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© More on cosine

@ The complete search system

© mplementation of ranking
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Recap

Term frequency weight

o The log frequency weight of term t in d is defined as follows

W . 1 —+ |Og10 tft,d |f tft,d > 0
L I otherwise
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Recap

idf weight

@ The document frequency df; is defined as the number of
documents that t occurs in.

o df is an inverse measure of the informativeness of the term.

o We define the idf weight of term t as follows:

) N
Idft = |Og10 F
t

o idf is a measure of the informativeness of the term.
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Recap

tf-idf weight

@ The tf-idf weight of a term is the product of its tf weight and
its idf weight.

N
We g = (1 + logtf; 4) - log o

@ Best known weighting scheme in information retrieval
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Recap

Cosine similarity between query and document

L= Vv
ii“ qi d;

e NSRS

cos(q, d) = smi(g, d) =

o q; is the tf-idf weight of term /i in the query.

o d; is the tf-idf weight of term / in the document.

o |G| and |d| are the lengths of § and d.

o G/|g| and d/|d| are length-1 vectors (= normalized).
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Recap

Cosine similarity illustrated

\ —
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Recap

tf-idf example: Inc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-idf
tf-raw  tf-wght df idf  weight | tf-raw tf-wght tf-wght n’lized
auto 0 0 5000 23 0 1 1 1 052 |0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 | 1.04
insurance | 1 1 1000 30 30 2 1.3 1.3 0.68 | 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n'lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
V12402412 +1.32 2 1.92

1/1.92 ~ 0.52

1.3/1.92 =~ 0.68

Final similarity score between query and document: }=; wgi - wg; = 0+ 0 + 1.04 + 2.04 = 3.08
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Recap

Take-away today

@ The importance of ranking: User studies at Google
@ Length normalization: Pivot normalization
@ The complete search system

@ Implementation of ranking
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Why rank?

Why is ranking so important?

o Last lecture: Problems with unranked retrieval

o Users want to look at a few results — not thousands.

o It's very hard to write queries that produce a few results.

@ Even for expert searchers

@ — Ranking is important because it effectively reduces a large
set of results to a very small one.

o Next: More data on “users only look at a few results”

o Actually, in the vast majority of cases they only examine 1, 2,
or 3 results.
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Why rank?

Empirical investigation of the effect of ranking

@ The following slides are from Dan Russell's JCDL talk

@ Dan Russell was the “Uber Tech Lead for Search Quality &
User Happiness” at Google.

® How can we measure how important ranking is?

@ Observe what searchers do when they are searching in a
controlled setting
@ Videotape them
@ Ask them to “think aloud”
o Interview them
o Eye-track them
o Time them
@ Record and count their clicks
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Interview video

So.. Did you notice the FTD official
site?

To be honest, | didn’t even look at
that.

Atfirst | saw “from $20” and $20 is
what | was looking for.

To be honest, 1800-flowers is
what I'm familiar with and
why | went there next even
though | kind of assumed
they wouldn’t have $20
flowers

And you knew they were
expensive?

| knew they were expensive but |
thought “hey, maybe they've
got some flowers for under
$20 here...”

But you didn't notice the FTD?

No | didn't, actually... that’s really
funny.




Rapidly scanning the results

Note scan pattern:

Web |mages Video
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Kinds of behaviors we see in the data

Short/ Nav

Topic exploration

Topic switch
Methodical results
exploration

Query reform

Google

New topic

— Task 2
Multitasking :.>\E__‘K ]
m

Stacking behavior . i



How many links do users view?

Total number of abstracts viewed per page

Dip after
page break

frequency
[=2]
o

40

20

1 2 3 4 5 6 7 8 9 10
Total number of abstracts viewed

Mean: 3.07 Median/Mode: 2.00
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Looking vs. Clicking

180 B # times result selected 1
160 . ;
o O time spent in abstract
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[%] —_
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[
n
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I+
20
0
Rank of result
+ Users view results one and two more often / thoroughly
+ Users click most frequently on result one
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Presentation bias — reversed results

« Order of presentation influences where users look
AND where they click

Probability of Click

Google

60%

50%

40%

30%

20%

10%

0%

More relevant

normal

sw apped
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Why rank?

Importance of ranking: Summary

o Viewing abstracts: Users are a lot more likely to read the
abstracts of the top-ranked pages (1, 2, 3, 4) than the
abstracts of the lower ranked pages (7, 8, 9, 10).

o Clicking: Distribution is even more skewed for clicking
@ In 1 out of 2 cases, users click on the top-ranked page.

@ Even if the top-ranked page is not relevant, 30% of users will

click on it.
@ — Getting the ranking right is very important.
@ — Getting the top-ranked page right is most important.
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Why rank?

Exercise

@ Ranking is also one of the high barriers to entry for
competitors to established players in the search engine market.

o Why?
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More on cosine

Why distance is a bad idea

POOR d>: Rich poor gap grows
’ d1: Ranks of starving poets swell
] a-Irich-poorl
/ G- [Heri-pooH
. ds: Record baseball salaries in 2010
0 0 — 7 RICH

The Euclidean distance of g and d> is large although the
distribution of terms in the query g and the distribution of terms in

the document d> are very similar.
That's why we do length normalization or, equivalently, use cosine
to compute query-document matching scores.
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More on cosine

Exercise: A problem for cosine normalization

@ Query g: “"anti-doping rules Beijing 2008 olympics”
o Compare three documents

@ di: a short document on anti-doping rules at 2008 Olympics

@ dr: along document that consists of a copy of d; and 5 other
news stories, all on topics different from Olympics/anti-doping

@ ds: a short document on anti-doping rules at the 2004 Athens
Olympics

@ What ranking do we expect in the vector space model?
@ What can we do about this?
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More on cosine

Pivot normalization

o Cosine normalization produces weights that are too large for
short documents and too small for long documents (on
average).

@ Adjust cosine normalization by linear adjustment: “turning”
the average normalization on the pivot

o Effect: Similarities of short documents with query decrease;
similarities of long documents with query increase.

@ This removes the unfair advantage that short documents have.
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More on cosine

Predicted and true probability of relevance

Relevance vs Retrieval with cosine normalization

_>

cosine norm

[BADLIJOL/QIUBA[I
Jo Anpqeqoad,,

“true” relevance

document lenath

source:
Lillian Lee
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More on cosine

Pivot normalization

A Cosine Normalization

Pivoted Normalization

i
slope = tan(a)

1098, UOLRZI[BUWLION] PR)OAL]

v

Cosine Normalization Factor
source:
Lillian Lee
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More on cosine

Pivoted normalization: Amit Singhal’s experiments

Pivoted Cosine Normalization

Cosine Slope
0.60 0.65 0.70 0.75 0.80
6,526 6,342 6,458 6,574 6,629 6,671
0.2840 0.3024 | 0.3097 | 0.3144 | 0.3171 | 0.3162
Tmprovement | + 6.5% | + 9.0% | +10.7% | +11.7% | +11.3%

(relevant documents retrieved and (change in) average precision)
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The complete search system

Complete search system

Parsing [user query |

4 ::> Linguistics ﬂ Rasults
Documents - l |Free text query parser| ﬁ page

Document

cache
2one and top K TIEI:E'.,d |nv§|ted k-gram Scoring T
field indexes | retrieval positional index

parameters
Indexes MLR

Metadata in | Inexact
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The complete search system

Tiered indexes

o Basic idea:
o Create several tiers of indexes, corresponding to importance of
indexing terms
o During query processing, start with highest-tier index
o If highest-tier index returns at least k (e.g., k = 100) results:
stop and return results to user
o If we've only found < k hits: repeat for next index in tier
cascade
o Example: two-tier system
o Tier 1: Index of all titles
o Tier 2: Index of the rest of documents
o Pages containing the search words in the title are better hits
than pages containing the search words in the body of the text.
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The complete search system

Tiered index

[ [ o o e |
‘ insurance H Doc2 H Doc3 ‘

‘ best H Doct H Doc3 ‘
Tier2

Tier 3

insurance
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The complete search system

Tiered indexes

@ The use of tiered indexes is believed to be one of the reasons
that Google search quality was significantly higher initially
(2000/01) than that of competitors.

o (along with PageRank, use of anchor text and proximity
constraints)
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The complete search system

Complete search system

Parsing [user query |

4 ::> Linguistics ﬂ Rasults
Documents - l |Free text query parser| ﬁ page

Document [Spell correction| [ Scoring and ranking |

cache ﬁ

2one and top K TIEI:E'.,d |nv§|ted k-gram Scoring T
field indexes | retrigval positional index

parameters
Indexes MLR

Metadata in | Inexact
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The complete search system

Components we have introduced thus far

@ Document preprocessing (linguistic and otherwise)

o Positional indexes

o Tiered indexes

@ Spelling correction

o k-gram indexes for wildcard queries and spelling correction
@ Query processing

@ Document scoring
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The complete search system

Components we haven't covered yet

@ Document cache: we need this for generating snippets (=
dynamic summaries)

@ Zone indexes: They separate the indexes for different zones:
the body of the document, all highlighted text in the
document, anchor text, text in metadata fields,. ..

@ Machine-learned ranking functions

@ Proximity ranking (e.g., rank documents in which the query
terms occur in the same local window higher than documents
in which the query terms occur far from each other)

(%]

Query parser
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The complete search system

Components we haven't covered yet: Query parser

o IR systems often guess what the user intended.

@ The two-term query London tower (without quotes) may be
interpreted as the phrase query “London tower”.

@ The query 100 Madison Avenue, New York may be interpreted
as a request for a map.

@ How do we “parse” the query and translate it into a formal
specification containing phrase operators, proximity operators,
indexes to search, etc.?

Sojka, IR Group: PV211: Scores in a complete search system



The complete search system

Vector space retrieval: Interactions

@ How do we combine phrase retrieval with vector space
retrieval?

@ We do not want to compute document frequency / idf for
every possible phrase. Why?

@ How do we combine Boolean retrieval with vector space
retrieval?

o For example: “+"-constraints and “—"-constraints

o Postfiltering is simple, but can be very inefficient — no easy
answer.

@ How do we combine wild cards with vector space retrieval?

© Again, no easy answer.
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The complete search system

Exercise

o Design criteria for tiered system
o Each tier should be an order of magnitude smaller than the
next tier.
o The top 100 hits for most queries should be in tier 1, the top
100 hits for most of the remaining queries in tier 2, etc.
@ We need a simple test for “can | stop at this tier or do | have
to go to the next one?”
@ There is no advantage to tiering if we have to hit most tiers
for most queries anyway.
o Consider a two-tier system where the first tier indexes titles

and the second tier everything.

@ Question: Can you think of a better way of setting up a
multitier system? Which “zones” of a document should be
indexed in the different tiers (title, body of document,
others?)? What criterion do you want to use for including a
document in tier 17
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Implementation of ranking

Now we also need term frequencies in the index

B | [2[73 [ [e72 ] ]
s | [TI[51 (B[] ]
[Carrumvia ] — (7182401 [573]

term frequencies

We also need positions. Not shown here.
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Implementation of ranking

Term frequencies in the inverted index

@ Thus: In each posting, store tf; 4 in addition to docID d.

@ As an integer frequency, not as a (log-)weighted real number

@ ...because real numbers are difficult to compress.

@ Overall, additional space requirements are small: a byte per
posting or less
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Implementation of ranking

How do we compute the top k in ranking?

o

We usually do not need a complete ranking.

We just need the top k for a small k (e.g., kK = 100).

If we don't need a complete ranking, is there an efficient way
of computing just the top k?

o Naive:

o Compute scores for all N documents

@ Sort
@ Return the top k

©

©

©

Not very efficient

©

Alternative: min heap
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Implementation of ranking

Use min heap for selecting top k ouf of N

@ A binary min heap is a binary tree in which each node’s value
is less than the values of its children.

o Takes O(N log k) operations to construct (where N is the
number of documents) . ..

® ...then read off k winners in O(k log k) steps
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Implementation of ranking

Binary min heap
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Implementation of ranking

Selecting top k scoring documents in O(N log k)

o Goal: Keep the top k documents seen so far

@ Use a binary min heap
@ To process a new document d’ with score s':
s Get current minimum h,, of heap (O(1))
s If s’ < h,, skip to next document
o If s > hy, heap-delete-root (O(log k))
@ Heap-add d'/s’ (O(log k))
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Implementation of ranking

Even more efficient computation of top k?

o

Ranking has time complexity O(N) where N is the number of
documents.

Optimizations reduce the constant factor, but they are still
O(N), N > 10'°
Are there sublinear algorithms?

©

©

©

What we're doing in effect: solving the k-nearest neighbor
(kNN) problem for the query vector (= query point).

@ There are no general solutions to this problem that are
sublinear.
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Implementation of ranking

More efficient computation of top k: Heuristics

o ldea 1: Reorder postings lists

@ Instead of ordering according to docID ...
o ...order according to some measure of “expected relevance”.

o |dea 2: Heuristics to prune the search space
@ Not guaranteed to be correct ...
o ...but fails rarely.
o In practice, close to constant time.
o For this, we'll need the concepts of document-at-a-time
processing and term-at-a-time processing.
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Implementation of ranking

Non-docID ordering of postings lists

@ So far: postings lists have been ordered according to doclID.

o Alternative: a query-independent measure of “goodness”
(credibility) of a page

o Example: PageRank g(d) of page d, a measure of how many
“good” pages hyperlink to d (chapter 21)

@ Order documents in postings lists according to PageRank:
g(di) > g(d2) > g(d3) > ...
o Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ This scheme supports early termination: We do not have to
process postings lists in their entirety to find top k.
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Implementation of ranking

Non-docID ordering of postings lists (2)

@ Order documents in postings lists according to PageRank:
g(d1) > g(d2) > g(d3) > ...
@ Define composite score of a document:

net-score(q, d) = g(d) + cos(q, d)

@ Suppose: (i) g — [0,1]; (ii) g(d) < 0.1 for the document d
we're currently processing; (iii) smallest top k score we've
found so far is 1.2

@ Then all subsequent scores will be < 1.1.

@ So we've already found the top k and can stop processing the
remainder of postings lists.

@ Questions?
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Implementation of ranking

Document-at-a-time processing

@ Both doclD-ordering and PageRank-ordering impose a
consistent ordering on documents in postings lists.

@ Computing cosines in this scheme is document-at-a-time.

o We complete computation of the query-document similarity
score of document d; before starting to compute the
query-document similarity score of dj;1.

o Alternative: term-at-a-time processing
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Implementation of ranking

Weight-sorted postings lists

o Idea: don't process postings that contribute little to final score
@ Order documents in postings list according to weight

@ Simplest case: normalized tf-idf weight (rarely done: hard to
compress)

@ Documents in the top k are likely to occur early in these
ordered lists.

@ — Early termination while processing postings lists is unlikely
to change the top k.

o But:

@ We no longer have a consistent ordering of documents in

postings lists.
@ We no longer can employ document-at-a-time processing.
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Implementation of ranking

Term-at-a-time processing

@ Simplest case: completely process the postings list of the first
query term

o Create an accumulator for each docID you encounter

@ Then completely process the postings list of the second query
term

@ ...and so forth
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Implementation of ranking

Term-at-a-time processing

COSINESCORE(q)
1 float Scores[N] =0
2 float Length[N]
3 for each query term t
4 do calculate w; 4 and fetch postings list for t
5 for each pair(d,tf; ) in postings list
6 do Scores[d]+ = w¢ g X Wt g
7 Read the array Length
8 for each d
9 do Scores[d] = Scores|d]/Length|d]
10 return Top k components of Scores|]

The elements of the array “Scores” are called accumulators.
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Implementation of ranking

Computing cosine scores

@ Use inverted index

@ At query time use an array of accumulators A to store sum (=
the cosine score)

=]
A= v
k

(for document dj)

@ “Accumulate” scores as postings lists are being processed.
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Implementation of ranking

Accumulators

@ For the web (20 billion documents), an array of
accumulators A in memory is infeasible.

@ Thus: Only create accumulators for docs occurring in postings
lists

@ This is equivalent to: Do not create accumulators for docs
with zero scores (i.e., docs that do not contain any of the
query terms)
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Implementation of ranking
Accumulators: Example

[ Baors ] — [12]73 [ [82]
[Cassan ] — [TA]51 (131 [17A] ]
[Catpuania] — [7A82]401]973]

o For query: [Brutus Caesar]:
@ Only need accumulators for 1, 5, 7, 13, 17, 83, 87

@ Don't need accumulators for 3, 8, etc.
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Implementation of ranking

Enforcing conjunctive search

@ We can enforce conjunctive search (a la Google): only
consider documents (and create accumulators) if all terms
occur.

@ Example: just one accumulator for [Brutus Caesar] in the
example above ...

@ ...because only d; contains both words.
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Implementation of ranking

Implementation of ranking: Summary

@ Ranking is very expensive in applications where we have to
compute similarity scores for all documents in the collection.

@ In most applications, the vast majority of documents have
similarity score 0 for a given query — lots of potential for
speeding things up.

© However, there is no fast nearest neighbor algorithm that is
guaranteed to be correct even in this scenario.

@ In practice: use heuristics to prune search space — usually
works very well.
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Implementation of ranking

Take-away today

@ The importance of ranking: User studies at Google
@ Length normalization: Pivot normalization
@ The complete search system

@ Implementation of ranking
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Resources

Implementation of ranking

o Chapter 7 of IIR

@ Resources at https://www.fi.muni.cz/~sojka/PV211/
and http://cislmu.org, materials in MU IS and FI MU
library

]

¢ © ¢ ¢ ¢

How your colleague Till manages to reach 50% MAP?
How Google tweaks its ranking function?

Interview with Google search guru Udi Manber

Amit Singhal on Google ranking

SEO perspective: ranking factors

Yahoo Search BOSS: Opens up the search engine to
developers. For example, you can rerank search results.
How Google uses eye tracking for improving search.
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