is called or not. In general the application flow follows Fig.5. For now we will
concentrate on the actions, the objects that are generated during the processing will be explained
in more detail later as they result from calling a CEWebS (and therefore just represent the return
values of the methods contained in the interface).

Our prototype is capable of providing four services:

• Authenticate a user and manage the session cookies

• Change a password and distribute the changes through the notification interface

• Translate all user action (inclusive input from HTML forms) to a form that is suitable as
an argument list for a call to a CEWebS

• Transform the results of a call to a CEWebS into a form that is suitable for the client
application (HTML, WML, ...)

The most complicated part, although not necessary when all participated servers share a local
network, is performance optimisation. I will now analyse the steps in Fig.5 to explain what is
happening, after the webpage that embeds the TE is called:

”generate menu”: The TE decides if the XML file that holds the data about the contained
services is newer than the menu in the cache. If this is true then it generates a static
variant of the HTML that is used to show the menu. The HTML version is used until the
structure inside the TE is changed, which occurs rarely.

”select menuitem”: If a user enters the webpage for the first time, the first menuitem is se-
lected (and hence the first CEWebS asked for data). The whole process is supported by a
parameter calledtargetwhich is contained in each link that has something to do with the
TE (and therefore with calls to a CEWebS). If this parameter is not present the CEWebS
assumes that the user just entered the page.

24

ge
ne

ra
te

 m
en

u

lo
gi

n
da

ta

an
al

ys
e

pa
ra

m
te

rs

lo
gi

n
da

ta
 a

va
ila

bl
e?

pa
ss

w
or

d
da

ta

pa
ss

w
or

d
da

ta
 a

va
ila

bl
e?

ch
an

ge
 p

as
sw

or
d

ye
s

lo
gi

n
(s

et
 c

oo
ki

e)

ye
s

no no

se
le

ct
 m

en
ui

te
m

(ta
rg

et
 o

r f
irs

t)

se
le

ct
ed

 s
er

vi
ce

 (m
en

ui
te

m
) o

nl
in

e?

ge
t c

ac
hi

ng
 +

 a
ut

h
in

fo
rm

at
io

n
(p

re
pa

re
)

ye
s

se
rv

ic
e

w
an

ts
 a

ut
he

nt
ic

at
io

n?

ca
ch

ek
ey

au
th

ge
ne

ra
te

 H
TM

L
fo

r
au

th
en

tic
at

io
n

fo
rm

no
t a

ut
he

nt
ic

at
ed

 y
et

ge
t d

at
a

fro
m

 s
er

vi
ce

(d
oC

om
m

an
d)

ca
ch

in
g

su
gg

es
te

d?
al

re
ad

y
au

th
en

tic
at

ed

do
cu

m
en

t

re
so

ur
ce

s

lin
ks

he
ad

er
s

no

ge
t d

at
a

fro
m

 s
er

vi
ce

(d
oC

om
m

an
d)

ye
s

go
t d

oc
um

en
t?

tra
ns

fo
rm

 d
oc

um
en

t

sa
ve

 d
at

a

lo
ad

 d
at

a
tra

ns
fo

rm
 d

oc
um

en
t

m
od

ify
 in

 p
la

ce

ye
s

no

ap
pl

y
H

TM
L

te
m

pl
at

e

us
er

 w
an

ts
 to

 c
ha

ng
e

pa
ss

w
or

d?

no

ge
ne

ra
te

 H
TM

L
fo

r
ch

an
ge

 p
as

sw
or

d
fo

rm

ye
s

ge
ne

ra
te

 H
TM

L
er

ro
r m

es
sa

ge
no

Tr
an

sf
or

m
at

io
n

E
ng

in
e

m
od

ify
 in

 p
la

ce

Figure 5: The General Principles for Getting a Document From a CEWebS

25

”analyse parameters”: All parameter with aCEWebS_prefix are collected. TheCEWebS_
prefix is cut off and the names and values are prepared (put into an array) to send to the
CEWebS.

”password data available”, ”change password”: If the parameters user, key, keyNewA, and
keyNewB are available, the TE writes the changes to its user repository and sends them
to the NoMan.

”login data available”, ”login”: If the parameters user and key are present, the TE assumes
that the call is the result of a login, checks the parameters against the information in the
user repository and possibly sets a cookie with a random identifier (the random identifier
is also saved to identify the user for subsequent calls).

These steps are done in preparation for the real interesting things that follow. At first glance Fig.
5 looks quite complicated, but it turns out to be really simple. Every data that is generated by
or returned from the CEWebS is stuffed into four objects. They are involved with every activity
that follows. The most important one isdocumentwhich holds the HTML/WML that the user
will see in the end. Additionally (and not contained in the diagram to keep it simple) every
activity has an error handler. If an error occurs, the error message is put intodocumentand the
flow continues atapply HTML template. However this is only modelled for ”selected service
(menuitem) online?”.

”selected service (menuitem) online?”, ”generate HTML error message”:To check if the
CEWebS is reachable, a socket is created. If the test fails the text contained in the element
<error> (from the above XML example) is put intodocument.

”get caching + auth information (prepare)”: The CEWebS is called to get information ...

• if the service demands authentication for the requested data

• if the requested data is cacheable (and possibly still cached by the TE)

”service wants authentication?”: A decision takes place, regarding the authentication data
returned from the service.

• if the user is not already authenticated a HTML authentication form is put intodocument
(step”generate HTML for authentication form”)

• if the user is not already authenticated and requested to change his/her password on the
authentication form, the form for doing so is put intodocument(step”generate HTML
for change password form”)

26

”caching suggested?”: A decision takes place, regarding the cachekey returned from the ser-
vice. It the service returned an empty string it is assumed that no caching is desired, if a
string is returned the TE looks up the data assigned with this key in the local cache. The
cache only consists of the keys, the assigned data, and a time that gives evidence about
the last change of the data. The two branches differ only in”got document?”, ”load
data” , and”save data”. In the case caching is demanded ...

• ”got document?” checks if data was delivered by the CEWebS. If so, data is saved after
a transformation, otherwise the data is loaded from the cache by using the cachekey.

”get data from service (doCommand)”: The CEWebS is called to get data. In the case that
caching was requested the time of the last data change is supplied todoCommand. The
CEWebS can then decide if it wants to return XML data or nothing (in which case later
on the document from the cache is used). The returned data has the following parts:

• ”document” - a XML document in a XHTML derived format

• ”headers” - HTTP headers that should be sent before delivering the final document to the
user. This is useful when doing page redirects or wanting to send more additional headers
(e.g. for serving P3P compact policies [40], a system that allows websites to describe
how cookies are used, or what information they hold)

• ”links” - additional information describing the served page (e.g. links to RSS [29] feeds)

• ”resources” - resources used by the final page, including embedded images and objects
(Java [30] applets, Flash [16] applications, ...)

”transform document”: The data returned from the web-service is transformed to meet the
user’s requirements. Supported formats could be HTML, WML [26] or even targets like
XUL [24] or XAML [21]. The transformation can be done by using XSL or some other
XML transforming technology. In the actual implementation I do not modify the XML
at all (as it is perfectly valid XHTML), only the CEWebS:// links inside the document,
that are used to navigate inside a CEWebS or between the CEWebS inside a TE, are
transformed to valid HTML links that call the actual TE (by using Regular Expressions
[34]).

”apply HTML template”: This is the last step in the process of generating the final docu-
ment. The content of all objects (document, headers, links, resources) is put together to
form the final result that can be delivered to the users device (e.g. browser). The actual
implementation supports also built in debugging of the data flow.

For the developer the actual implementation of the TE contains various debugging facilities (see
Fig. 6). The user can view the SOAP Messages exchanged for both,prepareanddoCommand.
There is also a menupointStructurethat shows the returned XML document before the trans-
formation and errors in the document (it is checked against a DTD). There is also an indicator

27

Figure 6: Debugging a CEWebS

that tells how long the whole process took to complete (in the example it took 0.372 seconds).
Of special interest is the pointCachethat indicates how the caching was handled according to
the above described principles:

• Documentdescribes the size of the delivered document

• Cacheshows the cachekey, that is returned by the CEWebS (or nothing)

• Modified shows when the (returned) document associated with the cachekey was modi-
fied the last time

• Status indicates how the document was served. Values include:

– From Cachewhen the document from the cache was up-to-date

– Stream through if the CEWebS demanded to not cache the document

– Writing Cache if caching was requested and the CEWebS returned a document

• Resources, Headers, Links hold values according to the above described concepts

• Cachekeysholds keys for each file that was submitted to the CEWebS in a precedent step
(this concept is described later in more detail)

4.3.2 How File Up-/Downloads Are Handled

The TE also handles file up- and downloads and supports them through caching. The whole
process is handled by the same mechanisms that also handle document delivery. In fact the

28

get data from service
(doCommand)

cachekey
cachekey supplied for uploaded file?

save file

yes
no

document

headers

links

resources

file

Figure 7: Upload a File to a CEWebS

case described in Fig.7 is just an addition to Fig.5. The stepget data from service (do-
Command) additionally submits a file to the CEWebS. The CEWebS then returns a cachekey
and some additional information. The file can then be saved to the cache immediately. This
has the advantage that even when the file is requested for the first time it can be served from
cache. Therefore the data that must be transferred between a CEWebS and the TE is cut down
dramatically. For sure the CEWebS can also decide that the file should not be cached.

The opposite case is downloading a file from the CEWebS (see Fig.8). In this case the all steps
betweenget caching + auth information (prepare)andapply HTML template from Fig. 5
are replaced, although the control mechanisms for caching and authentication are the same. In
the following I want to describe some steps that differ in more detail:

”query service (doDownload)”: If caching is demanded then the CEWebS is queried by using
the alternatedoDownloadmethod. The CEWebS return among others:

• file data - the actual file

• name- the filename associated with the file

• mime - the mime-type associated with the file

”apply DATA template”: The download is prepared for the user by adding the additional in-
formation in the form of HTTP headers to the data

4.3.3 CEWebS Links

For navigating inside a CEWebS, it providesCEWebS:// links, that contain a command and a
set off attributes, to allow for the communication with different commands within the CEWebS.

29

get caching + auth
information (prepare)

caching suggested?

got file data?

query service
(doDownload)

save file data

apply DATA template

yes

yes

query service
no

no

file data

name

mime

cachekey

Figure 8: Download a File from a CEWebS

30

These CEWebS:// links are then transformed to call the actual TE. The links allow the service to
function analogous to the way ordinary web-applications work. They provide the functionality
of:

• Links to navigate between pages (commands), probably with multiple parameters at-
tached (HTTP/GET)

• Action targets of forms (HTTP/POST or HTTP/GET)

CEWebS work in the same, but location independent way. They link relatively to the web-
service that generated them, or in fact relatively to the TE they are used in. The anatomy of a
CEWebS:// link is quite simple. For example,CEWebS://self/document/details&CEWebS_id=1
is interpreted as follows:

• self tells the TE that the WS wants to display itself. Another possibility is that the WS
wants to place a link to another WS in the container by referring to its name. A CEWebS
by default does not know about the other CEWebS in the TE, the maintainer of a certain
group (e.g. a course) must explicitly tell a CEWebS a name as configuration parameter.
As we will later see, certain services rely on other services.

• documenttells the TE that the result is supposed to be a document.

– The second possibility isdownload, in which case the doDownload command is
used for data retrieval.

– The third possibility isresourcefollowed by the name of a resource that has been
returned byget data from service (doCommand), followed by the name of the re-
source. This CEWebS:// link is translated to link to the resource-cache directory of
the particular (TE +) CEWebS.

• detailsis the command (i.e., the requested functionality inside the addressed WS).

• &CEWebS_id=1is an additional parameter that is passed to the WS. Parameters have to
start withCEWebS_as to not interfere with the standard HTTP/GET and HTTP/POST
parameters used by the surrounding environment.

4.3.4 The Format of the XML Data Provided by a CEWebS

The document format of the XML data returned by a CEWebS is together with the stable
CEWebS Delivery interface the key to keep the CEWebS usable by an arbitrary TE and there-
fore embedable into an arbitrary environment. The document format is derived from XHTML
and is stripped of most elements, but every document following the structure is in fact valid
XHTML 1.0. I decided to do this because:

• I wanted to provide the writers of new CEWebS with something they know very well, so
that they do not need to learn a new type of markup

31

• I wanted to provide the writers of a new TE with something they know, and also allow for
the ability to see output in the browser without a transformation.

• I stripped down XHTML because I think that most elements are not needed for produc-
ing the necessary output. The simplicity is also an advantage when creating new XSL
transformations.

The following excerpt from the DTD shows the most basic concepts.

<!ENTITY % intext ’b|i|big|small|span|a|br’>
<!ENTITY % formelements ’input|select|textarea’>
<!ENTITY % headings ’h1|h2|h3’>
<!ENTITY % lists ’ul|ol’>
<!ELEMENT content (%headings;|%lists;|dl|hr|div|table|

script|form)*>
<!ELEMENT form (%headings;|%lists;|dl|hr|div|table|

script)*>
<!ELEMENT div (#PCDATA|%intext;|div|img|%lists;|dl|

%formelements;)*>
<!ELEMENT td (#PCDATA|%intext;|img|table|

%formelements;)*>

The root element of the document iscontent, which can only hold very few elements. In fact
only headings (h1, h2, h3), lists (ul, ol, dl), horizontal rulers (hr), div’s (as general structuring
element), script sections and form’s are allowed.Form’s can hold the same elements like
content, with the exception of other forms. The elements that hold formated text arediv’s, table
cells (td)andlist item’s (li) . These elements can hold text mixed with basic formating elements
defined inintext. The attributes of the elements are stripped down to a set that is defined as
mandatory by XHTML. A characteristic is, that no element can have astyle attribute, but there
is aclassattribute that can hold a wide range of predefined values to style the elements.

Adding script elements to the structure is sort of a dilemma. There is no guarantee that the
script code in the element can be interpreted on the target system (e.g. the browser or a XAML
application). So one must use this element very carefully to not break the portability of a
CEWebS. There is one rule that must be obeyed when providing for example javascript with
a document: Make sure that the application does not depend on the the script. Here are some
examples:

• When the script provides a page redirect, make sure that the user has an alternative possi-
bility to change to the target of the redirect (e.g. a link)

• When a script is used for the convenience of the user (e.g. to check form input), make
sure the form depends not on the javascript. Use onSubmit to check the input, never use
javascript links (like) or buttons. Everything should always work
with scripting disabled, so checking the input data has also to be implemented on the
target of the form.

32

These rules are in fact not native to CEWebS, they apply to every well designed web application.
A XML schema file, as a replacement for the DTD, to check every aspect of the document
structure including the script rules, is a goal for future implementations of the TE.

4.3.5 The Structure of An Example Implementation

We are working currently with an example implementation of the TE that provides a very simple
portal for our students. All courses have their own URL (directory on the server) and are
grouped by course name and term they were (are) held. The TE is linked to a global location and
is reused via URL rewriting by each course. URL rewriting is a technology, where upon access
to a specific directory, the request is redirected to a different location. The user is not aware of
this change, because the address in the browser is not changing. With this mechanism we can
separate the data (cache and course information like name, web-master, services, ...) from the
TE. The TE resides only once on the server, and is not duplicated for every course. This proved
to be usable as lightweight replacement for a full-fledged platform that holds multiple courses.
The structure of the TE is as follows:

./Images + ./Styles

./Output/Intl

./Output/Intl/default

./Output/dataTemplate.php

./Output/htmlChange.php

./Output/htmlTemplate.php

./Output/htmlAuthenticate.php

./Includes/admin.php

./Includes/command.php

./Includes/transform.dtd

./Includes/transform.xml

./Includes/transform.php

./Includes/transform_document.php

./Includes/transform_file.php

./index.php -> ./download.php

TheImagesandStyles, needed for the design are held separately in two directories, all links in
the style sheets and the htmlTemplate are absolute to the server in order to avoid problems with
the URL rewriting. TheOutput directory holds the templates for generating the final document
and the translations (INTL) as thelogin andchange passwordmasks are localised to different
languages. Thedefault directory insideINTL is mandatory and holds a link to the default
translation (in our casede, abbreviations for standard language encodings are used).

TheIncludesdirectory holds the logic for the TE.

• admin.php provides basic functionality like XML wrappers and a way toanalyse pa-
rameters (see Fig.5).

• command.php provides the ability to call the CEWebS (prepare and doCommand /
doDownload) and generates also the information that is used for debugging purposes.

33

• transform.php holds the base class for all things related to the transformation of the
data from the CEWebS.transform_document.phpandtransform_file.php hold derived
classes for data returned fromdoCommandor doDownload.

• transform.xml and transform.dtd are used for generating the debugging output of the
document structure (see Fig.6)

• index.phpanddownload.phpare the same file (download.phpis a link toindex.php) and
handle the two casesdoCommandanddoDownload. By calling one of them, the user can
either download a file or view a document.

The Data directory has to be present at every course location (directory), but not in the TE
directory:

./Data/CacheD

./Data/CacheF

./Data/CacheU

./Data/CacheM

./Data/CacheDH

./Data/CacheDL

./Data/CacheDR

./Data/CacheFH

./Data/participants.xml

./Data/services.xml

./Data/name.html

./Data/contact.html

./Data/description.html

Most cache directories hold the cached data separate for every service, exceptCacheMand
CacheU.

CacheDholds the documents, in the form of files with the cachekey as filename, and the time
of the last modification (from the server) as file modification time.CacheFis the equivalent for
files. CacheUholds the unique keys that are used as cookies to identify a user.CacheMholds a
static version of the menu and also extracted, easily includable information for each menupoint
(so that the services.xml has only to be parsed when it has changed).CacheDHandCacheFH
hold the headers that were assigned to a specific document file. CacheDL and CacheDR hold
the links and resources that were returned with the particular document.

name.html, contact.html, anddescription.html hold additional information that produce the
title and footer lines for the final document.participants.xml holds the user data and pass-
words,services.xmlholds the information about the services as described above.

4.3.6 Performance

To give the reader at least a vague idea of the performance of the TE I put together some
benchmarks, measuring the performance of the current implementation. I measured the time

34

that was needed to carry out the steps betweenselected service (menuitem) online?andapply
HTML template (see Fig.5). The time is printed (as described before) to the final page as part
of the debugging facilities for developers. I got some interesting numbers for the benchmark.

I had the chance to run the test on two servers, our own department server and a server running
at the Masaryk University in Brno. I want to thank Tomas Pitner, Pavel Drasil and Jan Pavlovic
for making possible to carry out the tests. Both servers ran exactly the same software:

• PHP 4.3.10 with DOM XML (using libxml 2.6.10) and NUSOAP 0.6.8 (Revision 1.80)

• Two CEWebS using Ruby 1.8.2, Webrick 1.8.2, Soap 1.8.2 and ruby-xml-simple 0.1.6

The configuration of the servers was as follows:

Leonardo: our department server

• 2 x Intel(R) Xeon(TM) CPU 3.06GHz

• Kernel 2.4.21 SMP

• Debian Sarge

Kore: the server at the Masaryk University in Brno

• 2 x Intel(R) Pentium(R) 4 CPU 3.20GHz

• Kernel 2.6.10 SMP

• Fedora Core 3

I decided that the memory configuration was irrelevant for our test, so it is not mentioned above.
Both servers should be quite equal, although I’d given Kore some advantages for having a kernel
known for better overall performance. Not all tests could be run on both computers, because the
WIKI used for the test, so far only runs in Vienna. All times are the average of 10 subsequent
calls.

Results for the HelloWorld CEWebS:

Leonardo calling local Hello World: 108ms
Kore calling local Hello World: 142ms
Kore remote local Hello World: 252ms

Results for the the Scientiki CEWebS (the implementation of a WIKI web), delivering a big
page (in fact theArchitecturechapter of this thesis):

35

Leonardo calling local WIKI: 136ms
Leonardo calling local WIKI uncached: 470ms
Kore calling remote WIKI: 273ms
Kore calling remote WIKI uncached: 480ms

I am interpreting the findings as follows:

• The performance is quite good, the users do not even notice that web-services are called.
This is also true for remote web-services, that do not run in the same LAN.

• Caching is a very effective (and necessary) way to reduce traffic and delivery time.

• Either Debian Sarge is more optimised than Fedora Core 3, or the Xeon processor really
makes a big difference for our tasks.

I think by using PHP5 with the new built in SOAP and XML facilities, performance can be
improved even further, because NUSOAP’s marshalling/demarshalling is known to be slow and
memory consuming, especially when large amounts of data are transfered (e.g. file transfers).

4.4 The Delivery Interface

The Delivery interface (see Fig.9 is the one part of the architecture that allows the users to
interact with the system (Report and Administration interfaces are used only by applications for
administration and controlling/grading). The interface is shared by all CEWebS and was kept
simple to allow for easy creation of new services. A WSDL is provided, which was designed
with a maximum compliance in mind. The WSDL file has been tested with:

• Apache Axis 1.1, http://ws.apache.org/axis/

• Microsoft .NET Framework 1.1., http://www.microsoft.com/Net/Basics.aspx

• Ruby 1.8.2 soap module, http://www.ruby-lang.org

• Perl SOAP::Lite 0.6.4 module, http://www.soaplite.com/

The Delivery interface of a CEWebS is basically given by the requirements of the TE, as elabo-
rated in the previous chapter. There are basically three methods.prepare has to be called before
everything else,doCommandanddoDownloadare used to get documents or binary files from
the CEWebS. All three methods essentially share the same parameters with the exception of
modified. The modified parameter is only present indoCommand/ doDownload.

I am using a simpleHello World CEWebS to show how the Delivery interface works. Our
CEWebS returns just a simple string, but in different languages. There exist multiple in-
stances of the CEWebS with their own localisations (for the same language two instances of
the CEWebS can return different strings). The string should be cached in the TE.

36

<< webservice >>
CEWebSDelivery

+ prepare (key:string ,instance :int ,user :string ,identifier :string ,parameters :ParametersEle[] ,language :string[]):PResponse
+ doCommand (key:string ,instance :int ,user :string ,identifier :string ,parameters :ParametersEle[] ,modified :dateTime ,language :string[]):DCResponse
+ doDownload (key:string ,instance :int ,user :string ,identifier :string ,parameters :ParametersEle[] ,modified :dateTime ,language :string[]):DDResponse

<< exception >>
Fault

+ internalErrorCode :string
+ internalErrorMessage :string

<< throw >>

ParametersEle

+ name :string
+ value :string
+ additional :base64Binary

PResponse

+ cachekey :string
+ authenticate :boolean

DCResponse

+ document :string
+ modified :dateTime

DDResponse

+ file :base64Binary
+ name :string
+ mime :string
+ modified :dateTime
+ transform :boolean

DCResponseResourceEle

+ id :int
+ content :base64Binary
+ mime :string
+ ext :string
+ modified :dateTime

DCResponseCachekeyEle

+ parameter :string
+ cachekey :string
+ name :string
+ mime :string

DCResponseHeadersEle

+ name :string
+ value :string

DCResponseLinksEle

+ rel :string
+ type :string
+ title :string
+ href :string

resources+
*

cachekeys+
*

links+

*

headers+
*

Figure 9: The Delivery Interface

37

The first thing that the TE calls is theprepare function to check if the service demands caching
(in our case it will) and / or authentication. I will now explain the parameters, the method is
called with, in more detail:

• key holds a unique identifier. The CEWebS can use this key and compare it to a locally
saved version to find out if the calling TE is really allowed to do so. It acts as a poor mans
certificate.

• instanceholds a numeric value, that identifies the instance. This can also be ignored by
the CEWebS if it implements only one instance. Instances are a way to realise e.g. mul-
tiple independent discussion forums, and to allow multiple independent TEs to include
them.

• user holds a string that is supplied by the TE to identify the current user (can also be
empty if the user is not yet identified). There is no password checking involved in the
CEWebS itself, it trusts the TE that it securely identifies the users. All CEWebS have the
information about the users that have access to the TE saved locally. They can useuser
to get more information (by default this includes forename, surname and email address
as we will see later).

• parameters holds all parameters that the TE collected, either via HTTP/GET or via
HTTP/POST. In the current implementation uploaded files are not part of the call to pre-
pare. The parameters each have anameand avalue. The attributeadditional is reserved
to hold the content of a file.

• languageis an array of strings that holds the language preferences that are set in a users
browser. This would be e.g. [”en-us”, ”en”, ”de”, ”cz”]. The format of the language
string is subject of RFC 2616 [9], the array is just passed to the CEWebS from thehttp-
acceptHTTP header. The CEWebS has to select a language from the array, for which it
has a localisation available, or else fall back to an internal default language.

An object with two attributes is returned that holds acachekeyand a boolean value that denotes
if authentication for the given combination of instance, command (...) is desired.cachekeyholds
a string that functions as a key to a per service cache in the TE. If an empty string is returned, the
CEWebS demands that the document is NOT cached. The key should be constructed to reflect
at least the unique combination of language, instance, and command. I’ll give some examples
to explain the concept:

• In our service we have several instances and several languages

• Lets assume theHello Worldstring is printed when the parameter command has the value
show

• Because there is only one command (show) the output of our service can be uniquely
identified by a combination ofinstanceandlanguage

• It is wise to calculate a hash of the two values to enhance security and also guarantee that
no special characters are included. That can prevent problems when the TE is using the
string as a filename for a disk-based cache.

38

An example implementation ofpreparefor ourHello WorldCEWebS would look like:

def prepare(key,instance,user,identifier,parameters,language)
case identifier

when ’show’
PResponse.new(Digest::MD5.hexdigest(

instance.to_s +
Language.select(instance,language)),

false)
else

raise Fault.new(’NotFound’,’command is not available’)
end

end

As you can see the method only consists of a bigcasethat selects the return for every command,
according to the principles described above.

With the cachekeythe TE can now supply amodified to subsequent calls -doCommandor
doDownload(the modifiedis a value that is associated with the cachekey in the TE). When
calling one of these methods the TE also adds uploaded files to theparametersarray. In the
case of a file upload,nameholds the name of the form element,valuethe name of the file and
additionalthe contents of the file.

When doing a call todoCommandthe localised string is loaded from a data-source and returned
to the user. All collected information is contained in an object of type DCResponse. The TE
should interpret an empty attributedocument as signal, that it can use the version from the
cache (this also includesheadersand links). resourcesand cachekeysshould be handled
separately, as returning no document does not mean, that embedded images could not change,
or uploaded files should not be put to cache.

We will now concentrate on the details of the DCResponse object:

• documentholds a document in a custom XML format, as described in the previous chap-
ter, or an empty string

• modified holds a dateTime string denoting when a document / link / header changed. A
document with its headers and links is seen as an entity, so there is only onemodified
to describe them all. When an embedded image changed and has to be sent back to the
TE, the modification date fordocument, headers, andlinks stays the same, as resources
are independently controlled. The document has not to be delivered when just a resource
changed, given the case that the document is still valid.

• headerscan hold a set of name / value pairs that are sent by the TE as HTTP headers
before the final page is delivered. This allows the web-service to take full control of the
delivery process. The possibilities are again described in RFC 2616. It can for example do
page-redirects with thelocationheader ([:name => ”location”, :value => ”http://xxxx”
] to cause the effect that the users browser immediately changes to a different location
after receiving a page. This can be used to redirect the user after submitting a form, so

39

that when he/she hits the reload button the form is not submitted again (cause he/she is
already no longer on the page that was the target for the HTTP/POST).

• resourcesis an array that can hold images or objects embedded in the document. The de-
livery of a resource depends also on themodifiedparameter of the method. They are han-
dled the same way as documents. When present they are saved to cache, when not present
it is assumed that they are still valid. Allresourcesare always saved to the cache. They are
referenced from the document by links of the formCEWebS://Data/CacheDR/doc/1.png.
To describe aresourcethe following attributes are mandatory:

– the id (name) of the string (1 in the above example)

– the ’contentof the resource (e.g. content of the image file)

– themime type of the resource (image/png in the above example)

– the extension (ext) of the resource (png in the above example)

– modified, a dateTime string that denotes the last change date of the resource

• links can hold information to construct<link/> elements in the<header>of a final page.
This is useful when one wants to provide simple logical information how pages relate to
each other. This can be used by browsers to get an idea how single pages are connected
and to show an alternate navigation (this is only implemented by conceptual browsers). It
is also useful to provide a user with the information that there is an alternate RSS feed for
the page. The attributes have to be set according to XHTML rules. An example to link to
an RSS feed would be:

– rel: alternate

– type: application/rss+xml

– title : Discussion

– href: CEWebS://self/download/rss&CEWebS_id=42

• cachekeysis an array that holds the keys for files that were handed to thedoCommand
method. This makes it possible that the TE can cache the files immediately after upload-
ing them. When other users request the files they are already in the cache. To make this
possible the following attributes have to be set:

– parameter: name of the form element that was responsible for the file upload

– cachekey: the key that should identify the file in the cache

– name: the filename that is associated with the file (has not to be the same as the
name of the file submitted by the user)

– mime: the mime-type for the file. In the current implementation the mime-types
are selected automatically according to the content of the file. So even submitting a
file with a wrong extension leads to a correct mime-type and possibly a file rename
(new extension).

A sample implementation of ourHelloWorldservice can be found below:

require ’Delivery/ImplShow’
def doCommand(key,instance,user,identifier,parameters,modified,

40

language)
case identifier

when ’show’
cmd = Delivery::ImplShow.new(instance,modified,language)
return DCResponse.new(cmd.document,cmd.modified)

else
raise Fault.new(’NotFound’,’command is not available’)

end
end

As you can see, the method again consists only of a construct that returns theDDResponse
for each command. In our current implementation the response is constructed by creating an
object for each command, that decides if it is necessary to return a document and provides the
necessary data if so.

ThedoDownloadmethod works exactly the same as thedoCommandmethod, but it returns a
DDResponseobject that can be described as follows:

• file contains the content of the file. If it is empty, it is assumed that the version from the
cache is up-to-date.

• namecontains a filename for the file.

• mime contains the mime-type that should be supplied with the download (to allow the
users computer to automatically select an application for the file)

• modified contains a dateTime string denoting when the file has last be changed

• transform contains a boolean value that tells the TE if the content of the file should be
searched for CEWebS:// links. If true all CEWebS:// links are translated to point to the
actual TE. This is useful e.g. when the CEWebS provides an RSS feed that should link
back to the contents of the CEWebS. Because the RSS XML document is a file and not a
document in the CEWebS sense it is acquired throughdoDownload.

4.5 The Administration Interface

The Administrationinterface (see Fig.10) has to be implemented by every CEWebS. The
functions implementing this interface are responsible for the following:

• Creating and deleting instances

• Assigning users to a particular instance

• Providing information about what data (configuration) is required by the service to func-
tion properly

• Setting and querying this information

41

<< webservice >>
CEWebsAdministration

+ createInstance (inboundkey :string ,outboundkey :string ,description :string ,noman :string):int
+ deleteInstance (key:string ,instance :int):boolean
+ modifyUserList (key:string ,instance :int ,operation :string ,identifier :string ,forename :string ,surname :string ,password :string ,email :string):boolean
+ getUserList (key:string ,instance :int):ULEle[]
+ setUserList (key:string ,instance :int ,users :ULEle[]):boolean
+ getConfigurationParts (key:string ,instance :int):GCPResponseEle[]
+ getConfigurationPartSchema (key:string ,instance :int ,identifier :string):string
+ getConfigurationPart (key:string ,instance :int ,identifier :string):string
+ setConfigurationPart (key:string ,instance :int ,identifier :string ,part :string):boolean
+ getEntryPoints (key:string ,instance :int):GEPResponseEle[]

ULEle

+ identifier :string
+ forename :string
+ surname :string
+ password :string
+ email :string

GCPResponseEle

+ identifier :string
+ reuse :string

GEPResponseEle

+ command :string
+ parameterstring :string
+ description :string

Figure 10: The Administration Interface

• Querying the service for entry points. Entry points are the same to CEWebS as index files
are to websites. For a CEWebS it is useful to tell a user whatcommands would be wise to
use when displaying the service. For example it would not be useful to display the target
of a form when the user enters the CEWebS. Instead it would be useful to display a form
where the user can enter data or a survey list that shows all records.

To keep theAdministrationinterface separated fromDeliveryhas the advantage that a system
administrator can very easily set up a restriction to only allowAMan’s to access it. Presumably
a CEWebS is accessed by many different TEs (the different instances), but only by few AMan’s.
The separation has also the advantage that the interface can be shut down separately for a
CEWebS, so that it can act as an archive, where the configuration can’t change any longer.

I now want to describe the methods included in the the interface in more detail.

createInstance: This method is used to create and initialise a new instance of a CEWebS.
inboundkey contains a key, that has to be supplied with every call to the service, if the
caller wants to gain access to the now created instance.outboundkey must be supplied
by the service if it wants to contact theNoMan. The contact information is contained in
noman in the form of a link to a WSDL file. Thedescription string is used to supply a
more verbose description. In the case of a problem (e.g. when the mapping is lost in the
AMan) the instance should be recognisable by this description. The method returns an
integer that identifies the newly created instance.

42

deleteInstance: This method deletes a particular instance. It needs the numeric instance identi-
fier and the assigned inboundkey as parameters. It returns a boolean to signalise success.

From now on caller has to supply the correct instance / inbound-key combination for the method
to return data or execute a requested operation.

The following three methods deal with the setting of users. One of the purposes of anAMan is
to set all users immediately after creating a new instance. The rest of the configuration can be
dependent on the user data (e.g. if a CEWebS implements parts of courses, the users are divided
into groups and teams). After the initial user import, the users list should not change again as
whole. So there are two different methods to deal with these use-cases. One method is to set the
whole list of users, and one to add / change / delete single users. In the following I will describe
the functions that deal with user-data:

setUserList: This method is used to set a a large quantity of users at once. A boolean value is
returned, that signalises if the operation was successful or not. Each user is represented
by an objectULEle, which has the following attributes:

• identifier

• forename

• surname

• password

• email-address

modifyUserList: is a method that concentrates on single users. It has all the attributes ofULEle
as parameters. There is an additional parametercommandthat tells the CEWebS what to
do with the parameters.commandis an enumeration of the following values:

• ADD_OR_CHANGE - when supplied, the data for a specified user (identified by the
string identifier) is updated or added (if the user not yet exists).

• DELETE - the user identified byidentifier is deleted. The values apart fromidentifier
can be empty.

getUserList: For anAMan it could be sometimes necessary to check what users are present
in a CEWebS (e.g. if an AMan wants to synchronise all services with a different data-
source). The Method returns an array of the above mentionedULEle objects.

Setting the users is (as already mentioned) the second step that is involved in creating a func-
tional instance of a CEWebS. The next step is to supply the service with the necessary config-
uration. It is recommended that a CEWebS is always initialised with a default configuration
set (duringcreateInstance). So the following functions serve the purpose of querying and
modifying this default configuration:

43

getConfigurationPart: The configuration is divided into parts than can be set individually.
This method returns an array ofGCPResponseEleobjects that consist ofidentifier and
reuseattributes.identifier is a unique identifier for the configuration part. There has to
be noted that also the order in which the parts are returned can be important. A part with
a higher index in the array, can depend on the information that is included in a part with
a lower index. Thereusestring is particularly useful for theNoMan. All CEWebS that
share configuration parts with the same identifier and the same value inreuseare seen
as interested in this type of information. So when a service publishes such a part to the
”blackboard” all other CEWebS in the same TE (that share the same configuration part
with the samereusestring) are notified.

getConfigurationPartSchema: For every configuration part (identified by the stringidenti-
fier) the CEWebS can return an XML Schema that describes the data in more detail. This
schema can be used by the AMan to create a wizard the lets users add missing informa-
tion. To support the AMan in the creation of the wizard, the XML Schema is enriched
with information by using the<annotation><appinfo/></annotation>schema compo-
nent. Specifying the exact information that has to be supplied is considered a future
exercise.

getConfigurationPart, setConfigurationPort: After getting information about the structure
of a particular part, theAMancan query the information itself. After changing the infor-
mation the user can ask the AMan to save it back to the CEWebS.

When finishing these steps, the CEWebS should be fully functional. The remaining method has
to be called to find acommandthat can be used by the TE to access the service. Lets imagine
a CEWebS supports students in uploading multiple documents. When the students are divided
into several groups, it can be useful, to show an intermediate page, where the students can select
the group they belong to. When there is only one group of students, this page is useless, and the
upload form can be immediately presented to the user. So ...

getEntryPoints: returns an array of usefulentry pointsthat can be used directly as menu points
for a TE, or can be supplied (as part of a configuration) to any other CEWebS inside the
TE, to allow for interlinking. The method returns an objectGEPResponseElethat has
the following attributes:

• command: The command that is necessary to access the functionality.

• parameterstring: A set of parameters in the form ofname=valueseparated by& ’s as
described in the chapter about CEWebS links.

• description: A description to help the user select the right entry point.

4.5.1 The Service Manager (SerMan)

The sole purpose of theService Manager(SerMan) is to register CEWebS (see Fig.11). So it
provides the functionality of a UDDI to theAdministration Website. The services are registered
by providing:

44

Administrator

register a service

Figure 11: Use-cases For The Service Manager

• A name (short description).

• The location (WSDL) of theDelivery interface.

• The location (WSDL) of theAdministrationinterface.

• Optional: the location (WSDL) of theReportinterface.

In Fig. 12one can see a screenshot of the current implementation of the SerMan. So far there are
18 services registered. Even the SerMan itself and the other CEWebS that theAdministration
Websiteconsists of, are registered.

The information that is collected by the SerMan is shared with the AMan and ReMan CEWebS.

4.5.2 The Administration Manager (AMan)

The purpose of the AMan is to set up and manage courses (see Fig.13). This includes ...

• registering courses locations (WSDL)

• initialising courses with information like course-name, webmaster, title-string (for HTML
page)

• adding CEWebS to the course

• configuring a CEWebS

• setting the text of the menuitem that calls a CEWebS (as explained before)

• changing a menuitem to be invisible/visible for the user

• changing menuitem to be unusable (show an error message) / usable for the user

The user interface (UI) is designed to be as simple and straight forward as possible. When the
administrator enters the webpage he/she can see a list of all courses that have been registered
for the current term (see Fig.14). The operations an administrator can perform include ...

45

Figure 12: The Service Manager

46

Administrator

set course information

add a service to a course configure service

delete service

<< include >>

perform an action on
a service

change visibility

change configuration

change "usability"

change description
(menuitem)

register a new course assign users

<< include >>

<< include >>

Figure 13: Use-cases For The Administration Manager

• adding a new course (Add a Course)

• deleting a course (delete)

• changing a course’s preferences (by clicking on the name); the preferences include the
course location (WSDL), contact information (webmaster), unique name (regarding the
TE), text for the menuitem, and information about the term

• changing to the list of CEWebS that are including in the course (contents)

In Fig. 15 one can see, how a ready-to-use course looks from an administrator’s point of view.
The administrator has the chance to ...

• add / delete / import / synchronise users (Manage Users)

• add new (instance of a) CEWebS to the current TE

• deleteCEWebS from the current TE (and hence also delete the instances in the CEWebS);
deleting is not the right way if one just wants the students to no longer see a menuitem;
deleting means loosing all data accumulated by the service

• change the information that is provided to the TE; this includes text of the menuitem, the
order (position of the menuitem), an error message when the connection fails, and the
command (+parameters) that is used when the menu item is activated.

• change the state of the menuitem to visible/invisible

47

Figure 14: The Administration Manager - The Courses

• change the state of the menuitem to usable/unusable (the menuitem is visible but the error
message is always shown, no matter if a connection is possible or not)

4.6 The Maintenance Interface

The Maintenance interface (see Fig.16) is to the TE, what the Administration is to a CEWebS.
It has the role of:

• Initialising the TE.

• Changing keys and forcing a deletion of the cache.

• Get or set the users of the TE.

• Set the CEWebS contained in the TE.

• Set configuration parts.

Setting users and configuration parts works identical to the methods introduced in the previous
chapter. A difference is, that for the TE having no instances, the according parameter is not
necessary. An important thing to be mentioned is that when embedding the TE into an existing
platform, the TE can be used in two ways:

48

Figure 15: The Service Manager - The Services in a Course

• If the platform that holds the TE already implements a sophisticated user management
and already holds the users, the TE can be used as source for a user list. The AMan
does not need to set any users, it only needs to extract them viagetUserList and then
distribute them to the CEWebS viasetUserList. The implementation of the TE requires
a connection to the platforms user repository and also has to implement a callback to the
NoMan to signalise when user-data has changed.

• The platform that holds the TE has to have the ability to merge the users that are passed
by the AMan with an existing set of users.

In both cases the TE has to have a very close connection to the embedding platform. In our test
implementation the user data is held in simple XML files:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<persons>

<person name=’Motschnig’ id=’mo’ email=’a@x.y’ pass=’a’/>
<person name=’Derntl’ id=’de’ email=’b@x.y’ pass=’b’/>
<person name=’Mangler’ id=’ma’ email=’c@x.y’ pass=’c’/>
<person name=’Bauer’ id=’ba’ email=’d@x.y’ pass=’d’/>

</persons>

Setting configuration parts is exactly the same as for a CEWebS. In our test implementation
getConfigurationPartsreturns:

49

U
LE

le

+
id

en
tif

ie
r

:s
tri

ng
+

fo
re

na
m

e
:s

tri
ng

+
su

rn
am

e
:s

tri
ng

+
pa

ss
w

or
d

:s
tri

ng
+

em
ai

l:
st

rin
g

G
C

P
R

es
po

ns
eE

le

+
id

en
tif

ie
r

:s
tri

ng
+

re
us

e
:s

tri
ng

<<
w

eb
se

rv
ic

e
>>

C
E

W
eb

S
M

ai
nt

en
an

ce

+
re

se
tE

ng
in

e
(k

ey
:s

tri
ng

,in
bo

un
dk

ey
:s

tri
ng

,o
ut

bo
un

dk
ey

:s
tri

ng
,n

om
an

:s
tri

ng
):

bo
ol

ea
n

+
m

od
ify

U
se

rL
is

t
(k

ey
:s

tri
ng

,o
pe

ra
tio

n
:s

tri
ng

,id
en

tif
ie

r
:s

tri
ng

,fo
re

na
m

e
:s

tri
ng

,s
ur

na
m

e
:s

tri
ng

,p
as

sw
or

d
:s

tri
ng

,e
m

ai
l:

st
rin

g
):

bo
ol

ea
n

+
ge

tU
se

rL
is

t
(k

ey
:s

tri
ng

):
U

LE
le

[]
+

se
tU

se
rL

is
t(

ke
y:

st
rin

g
,u

se
rs

:U
LE

le
[])

:b
oo

le
an

+
m

od
ify

S
er

vi
ce

Li
st

(k
ey

:s
tri

ng
,o

pe
ra

tio
n

:s
tri

ng
,n

am
e

:s
tri

ng
,v

is
ib

le
:b

oo
le

an
,u

sa
bl

e
:b

oo
le

an
,d

es
cr

ip
tio

n
:s

tri
ng

,e
rr

or
:s

tri
ng

,w
sd

l:
st

rin
g

,in
st

an
ce

:in
t,

in
st

an
ce

_k
ey

:s
tri

ng
,c

om
m

an
d

:s
tri

ng
,p

ar
am

et
er

s
:s

tri
ng

,w
he

re
:s

tri
ng

):
bo

ol
ea

n
+

ge
tC

on
fig

ur
at

io
nP

ar
ts

(k
ey

:s
tri

ng
):

G
C

P
R

es
po

ns
eE

le
[]

+
ge

tC
on

fig
ur

at
io

nP
ar

tS
ch

em
a

(k
ey

:s
tri

ng
,id

en
tif

ie
r

:s
tri

ng
):

st
rin

g
+

ge
tC

on
fig

ur
at

io
nP

ar
t

(k
ey

:s
tri

ng
,in

st
an

ce
:in

t,
id

en
tif

ie
r

:s
tri

ng
):

st
rin

g
+

se
tC

on
fig

ur
at

io
nP

ar
t

(k
ey

:s
tri

ng
,in

st
an

ce
:in

t,
id

en
tif

ie
r

:s
tri

ng
,p

ar
t:

st
rin

g
):

bo
ol

ea
n

Figure 16: The Maintenance Interface

50

<< webservice >>
CEWebSNotification

+ modifyUserList (key:string ,operation :string ,identifier :string ,forename :string ,surname :string ,password :string ,email :string):boolean
+ modifyConfiguration (key:string ,reuse :string ,identifier :string ,part :string ,targets :string[]):boolean
+ informUser (key:string ,identifier :string ,text :string):boolean

Figure 17: The Notification Interface

[:identifier => ’description’, :reuse => ’ ’],
[:identifier => ’name’, :reuse => ’ ’],
[:identifier => ’contact’, :reuse => ’ ’]

The Schema returns a structure that allows for the setting of one string for each of the parts,
which results in three HTML files that are included at runtime into the final page, as shown
before.

More interesting is the function that is used to initialise the TE.resetEngine takeskey as
parameter, except when it is called for the first time.inboundkey serves as verifier for each
call from the AMan,outboundkey has to be supplied with every call to the NoMan. In the
current implementation it is used:

• When called for the first time, to initialise the TE, in other words to create all necessary
files and cache directories, as outlined in a previous chapter.

• For every subsequent call to clean the cache and reset the keys. As the TE is by nature
more endangered by security breaks, the keys should possibly be changed on a regular
basis.

modifyServiceList is the last method that is included in the interface. It is used to set all aspects
of the services included in the TE. LikemodifyUserListit has a parameteroperation that can be
set toADD_OR_CHANGE or DELETE . The method changesservices.xmlthat was described
in more detail before.

4.7 The Notification Interface and the Notification Manager (NoMan)

The Notification interface (see Fig.17) enables multiple CEWebS to exchange data. As ex-
plained in previous chapters, the AMan sets the WSDL location of aNotification Manager
(NoMan) for each CEWebS and the TE so that they can ...

• exchange information about users that are allowed to use the TE and therefore also the
CEWebS inside.

• hand over important messages for users, so that they can be delivered in an aggregated
manner.

51

• exchange configuration parts, or, in other words, pieces of data that are considered useful
by more than one CEWebS.

The NoMan is an implementation of theNotification interface, without a user interface (UI).
It shares all information about the available TEs (and CEWebS they include) with the AMan.
With this information it can distribute the messages to the CEWebS inside a particular TE. All
methods in the interface use the parameterkey to identify a service and check to which TE it
belongs. Sokeyhas to be unique for all instances of the CEWebS inside an AMan (not only for
a TE) . The key is supplied to the CEWebS and the TE as theoutboundkey.

The methodmodifyUserList is basically the same as themodifyUserListfrom theAdministra-
tion andMaintenanceinterfaces. It has the same basic parameters, that identify a user:iden-
tifier , forename, surname, passwordandemail as well as theoperation-string that tells if a
user should be added/changed or deleted. In fact this method is translated to amodifyUserList
call for all CEWebS and the TE.

The methodinformUser is very simple. Apart from thekey to identify the CEWebS (and hence
the TE) it has the parametersidentifier to identify a particular user andtext to deliver a message
to this user.

The most important and interesting method ismodifyConfiguration as it provides the ability
to exchange configuration parts. The name ”configuration parts” is maybe not very clear here,
as it implies that the information has to be provided to the CEWebS in order to work properly.
But there are always two sides: one CEWebS can collect or generate information (e.g. when
the user provides a name for a project he / she has to elaborate during a course) that acts as
configuration for a second service (e.g. after the project name is present, the user can upload
files). So there has to be the ability to define configuration parts asuser-definableor passive
(when they are set by the service during work). These passive configuration parts are the ones
that are also subject to exchange through the NoMan. ThemodifyConfigurationinterface has
(apart fromkey) the following parameters:

reuse: A string that defines what CEWebS belong together or, in other words, form a group
that is supposed to exchange configuration parts.

identifier: The identifier of the part as described in a previous chapter (the names can be ob-
tained through agetConfigurationPartscall to theAdministrationinterface).

part: A piece of XML that represents the actual data.

targets: Provides the ability to send a message only to a particular CEWebS. Because the
CEWebS do not know what other services are in the TE, a target (or list of targets) has to
be supplied to a CEWebS during configuration. The administrator can explicitly connect
two or more services to get data from each other. This is useful for example when there
are two services of the same type in a TE, that trigger something for only a subset of the
CEWebS (E.g. two team building facilities that supply team information to two different
team collaboration facilities).

52

GRLResponseEle

+ id :int
+ type :string
+ name :string
+ descripion :string
+ parameterPages :int

GRPResponseEle

+ type :string
+ data :string[]
+ length :int
+ name :string
+ description :string

ParametersEle

+ name :string
+ value :string

GRResponse

+ mime :string
+ data1 :base64Binary
+ data2 :base64Binary
+ data3 :base64Binary
+ data4 :base64Binary

<< webservice >>
CEWebSReport

+ getReportList (key:string ,instance :int ,language :string[]):GRLResponseEle[]
+ getReportParameters (key:string ,instance :int ,id :int ,parameters :ParametersEle[] ,parameters_id :int ,language :string[]):GRPResponseEle[]
+ getReport (key:string ,instance :int ,id :int ,parameters :ParametersEle[] ,language :string[]):GRResponse

Figure 18: The Report Interface

I want to provide an example to make it more clear: In our case we have a set of CEWebS, that
are designed especially for the task of supporting blended learning. So they all belong to the
group (share the reuse string)PCeL which stands forPerson-Centered e-Learning[23]. When
a message is sent from a service, the NoMan callsgetConfigurationParts for each CEWebS
that is part of the same TE. When they report a part with a name that is identical to that provided
by the sender and also have the same reuse string for it, this configuration part is set through
setConfigurationPart.

This interface combines the ability to exchange data with the advantage of the whole system
staying transparent. No CEWebS needs to know the location of any other CEWebS, and mes-
sages can be buffered to guarantee that the whole system is always up-to-date.

4.8 The Report Interface

The Report interface (see Fig.18) is the only optional interface. It is maybe not useful for
every CEWebS to implement it. The tool that calls theReport interface of a service is the
Report Manager (ReMan). Together with the TE the ReMan is the most frequently used part
of the architecture:

• The TE allows the students and the facilitator to interact. The data, that is collected
during that interaction, is distributed over several CEWebS, that are responsible for only
one aspect of this interaction.

• The ReMan allows the facilitator to look at the progress of the whole group or individual

53

students, by providing several views on the collected data.

For theReportinterface to return data, the ReMan has also to supply thekey on every call to
a method. Thiskeyis theinboundkeythat has been supplied during the creation of aninstance
through theAdministrationinterface. The ReMan shares all data about created instances with
the AMan, so it can provide thekey if it wants to query aninstance. Every report is bound to
the data of a particular instance. The third parameter that is necessary for retrieving a report is
the language-array, as supplied by the user’s browser. This can be used to return a report that
is tailored to the user’s language preferences.

TheReportinterface consists of three methods, that have to be used together to get a result.

getReportList returns all reports that the service supports for a particular instance. Each report
is represented by an object with the following attributes:

• id: The (per instance) unique identifier of the report.

• type: So far there exist two types of reports:binary andemail. binary-type reports just
return a downloadable object like an HTML page, an image or a PDF document. Reports
of typeemailsupport the facilitator by providing the ability to write email to a group of
people. For example there could be a CEWebS that provides the ability to write online
reactions after a course. This CEWebS could implement a report of typeemail that lets
the facilitator write an email to only students, that forgot to write their reaction.

• name: A short literal that can be used as menuitem when navigating through reports.

• description: A detailed description of the particular report.

• parameterPages: A CEWebS can ask the user several questions, before presenting a
result. This parameter is used to denote the exact number of questions, so that a wizard
can easily be created.

getReportParametersis used to get data about additional questions the user has to answer
regarding the requested report. An example for such a question could be:”Details about which
student do you want to see?”. There are additional parameters that have to be provided to this
method.parameters is an array of objects containingname / value pairs. These objects hold
the result of previous questions. When the method is called for the first time an empty set is
provided. The value ofparameters_id denotes the number of the question that is requested.
As explained before, there can only be a total number ofparameterPagesquestions. The data
returned from this method is used to create a wizard. The input from the user has to be collected
and provided to subsequent calls (via theparametersobject). For these subsequent calls the
CEWebS can rely on previous answers and present different questions to the user. The method
returns an array of objects, that can be interpreted to create a form (page of a wizard). The
attributes of the returned objects can be interpreted as follows:

• type is necessary to determine the form of data input. It helps to generate a wizard, that
can utilise javascript to create comfortable input pages. Values include:

54

– ”’enumeration”’: A drop-down combo is used.data is an array that holds multiple
id=valuepairs which are used to fill the combo.

– ”’string”’: The user can enter arbitrary data in a single line input box, the first entry
of dataholds a default value.

– ”’date”’: the user is forced to input a valid date, the first entry ofdataholds a default
date.

– mask: a series of input fields is created, according to a mask. The first entry in the
arraydataholds character data, that is interpreted as label or separator, the second
entry holds a regular expressions, that is used to check the user input. The third
entry is interpreted as default value, the fourth entry as default length of the input
field. E.g. [”, ’\d{2,4}’, ’0’, 4, ’.’, ’ \d\d’ , ’42’, 2] forces the user to input between
two and 4 numbers in the first input field, that has a default value 0, and has space
for 4 alphanumeric characters. The point is printed as normal text, followed by a
second input field that demands two numbers as input, is 2 characters wide, and has
a default value of 42.

• lengthholds the size of the input element for enumeration and stringtypes.

• nameis used as the name for the input field. Fordateandmasktypes multiplename=value
pairs are generated.

• descriptionis used as label in the resulting input page.

getReport takes the finalparametersarray (after collecting the results from each call togetRe-
portParameters) as parameter. The result is an object that can be interpreted as follows:

• mime: This attribute holds the mime type, if the report is of typebinary. Example:
”text/html; charset=utf-8”.

• data1: For reports of typebinary it holds thefilename, for reports of typemail it holds a
list of recipients.

• data2: For reports of typebinary it holds thefiledata, for reports of typemail it holds the
subject.

• data3: For reports of typemail it holds the proposedmessage-text.

• data4: is reserved for later future usage.

4.8.1 The Report Manager (ReMan)

As stated before the ReMan is an important part of the CEWebS architecture. It covers the
use-cases in Fig.19. The current implementation is one of the oldest working parts in CEWebS
(working since 2 years). When the administrator enters the ReMan, he / she can see a list of the
courses in the current term, similar to the first screen for the AMan. In fact the data for creating
the list, comes from the AMan. After selecting a course, the user can see the list of services that
is contained in the course (in the TE), as illustrated in Fig.20.

55

Administrator

download a report

write an email

download a form

Figure 19: Use-cases For The Report Manager

Figure 20: The Report Manager - A Course

56

Figure 21: The Report Manager - A Service

The list can be quite short, as not every CEWebS needs to provide aReportinterface. The sec-
ond point is, that a TE can hold several menuitems that point to the same CEWebS and CEWebS
instance. E.g. the evaluation CEWebS seen in Fig.20, is included two times in the same TE,
pointing to a questionnaire at the beginning of the term, and to a different questionnaire for
the end of the term, that are both contained in the same instance. These two occurrences of
the same CEWebS and CEWebS instance, are aggregated to one occurrence in the report list,
with the label of the menuitems put in brackets behind the name, so that the administrator can
identify them.

Fig. 21 shows, what occurs, after the administrator selected the itemEvaluations. He / she can
see the list of reports that is available for the selected CEWebS. This list is obtained by a call to
getReportList. nameis selectable, and leads to the wizard, that is generated to ask the user for
additional input,descriptionis printed in brackets to clarify what the report returns.

In Fig. 22one can see what is returned after finishing the wizard (that has been created through
calls togetReportParameters). The return is a HTML document generated with the final call to
getReport. In our example the aggregated text from the students reaction sheets for a particular
course unit can be seen. It is now easy to print this report.

57

Figure 22: The Report Manager - An HTML Report

5 Services

In this chapter I want to provide some insight into a selection of CEWebS we developed so far.
I think they can be divided into two groups:

1. CEWebS that provide essential functionality that is already provided by other Learning
Management Systems. We wrote them as proof of concept and to provide a basis for our
courses. Then we fine-tuned them to fit better with the concepts of PCeL. To this group
belong

• Scientiki, a WIKI that has special ability to export to LATEX and HTML and to
support the creation of scientific papers. During development we had a strong focus
on usability and to make the markup as self-explaining as possible.

• PersonContribution andTeamContribution are used to collect students contribu-
tions. There has been a focus to design it in such way, that the contributors can’t
make mistakes. Providing overview about the contributors work so that they can
learn from each other was another design goal.

• Evalution is a CEWebS that deals with the structured input of information so it
handles forms, questionnaires and surveys. Our approach is to make the data persis-
tent for the user, whenever one enters a form / questionnaire for the second time the
form is in exactly the same state as one left / saved it. Obviously this CEWebS has
a strong focus on providing different reports.

• Discussionprovides the functionality to discuss topics. We put in special function-
ality to use WIKI markup, which includes the ability to easily publish pieces of
source code. Improving usability compared to other forums was also a big issue.

2. CEWebS that we developed especially to support our courses, and enhance and ease in-
teraction between the students and between the students and the facilitators. To CEWebS
that belong to this category are:

58

• A Diary for single students or teams to easily keep track of their efforts.

• Facilities to build teams and form communities calledParticipants andCommu-
nity .

• Various tools that focus Computer Science (CS) topics likeXML, Quality Assurance,
andModelling and Diagrams.

Additional services are being designed and prototyped in advanced CS courses such as”Web
Engineering”. In the following I will provide details and information about some of the so far
successfully used services, about their adaption and mutation over time.

5.1 WIKIs

As reported above we were usingDaytafor some semesters to support our courses. InDayta(as
well as inWebCT) it is possible to create files by using a built-in HTML editor. This approach
has the following characteristics:

• Files have to be created in a specific location (e.g. a folder), one has to organise the files
in order to avoid disorganisation

• Java has to be installed in order to run the editor

• A document can be created by means of WYSIWYG

• The resulting documents are HTML

Although this approach proofed to be very flexible I had a strong feeling that it had serious
shortcomings:

• The plugin loaded slowly, the overall feeling when creating the document was sluggish

• The resulting HTML was not conforming to the XHTML specifications

• I had a feeling that the most elements for structuring text were useless for just writing
simple text

• When creating text online one was stuck, one could either create one big HTML document
and pasting it to a word document, or create a word document and paste it to the platform.
When the document was distributed over multiple documents on the platform (which is
very recommended web-usability-wise), this approach was not scaling very well.

• One could lose overview with multiple documents in multiple folders. The usual errors
occurred, orphaned documents and stale links.

• When multiple people were working on the documents chaos reigned, documents were
overwritten and deleted.

59

author

view content (information)

user

write text

check what pages changed cooperate with others

track changes in pages

organise content
in a network of pages

<< include >>

<< extend >>

<< extend >>

keep network
consistent (no orphans)

<< extend >>

export content

export to HTML

export to LaTeX

facilitator

publish tasks

link to reaction sheets

publish links to additional
ressources (slides, papers, ...)

Figure 23: Use-Cases For a WIKI

So I decided to introduce a WIKI CEWebS that could solve the shortcomings. When thinking
about the purpose of the CEWebS I identified the use-cases as illustrated in Fig.23. I se-
lected the nameScientiki for my WIKI to reflect a focus on scientific collaboration, for which
I tried the WIKI to optimise.Scientikiis providing the following advantages over our previous
approaches (some are WIKI related, some come from the implementation):

No plugin is required: The markup, although very simple was the element of uncertainty for
me. I implemented the markup from the MediaWiki software [35] used by Wikipedia,
stripping out all HTML-relics and changing to a more natural usage of newlines. I will
describe the markup in more detail later.

Export: The markup is internally saved as it is entered, and two export formats are provided:
HTML and LATEX. Additionally it is possible to export a range of documents to one single
document. So the advantages of both worlds are available: Simple navigation through
small pieces of information and large printable documents.

Simple Markup: The markup is quite simple and not even covers the whole abilities of the
above mentioned MediaWiki. The markup focuses on structuring the text, not on format-
ing. The user decides that a text is a heading, he/she does not care about the style of the
heading in the resulting page. I think the markup is suitable for most small to medium
sized project, in fact it was suitable for writing this masters thesis.

A Document Network: By applying the WIKI principles one gets the advantage that all or-
phans are easily identifiable and no stale links are possible.

Focus on Cooperation: A WIKI focuses on cooperation. Many people work together and the
WIKI assists this. The WIKI automatically resolves most conflicts when two people work

60

Figure 24: Diff Algorithm At Work

at the same document or warns the users when something is not resolvable. Scientiki
is fully versioned by utilising Subversion [2]. By using an additional per word DIFF
algorithm it is possible to provide the user with a very nice version tracking experience as
shown in Fig.24 (yellow text means replaced, red text means deleted, green text means
added).

The markup as mentioned above differs slightly from MediaWiki. Making links to other loca-
tion on the web works by inserting”[http://www.ruby-lang.org|description]” , mailto: links
work by inserting”[mailto:et@cewebs.org|description]”. Creating new WIKI-keywords (new
documents in the WIKI) is as simple as writing”[[keyword]]” . The resulting link is red when
the linked document does not already exists. It turns to blue when content is added.

Headings work the same way as in MediaWiki:”==heading==” , ”===sub-heading===”,
”====sub-sub-heading====”. Other basics include:

/*WIKI syntax expression*/: A comment. The expression inside is not processed by the
WIKI markup parser.

”emphasis”: Two single quotes. Tells the parser to print the content initalic letters.

”’strong”’: Three single quotes. Tells the parser to print the content inbold letters.

!!annotation!!: This element is excluded from export. With this element the users can put
comments in the text, to further ease collaboration. This should not be used as versioning
instrument.

Newlines are handled differently like they are handled in MediaWiki. Every newline has an
impact on the result. To create a paragraph one can enter two newlines. More than two lines
create a bigger space (although this space is not growing with more then three newlines).

61

Lists basically work like in MediaWiki with the exception that a newline is possible. A list is
terminated when two newlines (a paragraph) occur.

* a star: A star at the beginning of a line starts a normal bullet-list. The list continues until a
paragraph or a heading is found.

** two stars: Two stars at the beginning of a line start a sub-list. It can only exist inside a
bullet-list or numbered list.

*** three stars: Three stars at the beginning of a line start a sub-sub-list. It can only exist
inside a bullet-sub-list or numbered sub-list.

a hash: A hash symbol at the beginning of a line starts a numbered list. The list continues
until a paragraph or a heading is found.

two hashes:Two hash symbols at the beginning of a line start a numbered sub-list. It can
only exist inside a bullet-list or numbered list.

three hashes:Three hash symbols at the beginning of a line start a numbered sub-sub-list.
It can only exist inside a bullet-sub-list or numbered sub-list.

As already obvious these two list types can also be interspersed. The last list type is a definition-
list. It is used by writing”;definition: description” starting at the beginning of a line. This
type comes in very handy when defining concepts or terms.

A difference to MediaWiki markup is introduced by making it possible to create
indented text blocks. This is especially useful when one has to add long quotes to
his documents. An indented paragraph is denoted by two leading> characters (»).

A custom addition that to the best of my knowledge only exists in Scientiki is the literature
references. They are inspired by the way LATEX handles them. A reference can be placed on an
arbitrary page in the WIKI, by using the”* [ref:identifier|optional shortcut] reference text”
syntax (starting in a new line). This reference can than be cited everywhere in the WIKI by
using”[cite:identifier]” or ”[cite:optional shortcut]” . The export also assists this system by
collecting the references from the whole WIKI and appending it to the exported document. So
its wise to put all references to a central document that is not included in the export. When
exporting the user can also select various options regarding the export of links (see Fig.25).

Inserting images is modelled after adding attachments to an email. Images can be added to a
document and then be used. Images from other documents are not (!) usable- Adding the images
to the document is as easy as uploading them. When uploading a size restriction can also be
applied. If an image exceeds this size, it is resized to meet the restriction. This is also useful for
vector graphic images, as they often do not contain size information. By using ImageMagick
[15] it is possible to throw over 90 major formats at the system. Images can be used inside the
page by writing”[image:Scientiki/name|description]”. Every image on the page can then be
referenced inside the text by using”[fig:Scientiki/name]” .

62

Figure 25: Exporting Documents

Both, cites and references to images are clickable. For images the page scrolls to the image, for
references one jumps to the page with the reference.

Tables also differ from MediaWiki. A table is created by starting a line with”|| ” . At the end of
each row the user has to put a”|-” . Each row can span multiple lines in the input box. Each cell
has to be separated by another” || ” . By default the text is aligned left. This can be changed by
using” |r ” , ” |c ” or ” |l ” instead of” || ” .

There is also the ability to add text that is printed in monospaced letters. This is especially
useful when one wants to add source code to a document. Every line with a space as the first
letter is printed monospaced, multiple successive lines following this rule are interpreted as
block. Example:

people.each do |person|
puts person + ’ has an IQ of ’ + rand(200)

end

Scientiki proofed to be a very powerful and useful instrument. It is used as blog to inform
the students about changes, it is used to discuss issues and to write papers. Its flexibility will
hopefully expand even further in the future, when we can include support for didactical models.

63

administrator

student

upload file

structure themes

find out which students
didn’t contribute

view other persons
contributions

write email to
selected students

Figure 26: Contributing / Uploading Material

5.2 Team- and Person-Contributions

The idea to realise this CEWebS came from the necessity to collect material from students.

• Collecting material from students via email is complicated because the facilitator has to
keep an overview over multiple versions and documents (maybe sent by multiple team
members)

• In Daytathe problem for the facilitator was that he/she had to browse through directories
to find the documents, which where not always easy to identify.

• In WebCTfor the first time there was a central point where all the students could add their
documents, but:

– The process of posting and calling them back is in my eyes too complicated (as
explained above)

– Team members can not work together, only the member that posted the document
can can call it back

– Although the facilitator can request reports which provide a nice overview over the
documents already submitted, the students can not request these. We found that
by allowing the students to view the elaborations of others (given the situation that
individual teams are working on their own projects) improves the quality and the
overall satisfaction of the students.

So the decision was made to create two CEWebS that focus upon contributions by teams
(TeamContribution) and single students (PersonContribution) respectively. We identified
the use-cases shown in Fig.26.

We will now take a look at theTeamContributionservice. Under the precondition of being as
simple as possible, we realised it consisting of only three pages for managing the whole process.

64

Figure 27: List of the Uploaded Material

The first page provides a detailed overview about what the individual teams contributed so far
(see Fig.27). In our case the details-page consists of various elements:

• At the top of the page a short introduction is given, explaining the project the students have
to contribute to and also providing various links, where the students can find additional
information.

• ”The following contributions are necessary:” contains a list of all tasks to which the
students have to contribute. This list is changing over the term, as new entries are added,
and old ones are removed. Again the principle of showing only what is necessary is very
important to us.

• The main section is lead by”The following files have been contributed by the individ-
ual teams:”. This section holds:

– A scope for each team

– Each teams scope is further divided into a space where links in brackets ([...]) oc-
cur, leading to other CEWebS providing peer-evaluation facilities. A parameter
CEWebS_section is added to each link, to denote the team that is currently eval-
uated. In this space also the links to the results of the evaluation occur.

– The second space holds the files for each task. When clicking on the filename, the
file is opened or downloaded to the local hard-disk.

After selecting a task from the list, the user is presented with a page that allows for managing
the files that a team contributed to the specific task so far (see Fig.28). The management-page
holds a more detailed description about a single task, and allows to add new files, delete files
and overload (or rename) existing contributions.

65

Figure 28: Manage Your Contributions

The last page that the user has to master is the upload-page where he / she has to select a file
and add a description. After uploading a file, the updated management-page is presented to the
user. The CEWebS also provides a report of typeemail, that can be used to write an email to all
teams that have not yet contributed a file to a task.

ThePersonContributionservice is almost equal. The only difference is that instead of the teams,
the names of the students are printed. An of course each user can only manage his/her own files.

5.3 Evaluations

Evaluation is a CEWebS that is specialised on structured input. In its current form it is suitable
for questionnaires, reaction-sheets, surveysand in general, data from every template that can
be generated by the service. We identified the use-cases that are shown in Fig.29 for the
EvaluationCEWebS. The most important thing was again usability. So from the user’s point of
view the service consists only of one page . In the normal mode (logged in users) the form is
stateful. In other words, when the user saves his / her entries and then returns to the form at a
later point in time, the form is in exactly in the same state as he / she left it. When saving, only
the obvious”Thank you for ...” message is displayed. The form itself is used to inform the user
what was filled in. With this behaviour there is only one page, that the user has to master.

I will use the XML that is used to create the form to further explain the different modes that this
service can operate in:

<evaluations>
<evaluation mode=’person’ subject=’demo’ description=’Demo’

details=’anonymous’>

66

student

input structured data
(forms)

write reaction sheets

fill surveys

fill questionnaires

glean recent input change input
<< extend >>

administrator

view aggregated results

check what students
contributed so far

view aggregated results

export data for
statistical analysis

write email to
selected students

Figure 29: Collecting Forms-Input

...
</evaluation>

</evaluations>

Each instance can hold multiple evaluations, each evaluation in an instance has to have a unique
identifiersubject. The attributedescription is used in reports instead of the raw subject string,
so that the user can easier identify the evaluation. The most important attribute ismode. It can
have one of four values:person, team, group’ and all. These four values describe how the
CEWebS behaves, when multiple users fill out the same form.

• In personmode every user has its own form (showing always the own entries).

• In teammode, when a team member enters a form he / she can see the input that other
team members have saved so far. This allows for fine grained collaboration.

• groupmode is essentially the same, but for larger groups of people or groups of teams.

• In all mode, all users that are authorised for the instance share the form and the already
saved data.

The other aspect is aggregation of the input. An aggregated version of all users input can be
presented (e.g. results of a peer-evaluation). The modes are also essential for the aggregation.
Instead of an input box, there is a list of answers for every question. Depending on the mode
these answers come from single persons, teams, ... (and are labelled as such).

67

The attributedetails controls if the name / team synonym is printed or not. Whendetailshas
the valueanonymous, no information about the contributing actor is shown in the aggregated
results.

Every evaluation can consist of multiple language (lang) groups, that hold the data. For every
language there must exist anintro , and one or moreblock elements. Every block element has
to have at least one element annotation:

<lang id=’en’>
<intro>Demonstration of the possibilities.</intro>
<block type=’....’>

<annotation>.......</annotation>
</block>

</lang>

The block elements holds the information about the form elements. There exist only eight types
of blocks, that have been proved to be sufficient to create almost every form of questionnaire.
This sounds in fact over-simplified, particularly when one takes into account that in fact there
exist only four usable elements (as shown below). All elements are high-level components.
That means they are not input-fields, check-boxes, ..., but compound structures with a descrip-
tion, multiple elements and optional auto-generated javascript attached. In the following I will
explain all different block types and how they are used.

The first two elements are used to structure the resulting form. They provide the ability to insert
headings and additional explanations (aka. labels).annotation is used as heading- or label-text.

<block type=’heading’>
<annotation>Heading</annotation>

</block>
<block type=’label’>

<annotation>Label</annotation>
</block>

All following elements are able to collect input. The threetextareaelements only differ in
height.largetextareais realised to be about twelve lines high,textareaabout five lines, andsim-
pletextareaexactly one line.annotationis used as label. The attributeuseaffects the javascript
generation. If use is’required then the user is forced to provide some data in the input field.

<block type=’largetextarea’ use=’required’>
<annotation>Large textarea</annotation>

</block>
<block type=’textarea’ use=’required’>

<annotation>Normal textarea</annotation>
</block>
<block type=’simpletextarea’>

<annotation>Small textarea</annotation>
</block>

68

graduation proved to be the most often used element. It provides the ability to group together
multiple questions with an equal set of answers. It is in my eyes a method for making a ques-
tionnaire very compact and concise. It consists of questions and a set of radio-buttons, one for
each answer. The XML looks as follows:

<block type=’graduation’ use=’required’>
<annotation>A graduation</annotation>
<group>Scale</group>
<selection>0</selection>
<selection>1</selection>
<selection span=’4’>2 to 5</selection>
<question type=’text’>Do you like CEWebS?</question>
<question type=’entry’>Own contribution</question>

</block>

The element has the following characteristics:

• <group> can hold text that is printed above the question, just besides the scale. It can be
used for example to describe the scale.

• The scale is specified by multiple<selection>elements. They can also hold aspan
attribute that makes the scale span multiple radio buttons.

• the questions itself are contained in<question>elements. They can be of typetext or
entry. In the case oftextelements, the content is printed as label, when anentryelement
occurs, the content is used as default value for a textbox which can be changed by the
user.

listCheck andlistRadio belong to the same family. The difference tograduationis, that there is
no scale, instead the questions are selectable items. ForlistRadio, onequestioncan be selected,
for listCheckthe user can select (or check) any number of questions.

<block type=’listCheck’ use=’required’>
<annotation>A checkable list</annotation>
<group>Detailed description</group>
<question type=’text’>Option 1</question>
<question type=’text’>Option 2</question>
<question type=’entry’>Own option</question>

</block>
<block type=’listRadio’ use=’required’>

<annotation>Selectable options</annotation>
<group>Detailed description</group>
<question type=’text’>Option 1</question>
<question type=’text’>Option 2</question>
<question type=’entry’>Own option</question>

</block>

69

In Fig. 30 one can see a sample output, generated from the XML pieces above. Thelarg-
textareaandtextareaelements are bigger in real life, but have been reduced in height to make
the screenshot smaller.

For this service the reports are (from a facilitators point of view) more interesting than the user-
visible parts. The reports allow to have different aggregated views on the collected data. To
help a facilitator to overview the activities of the students we created the following reports:

Overview Actors: The facilitator has to select one of the evaluations (identified bysubject), to
see a list of all actors (persons, teams, groups or all) and what they evaluated. The list of
the things a student evaluated seems quite useless, because the facilitator already selected
the subject. But there is also the concept of sections (as explained in theContributions
chapter). For each subject there can be an arbitrary number of these sections. For example
when the student has to peer-evaluate other students’ contributions, the subject is”peer”
but the things the student evaluated are”Team 1”, ”Team 2”, ”Team 3” and so on.

Evaluation Subjects: This is interesting if the facilitator wants to see all entries that have been
entered for a particular subject. He / she can again select thesubject. In the next step the
facilitator has to select for what section he / she wants to see results (All is also possible).
The last decision he / she has to make is, if the names of the students / teams should be
added to the report. This is e.g. useful when the report is sent to partners that should not
see names.

Evaluation Actors: This report is useful when the facilitator wants to see all entries a student
made. For our peer-review example the report would consist of the names of the teams
a student reviewed and the data he / she entered. After selecting asubject, the facilitator
can decide for what actor (person, team, group, all) he / she wants to get the report.

Last Chance: This report is of type”email” . It is tied to the”Overview Actors” report in that
way, that thelist of thingsis counted and and a facilitator can select the email addresses
for all students that evaluated less thanX things. E.g. for a reaction-sheet (where no
sections are used) a good value forX is one, because the facilitator wants to select all
people that have not yet written a reaction. For a peer-evaluation where at least four other
contributions have to be evaluated,X has to be four. The resulting mail-form looks like
shown in Fig.31.

Details as CSV: Useful for exporting the data to a statistical analysis package. For a given
subject and section all data is returned as CSV file. The file holds one line for every actors,
starting with the name or description of the actor (a person’s name or team description),
a section name (if sections where used), followed by all the input the actor has made,
separated by semicolons.

5.4 Discussion Forums

Designing a forum that satisfies all students proved to be somehow difficult, as people tend
to like what they already use. The students turned out to be very critical about the forum we

70

Figure 30: An Example Form Showing All Possibilities

71

Figure 31: An Form For Contacting Students

user

post contributions

edit own contributions

<< extend >>

track changes in
the forum

Figure 32: Discussing Topics

72

Figure 33: A Typical Discussion

introduced. The use-cases for a forum are quite simple (as can be seen in Fig.32), but to
implement one can get quite complicated. We identified three major systems that forums use to
visualise a discussion:

Threaded: The user sees a tree representation and can click on the subjects to see the messages.

List: All messages are show in a list, the user can jump to following or preceding messages.

Threaded with messages included:The tree also holds the messages. This can be combined
with a rating system to show not all messages or else the page holding the forum will be
very long.

All systems have their advantages and are used on big websites with many users. My personal
preference is a clickable threaded view as I think it is the most concise form. But the students
were surprisingly favouring the simple list form (which I in fact hate and refuse to implement). I
think their preference comes from a forum they use every day, and that is focused on discussing
several aspects of our branch of study.

73

Figure 34: RSS Version of The Discussion in a Mailbox

Again I wanted to focus on making a forum that is easy to use, and has not to be explained to
new users. I selected a threaded form with the thread always visible at the bottom of the page.
The top-level nodes of the thread are sorted in reverse order, so that the newest branches are
always at the top (see Fig.33). Another import point is the RSS integration (currently RSS
2.0). This feature can be used as follows:

• To subscribe to a forum with a mail-program (as can be seen in Fig.34). If this possibility
is chosen, the user has the entries in a list, and can sort them according to his / her own
preferences. New messages are marked the same way as new mail messages would be.
Once in the mailbox, they can be deleted like ordinary messages, and do not occur again
with the next synchronisation. When a message is clicked, the forum entry is shown as
message text, admittedlyreply is not working directly from the mail programs we tested
so far.

• When using with a browser that is able to handle RSS as bookmark folder, the last ten
messages are shown (in reversed order, with the newest as first message).

The web version has the following characteristics:

• The entry point is a page that shows a list of all topics (plus a link to the RSS for each
topic).

• When the user selects a topic he / she can see an introduction that explains the purpose of
the particular forum.

• For every topic the threaded list is always visible at the bottom of the page.

• The root element of the thread is a link to post a new top-level message or question
(”Description. Click here to write new message.”).

74

• For the message the user currently views, the subject in the thread is emphasised (bold
and red with our current stylesheet).

• When the user answers, the message text is still displayed on the top of the page, the
lower part (the threaded-list) is replaced by input-elements (subject, message text). So
the user can easily copy parts of the message he / she is answering to and can re-read the
message during the creation.

• After submitting a message, the user is automatically transfered to his / her answer. He /
she has then the ability to change the message for ten minutes.

• All unread messages are marked (as can be seen in Fig.33, the current stylesheet defines
a dark gray background for them).

An additional advantage is, that the user can use parts of the WIKI syntax to format the mes-
sages. Allowed markup includesstrong, emphasis, comments and annotations. Pasting source
code, lists and indented text blocks are also allowed. Additionally all sorts of links (http://,
mailto:, CEWebS://) are working. Headings, tables, images and literature references are not
possible.

We have also added two reports to make the statistical analysis of a topic possible. The reports
were first requested byChristine Bauerwho did an usage analysis for one of our courses. I
want to thank her for specifying them and testing their usefulness.

The first report returns a printable document for a whole topic. All messages are printed in
threaded form in one big list. This is useful if one wants to read through a whole topic to
recapitulate what was going on.

The second report returns all entries as CSV file. Every line in the file represents a message.
The file has the format:

date;time;author;index number;level in the thread;text

The index number of the message is just a unique (to a topic) identifier for a message. The
level in the thread’ is a number that tells if the message is top-level (0), a direct answer to a
top-level message (1) or something else (2, 3, ...).

5.5 Keeping a Diary

Keeping a project-diary is a useful instrument of tracking the own expenditure of time. When
used as an instrument in project-teams it can help all members to follow the changes and track
the results that have been achieved so far. On the other hand for the facilitator it can provide a
means to find out early if something is going wrong.

Apart from the very simple use-cases, depicted in Fig.35, we identified also the following
functional requirements:

75

user

enter expenditure of time

track progress enter finished
tasks

<< include >>

Figure 35: Track Progress

• The most important thing is, that the diary must be easy to use. If it is not easy to make
an entry, or making it consumes to much time, it will most likely not be made. So ease of
use and an uncluttered interface are a necessity.

• If the members of a team have not access to a centralised document, several versions will
arise and potential inconsistencies and duplicated data will occur. So for our loose teams
of students a web-based solution is necessary, as this is the only way to keep them in sync.

I suppose to add specialised components like thediary to be one of the genuine advantages that
the CEWebS architecture provides. In other learning platforms we tried to realise a diary by
creating forums that were only accessible by individual teams, but obviously this is not a good
solution, as there have to be rules (like the format of the start-time and duration) and there are
no analysis tools available.

The resulting CEWebS on the other hand is very simple, highly specialised and easily extend-
able (by introducing other fields likeImportanceor Category). I consists of only two user-
visible pages, one that presents a list of all tasks to the user and a second for creating / changing
entries.

The list-page provides the ability to add new tasks, delete, and modify them. There exist also
two convenience shortcutsAlt+N andAlt+L to create new entries or reload the list. When an
entry is deleted the user sees immediately the updated list. There are two modes, a single-user
mode and a team mode. In single-user a user sees only his / her own entries, in team mode a
team can work together to keep the diary up-to-date.

Creating new entries has to be very simple. We realised the input form as shown in Fig.36.
When the user enters the form the duration field is already active. The default duration can be set
for every instance and the start-time is set according to the actual time minus the duration. When
the user changes the duration the start-time is modified to fit the change. On the other hand when
the user changes the start-time, changing duration does no longer trigger any modifications. It
is also possible to make the start-time and duration fields invisible for an instance.

Subject andText are mandatory,Participants is an optional field where the user can write the
names of people that took part in the execution of the task. The author of the task is implicitly
part of this list, as only logged-in users can use the diary.

The facilitator can request a simple report, that enlists all entries of an actor (person / team) on
a single page. This long form can then be stored as the base-documentation of a project and can
help the facilitator and the students to discuss the project (and the grade).

76

Figure 36: Create a New Diary-Entry

77

student

select teammates

community−member

find out contact information

post link to CV

find out more about
other community members

Figure 37: Build Teams and Keep In Contact With a Community

5.6 Team-Building and Communities

The two services that allow for team-building (Participants) and communities (Community)
were designed with different goals in mind. Their commonality is to show the names and
addresses of people that are authorised for TE. We identified the use-cases shown in Fig.37.

Participants is a service for students. All students belong to a group and the task this CEWebS
facilitates is the building of teams. The process is self-contained and usually the students have
one week to form the teams (adding a forum for them to allow for interaction is wise though).
When a student enters the page he / she sees a list of all users. After logging in (through
clicking on a link that points to the password-protected version of the same page) the page has
the following characteristics:

• User IDs and email-addresses are visible.

• There is a compartment namedPoolwhere all students’ names reside.

• When a student clicks on a desired team-mates name, a new team is created and the two
people are assigned to it.

• When a user that is already in a team clicks on the heading of the pool, he / she is removed
from his / her current team and put back to thePool.

• When a user clicks on the team-name of any other team he / she is moved to this team
(either from thePoolor his / her current team).

• When a user is already in a team and clicks a person from thePool, this person is also
added to the team.

• A person cannot add people to his / her team, that are already in some other team (people
CAN move to other teams like mentioned above, but only voluntarily).

The facilitator has two possibilities. He / she can set a maximum size of people per team and
when he / she considers the process to be over he / she can lock the interface:

78

• The maximum size of people is global, that means that a team can only consist of a
maximum number of students (no exceptions here). When a user tries to change to a
team that is already full (or when he / she is selected from the pool) nothing happens. It
is wise though to tell the students about the restriction or to add it to the introduction text.

• The facilitator can lock the service after some time. This changes the behaviour slightly:

– No student can move back to thePool.

– No student that is already in a team can change to a different team.

– Students in thePoolcan still move to teams and can also be selected from thePool.

This service has many advantages over the methods mentioned in previous chapters (e.g. col-
lecting sheets of paper with names). The students can form the teams without a pressure, addi-
tionally no time is wasted during face to face (f2f) meetings. No typos or errors can occur, the
whole process is transparent to both the students and the facilitator.

TheParticipants service has some functionality (reports) built-in, that cannot be labelled report
but can be considered as convenience stuff, that fits best with this particular CEWebS. This
includes printing data-sheets, where all teams and persons are contained in matrices. This
comes in handy for a facilitator during a f2f meeting, he / she can take notes about contributions
of students. There is also a report that enables writing mails to a whole group or single teams.

Future improvements may include a simple grading / messaging system, where the facilitator
can write private messages to a student or add brownie points and notices to a particular team
or person.

TheCommunity service on the other hand has no functionality to build teams. It focuses on
getting a community started:

• A list of all members is provided.

• Every person can set a link, that is the target for clicking on his / her name. This can be
used to link to a CV, a blog or something similar.

• The email-address for every person is printed behind the name, it is clickable and can also
be copied to a mail program.

• A link that opens the standard mail program with the addresses of all people as receivers
is provided. This comes in handy when one wants to drop a quick note to everybody.

Setting the link to personal information is very easy. There is just one input field and a submit
button. As said before this service should enable a small community to get / keep in touch. If
the community grows I would suggest using something more sophisticated like a mailing list.

79

student

test XML document

test DTD

test XML Schema

test xpath

test WSDL

administrator

overview the handed in documents

hand in XML / XML Schema / DTD

check for validity
check content

<< include >>
<< extend >>

Figure 38: Various XML Related Helper-Functions

5.7 XML, BugTracker, GraphTalk

These CEWebS are closely related to our current courses and the field of Computer Science
(CS) in general. They provide functionality that can not be found in any other platform. They
also show why developing an architecture that helps embedding / using arbitrary services, pro-
gramming languages and techniques is definitely an advantage.

5.7.1 XML

The first CEWebS calledXML helps to handle XML related homework. It is not team-oriented
but provides an XML test-bed for every student where he / she can try out different XML related
technologies without the necessity to install tools on his / her local computer. For the facilitator
the CEWebS has the advantage that he / she can track the students’ progress and that he / she
can concentrate on the semantics of the XML-files (the syntax checking is done by CEWebS).
He / she can request detailed reports that show what pieces are syntactically correct and provide
an aggregated view on the pieces. This is useful for a concluding dialogue with a student.

We identified the use-cases as depicted in Fig.38. The CEWebS has the following abilities:

• There are several environments a student can use. An environment is a space where
pieces of XML can be stored and tried out. When the student is sure everything works he
/ she can move it to the contribution-environment. Only the version in the contribution-
environment will be graded.

80

Figure 39: The XML Tool in Action

81

user

report new bugs

comment bugs

categorise bugs

change the category
of a bug

<< include >>

Figure 40: Report Bugs

• The user gets anXML environment (see Fig.39, the input box is reduced in size to keep
the screenshot small) where he / she can try out XML documents. The parser tries to
provide the user with helpful information about possible errors. If everything is okay, it
states”Wellformed document”.

• TheDTD environment is similar. But there are some traps hidden in DTD. First the user
has to include the correct DTD (as shown in the box belowName) in theXML. The DTD
has to be syntactically correct and it has to match theXML structure. Again the output for
the error-case is designed to be helpful for beginners.

• TheSchemaenvironment does basically the same as theDTD. It checks Schema against
theXML. An inclusion in theXML is not allowed, as it would break theDTD. The Schema
is automatically applied to the document root. For theSchemaenvironment helpful output
by the parser is even more important.

• TheXPath environment allows to test XPath expressions against theXML. The result is
then printed, or highlighted in a static version of the document.

• TheWSDL environment is completely independent from the rest of the environments. It
checks WSDL files, and identifies errors, by consuming a web-service that exposes the
.NET [20] WSDL parser. Thanks to Michael Derntl for maintaining the web-service that
makes this environment possible.

This CEWebS encourages the students to play around with the technologies after they hear
about them during the lecture. We think easy access to technologies and the”just try it out”
philosophy helps keeping learning exciting and fun.

5.7.2 BugTracker

The second CEWebS is calledBugTracker. It has been designed to support e.g. our entry
level project-management course (PM-GT - Projektmanagement Grundlagen und Techniken).
Its purpose is to provide an easy bug-reporting tool for the students’ projects. They have to
systematically test the project of a peer-team and report the bugs through the web-interface.
Again this helps to keep teams in sync, and to divide the work even if there is no time to meet
f2f. Commercial or Open-Source bug-tracking tools are often very complicated to use, so we
tried to simplify the process. The use-cases in Fig.40where identified as being important.

82

Figure 41: A List of Bugs, Sorted by Category

The CEWebS in its current implementation is not able to handle / manage more than say 200
bugs. For the service to scale to higher numbers an efficient search mechanism and a way to
get notified about status changes and comments being added to bugs would be needed. In its
current form it is able to file bugs, change their state and add comments to them.

When the user enters the service he / she can see an interface as depicted in Fig.41. An
administrator can add an arbitrary number of bug-states to the configuration, the first state in
the configuration is the one that is shown per default. States in our configuration include (in
exactly this order):

• Open - bugs that have not yet been resolved.

• Squished- bugs that have been resolved / fixed.

• Already Existing - bugs that have already been reported / duplicated bugs.

• Interesting but subjective - ideas or reported errors that belong to the category”feature
not bug”. Also complaints about colours and page layout can be put to this category. It
holds bugs that need further discussion.

The bugs can be filtered according to these states. For our configuration allOpenbugs are
shown in the default view. The list is sorted by modules and categories. Modules are the
pieces of software where the bug occurred, and they are the primary sorting criteria. Categories
include:

• Error - an error message occurs, or something just refuses to work.

83

• Not available, missing functionality, Idea

• Disturbing, Usability - something works but is not nice to use.

• Minor flaw - nice to have, but low priority.

Again the administrator can define his / her own categories, the ordering in the configuration
file affects the ordering in the output list. In our case errors are considered the most important
thing, followed by ideas and so on. There is also a link to the comments section of the bug and
a short description, that is clickable and links to the detailed description of the bug.

When the user decides to add a new bug, he / she will see a form with the following input fields:

• Date, Time - Regarding: DateandTimecan be set as well as the module where the error
has been found (Regarding).

• Author and Browser will be set automatically, as only logged-in users can add bugs, and
the browser can also be read out. This field is immutable.

• TheShort descriptionof the bug that will be shown in the list.

• An URL that points to a location where the error occurs. If an URL can’t be given (due
to frames or for session reasons e.g. in WebCT) one should add here a short description
how to provoke the error.

• LongDescription

• Effects that occur because of the error. What things can no longer be accomplished?

• Additional Comments that fit into none of the above fields.

A user can change the bugs he / she reported (the facilitator can change all bugs) as can be seen
in Fig. 42. All new bugs default toOpen(or in fact the first state in the configuration), after first
saving one, the user can also change the state (e.g. toAlready Existing).

The last functionality that is included is the ability to add comments to every bug. The com-
ments will be shown in a flat list, every comment can make use of the above mentioned simple
WIKI syntax.

5.7.3 GraphTalk

The CEWebS calledGraphTalk is a general purpose component for cooperative chatting and
modelling as described in [17] and [18]. The use-cases have been identified as shown in Fig.43
and it has the following features:

• Chatting with all users that are authorised for a particular TE.

84

Figure 42: Owner of a Bug

user

chating with others
in realtime

collaborative drawing
of diagrams

modify diagrams

export diagrams

<< include >>

<< include >>

Figure 43: Chatting and Modelling

85

Figure 44: A BLESS Model

• Inviting people to a whiteboard where not only drawing but true modelling is possible
(including modifying elements, making connections between elements).

• It is easily extendable to include new sets of elements. Currently existing sets include
elements for activity diagrams (BLESS modelling) (Fig.44) as well as elements for use-
case models and Rich-Picture diagrams.

86

6 Conclusion and Outlook

This thesis has shown our experience regarding the support of courses with learning technology.
These experiences lead to the creation of CEWebS, which is a framework that defines interfaces
and data-formats to allow for the integration of web-services into learning-platforms (or other
applications in general) as well as the interaction of these services. This thesis has also given an
overview over particular services we created and how they help us to create better courses and
focus on interesting topics rather than on administrative tasks.

Currently we are working on new services including calendars with desktop integration, a front
end for the Internet Relay Chat and services to make the grading process more transparent to
the students throughout the whole course. There is also ongoing work to make the web-services
easy to configure, even for people with little technical understanding.

We think that by making web-service technologies usable also for learning environments and
by proposing cross-platform standards we can facilitate cooperation and interoperability inside
and between organisations. Learning related web-services that provide interfaces (WSDL) [36]
and can be used through the Simple Object Access Protocol (SOAP) [38]. By utilising this
approach current static learning platforms can be gradually replaced by dynamic networks of
web-services. We envision the genesis of virtual organisations [10] that exchange learning
services, content and didactic elements through the means of web-services.

By making the source-code available online we hope to create a community, that helps us to
propagate the idea. There will also be a strong focus towards cooperation with others to even-
tually make the virtual organisations possible, to share and to learn from others.

Researching new technologies, finding test-cases, testing interoperability and providing inter-
ested parties with rules for applying web-services based technologies could spur exchange and
collaboration and enrich the learning experience and possibilities for both, facilitators and learn-
ers.

87

7 Attachment: Installation

For all services introduced in this thesis, the following prerequisites apply:

• Ruby >= 1.8.2

• Ruby XML Simple (http://raa.ruby-lang.org/project/ruby-xml-simple/)

• Webrick (included in Ruby 1.8.2)

• Soap4R >= 1.5.2 (included in Ruby 1.8.2)

For Scientikithere is additionally needed:

• rmagick > 1.7

• libalgorithm-diff-ruby1.8 (from Taniguchi Takaki)

• Subversion > 1.0

TheXML service needs also:

• libxml >= 2 (plus xmllint utility)

• libxslt >= 1 (plus xsltproc utility)

• libxerces >= 2.3 (plus xerlint utility)

TeamWorkspaces, a web-service by Michael Derntl that allows for web-based file-management,
needs the .NET Framework >= 1.1.

The TransformationEngine is totally independent from everything else and needs:

• PHP >= 4.3 (not PHP 5) with dom-libxml

• The current implementation also depends on environment variables that are only set by
Apache > 1.3

Packaging is not yet available but will most likely include:

ServicesBase-X-X-X.tgz:All WSDL interfaces.

88

ServicesBase_Ruby-X-X-X.tgz:Helper programs and common ruby classes that are needed
by all services. The most important file isserver.rb which starts the web-server for a any
Ruby CEWebS. It depends onServicesBase.

TransformationEngine-X-X-X.tgz: Depends onServicesBase.

CEWebS_NAME-X-X-X.tgz: All services will be provided in separate packages. All Ruby
CEWebS will depend onServicesBase_Ruby.

Installing CEWebS will be as simple as puttingServicesBase, ServicesBase_Rubyand all ser-
vicesCEWebS_NAMEinto the same directory. Changing into aCEWebS_NAMEdirectory and
issuing a./server.rb start & will then start a particular CEWebS.

The Ruby CEWebS are realised in a very modular fashion. Every service includes the same
set of directories. If a directory is present, theserver.rbwill dynamically load all functionality
included in the directory.

• TheAdministration directory holds the implementation of theAdministrationinterface.

• TheDelivery directory holds the implementation of theDelivery interface.

• TheReport directory holds the implementation of theReportinterface. If this directory
is not present, the particular interface will not be loaded / available.

• TheData directory holds all instances and the data they collected. There exists at least a
directoryDefault that holds a working default configuration. When copied to a directory
with a numeric name (e.g. 1) a working instance of the same name will exist (no restart of
the CEWebS is required to use it). The configuration is held in a file calledcustom.xml,
the users are saved in a file calledparticipants.xml.

• TheLogsdirectory holds several logs with access as well as performance information.

Every Ruby CEWebS has aserver.port file in its main directory that holds the port it listens on
(obviously this file can be changed). The default access URLs are:

• http://domain:port/Administration/wsdl

• http://domain:port/Delivery/wsdl

• http://domain:port/Report/wsdl

The server.rbis very flexible and allows also to start services only local (listening only to lo-
calhost). Setting up the TE has been explained in previous chapters. Most likely there will be a
prepackaged version for Debian Sid and Ubuntu Hoary.

89

References:

[1] BSCW Team, Fraunhofer FIT, OrbiTeam Software GmbH: ”BSCW”.
http://bscw.fit.fraunhofer.de/[last access February 25, 2005]

[2] Collins-Sussman B., Fitzpatrick B., Pilato C.: ”Subversion. Next-Generation Open Source
Version Control”.http://svnbook.red-bean.com/[last access September 17, 2004], O’Reilly
Media Inc. (2004)

[3] Corkill, D: ”Blackboard Systems”. AI Expert 6(9) 40-47 (September 1991),
http://dancorkill.home.comcast.net/pubs/ai-expert.pdf[last access February 22, 2005]

[4] Curbera, F., Nagy, W., Weerawarana, S.: ”Web Services: Why and How;”.
OPSLA 2001, Workshop on Object-Oriented Web Services, Florida, USA, (2001)
http://www.research.ibm.com/people/b/bth/OOWS2001.html[last access February 25,
2005]

[5] Derntl, M., Motschnig, R.: ”BLESS - A Layered Blended Learning Systems Structure”.
Proceedings of I-Know 2004, Graz (2004)

[6] Derntl, M., Motschnig, R.: ”Patters for Blended, Person-Centered Learning: Strategy,
Concepts, Experiences, and Evaluation”. Proceedings of SAC 2004 2004, Nikosia, Cyprus
(2004)

[7] Derntl, M., Motschnig, R.: ”A Pattern Approach to Person-Centered e-Learning Based on
Theory-Guided Action Research”. Proceedings of Networked Learning Conference (NLC)
2004, Lancaster, UK (2004)

[8] European Union, Information Society: ”Free and Open Source Software”.
http://europa.eu.int/information_society/activities/opensource/[last access February
16, 2005]

[9] Fielding et al.: ”RFC 2616”.http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
[last access February 16, 2005], part of Hypertext Transfer Protocol (HTTP/1.1)

[10] Foster I., Kesselman C., Tuecke S.: ”The Anatomy of the Grid: Enabling Scalable Virtual
Organisations”. International Journal Supercomputer Applications, 2001

[11] Free Software Foundation: ”Violations of the GPL, LGPL, and GFDL”.
http://www.fsf.org/licenses/gpl-violation.html[last access February 16, 2005]

[12] Free Software Foundation: ”General Public License (GPL)”.
http://www.fsf.org/licensing/licenses/gpl.html[last access February 16, 2005]

[13] Free Software Foundation: ”Lesser General Public License (LGPL)”.
http://www.fsf.org/licensing/licenses/lgpl.html[last access February 16, 2005]

[14] ILIAS open source, University of Cologne: ”Ilias”.http://www.ilias.uni-koeln.de/ios/[last
access February 19, 2005]

[15] ImageMagick Studio LLC: ”ImageMagick”.http://www.imagemagick.org[last access
February 19, 2005]

90

http://bscw.fit.fraunhofer.de/
http://svnbook.red-bean.com/
http://dancorkill.home.comcast.net/pubs/ai-expert.pdf
http://www.research.ibm.com/people/b/bth/OOWS2001.html
http://europa.eu.int/information_society/activities/opensource/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.fsf.org/licenses/gpl-violation.html
http://www.fsf.org/licensing/licenses/gpl.html
http://www.fsf.org/licensing/licenses/lgpl.html
http://www.ilias.uni-koeln.de/ios/
http://www.imagemagick.org

[16] Macromedia Corporations: ”Macromedia Flash”. Information and plugins available at
http://www.macromedia.com/software/flash/[last access June 15, 2004]

[17] Mangler J., Bauer C.: ”A CEWebS Component for Facilitating Online Coopera-
tive Brainstorming Processes”. Proc. of the ICL 2004, Klagenfurt (2004), available at
http://www.pri.univie.ac.at/ mangler/Papers/2004-ICL-chatstorm.pdf[last access February
19, 2005]

[18] Mangler J.: ”GraphTalk”. Software Engineering Homework (2005), available at
http://www.pri.univie.ac.at/ mangler/Papers/2005-SE-graphtalk.pdf[last access February 19,
2005]

[19] Microsoft Coorporation, ”Component Object Model, ActiveX”.
http://www.microsoft.com/com/[last access February 19, 2005]

[20] Microsoft Coorporation, ”Microsoft .NET Framework”.http://www.microsoft.com/net/
[last access February 19, 2005]

[21] Microsoft Coorporation, ”eXtensible Application Markup Language (XAML)”.
http://longhorn.msdn.microsoft.com/lhsdk/core/overviews/about%20xaml.aspx[last access
February 19, 2005]

[22] Motschnig, R., Holzinger, A.: ”Student-Centered Teaching Meets New Media: Concept
and Experiences”. IEEE Educational Technology and Society, 5, 4 (2002), 160-172

[23] Motschnig, R., Derntl, M.: ”Cooperative Person-Centered e-Learning: Moving from Ex-
ams to a Web-Engineering Knowledge Base”. Proceedings of Interactive Computer-Aided
Learning (ICL) 2003, Villach (2003)

[24] Mozilla Organisation: ”XML User Interface Language (XUL)”.http://www.mozilla.org/,
http://xulplanet.com/tutorials/whyxul.html[last access February 19, 2005]

[25] Nielsen, J.: ”The Top Ten New Mistakes of Web Design”.
http://www.useit.com/alertbox/990530.html[last access February 19, 2005], Alertbox
(May 30, 1999)

[26] Open Mobile Aliance (OMA): ”Wireless Markup
Language (WML)”. http://www.phone.com/dtd/wml11.dtd,
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html[last access February
19, 2005]

[27] Plone Foundation: ”Plone”.http://plone.org/[last access February 19, 2005]

[28] Python Software Foundation: ”Python”.http://www.python.org/[last access February 20,
2005]

[29] RSS-DEV Working Group: ”RDF Site Summary (RSS) 1.0”.
http://web.resource.org/rss/1.0/spec[last access February 16, 2005]

[30] Sun Microsystems, Inc.: ”Java”.http://java.sun.com/[last access February 16, 2005]

[31] Sommerville, Ian: ”Software Engineering, 4th. ed.”. Addison-Wesley, Workingham, Eng-
land (1992)

91

http://www.macromedia.com/software/flash/
http://www.pri.univie.ac.at/~mangler/Papers/2004-ICL-chatstorm.pdf
http://www.pri.univie.ac.at/~mangler/Papers/2005-SE-graphtalk.pdf
http://www.microsoft.com/com/
http://www.microsoft.com/net/
http://longhorn.msdn.microsoft.com/lhsdk/core/overviews/about%20xaml.aspx
http://www.mozilla.org/
http://xulplanet.com/tutorials/whyxul.html
http://www.useit.com/alertbox/990530.html
http://www.phone.com/dtd/wml11.dtd
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html
http://plone.org/
http://www.python.org/
http://web.resource.org/rss/1.0/spec
http://java.sun.com/

[32] WebCT Incorporated: ”WebCT”.http://www.webct.com/[last access September 17,
2004]

[33] Wikimedia Foundation: ”ActiveX”.http://en.wikipedia.org/wiki/ActiveX[last access
September 17, 2004], Wikipedia

[34] Wikimedia Foundation: ”Regular Expressions”.http://en.wikipedia.org/wiki/Regular ex-
pressions[last access September 17, 2004], Wikipedia

[35] Wikimedia Foundation: ”Wikipedia: How to edit a page”.
http://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page[last access September
17, 2004], Wikipedia

[36] W3C: ”Web Services Description Language (WSDL) 1.1”.http://www.w3.org/TR/wsdl
[last access February 16, 2005]

[37] W3C: ”Extensible Markup Language (XML)”.http://www.w3.org/XML/ [last access
February 16, 2005]

[38] W3C: ”SOAP Version 1.2 Part 0: Primer”.http://www.w3.org/TR/2003/REC-soap12-
part0-20030624/[last access February 16, 2005]

[39] W3C: ”The Extensible Stylesheet Language Family (XSL)”.
http://www.w3.org/Style/XSL/[last access February 16, 2005]

[40] W3C: ”Platform for Privacy Preferences (P3P) Project”.http://www.w3.org/P3P/[last ac-
cess February 16, 2005]

[41] Zope Coorporation: ”Zero Objects Programming Environment”.http://www.zope.org/
[last access February 19, 2005]

92

http://www.webct.com/
http://en.wikipedia.org/wiki/ActiveX
http://en.wikipedia.org/wiki/Regular_expressions
http://en.wikipedia.org/wiki/Regular_expressions
http://en.wikipedia.org/wiki/Wikipedia:How_to_edit_a_page
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/Style/XSL/
http://www.w3.org/P3P/
http://www.zope.org/

List of Figures:

1 The Structure of This Thesis. 4

2 Accomplishing a Task From a Students’ Point of View. 9

3 The CEWebS Architecture. 18

4 Building Teams. 21

5 The General Principles for Getting a Document From a CEWebS. 25

6 Debugging a CEWebS. 28

7 Upload a File to a CEWebS. 29

8 Download a File from a CEWebS. 30

9 The Delivery Interface . 37

10 The Administration Interface. 42

11 Use-cases For The Service Manager. 45

12 The Service Manager. 46

13 Use-cases For The Administration Manager. 47

14 The Administration Manager - The Courses. 48

15 The Service Manager - The Services in a Course. 49

16 The Maintenance Interface. 50

17 The Notification Interface. 51

18 The Report Interface. 53

19 Use-cases For The Report Manager. 56

20 The Report Manager - A Course. 56

21 The Report Manager - A Service. 57

22 The Report Manager - An HTML Report. 58

23 Use-Cases For a WIKI. 60

93

24 Diff Algorithm At Work . 61

25 Exporting Documents. 63

26 Contributing / Uploading Material. 64

27 List of the Uploaded Material. 65

28 Manage Your Contributions. 66

29 Collecting Forms-Input. 67

30 An Example Form Showing All Possibilities. 71

31 An Form For Contacting Students. 72

32 Discussing Topics. 72

33 A Typical Discussion. 73

34 RSS Version of The Discussion in a Mailbox. 74

35 Track Progress . 76

36 Create a New Diary-Entry. 77

37 Build Teams and Keep In Contact With a Community. 78

38 Various XML Related Helper-Functions. 80

39 The XML Tool in Action . 81

40 Report Bugs. 82

41 A List of Bugs, Sorted by Category. 83

42 Owner of a Bug. 85

43 Chatting and Modelling. 85

44 A BLESS Model . 86

94

	Introduction
	Motivation
	The Task
	The Structure

	The Situation
	TeleWIFI Communities
	Dayta
	WebCT
	Summary

	CEWebS? What is it?
	The Idea
	The Art of Choosing a Solution
	Homegrown and Open-Source

	Usage of The Term CEWebS

	The Architecture
	A Concrete Scenario: The Process of Building Teams
	Action Research
	The Transformation Engine
	How a Document is Delivered to The User
	How File Up-/Downloads Are Handled
	CEWebS Links
	The Format of the XML Data Provided by a CEWebS
	The Structure of An Example Implementation
	Performance

	The Delivery Interface
	The Administration Interface
	The Service Manager (SerMan)
	The Administration Manager (AMan)

	The Maintenance Interface
	The Notification Interface and the Notification Manager (NoMan)
	The Report Interface
	The Report Manager (ReMan)

	Services
	WIKIs
	Team- and Person-Contributions
	Evaluations
	Discussion Forums
	Keeping a Diary
	Team-Building and Communities
	XML, BugTracker, GraphTalk
	XML
	BugTracker
	GraphTalk

	Conclusion and Outlook
	Attachment: Installation

