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Overview

@ Compression
© Term statistics
9 Dictionary compression

0 Postings compression
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Roadmap

@ Today: index compression, and vector space model

o Next week: the whole picture of complete search system,
scoring and ranking
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Take-away today

For each term t, we store a list of all documents that contain t.

[ Brurus | — [1] 2] 4] 11 [31[45[ 173 [174]

[ Camsarn | — [1] 2] 4] 5] 6[16] 57 [132]... ]

—

—
dictionary postings file

@ Motivation for compression in information retrieval systems

@ How can we compress the dictionary component of the
inverted index?

@ How can we compress the postings component of the inverted
index?

o Term statistics: how are terms distributed in document
collections?
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Compression

Inverted index

For each term t, we store a list of all documents that contain t.

| Brutus | — [1] 2] 4] 11[31[45][173[174]

[ Camsak | — [1] 2] 4] 5[ 6]16] 57[132] ... |

| CALPURNIA | — [2[31[54] 101 ]

——
dictionary postings file

Today:

@ How much space do we need for the dictionary?
@ How much space do we need for the postings file?
@ How can we compress them?
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Compression

Why compression? (in general)

o

Use less disk space (saves money).

©

Keep more stuff in memory (increases speed).

©

Increase speed of transferring data from disk to memory
(again, increases speed).

[read compressed data and decompress in memory]

is faster than

[read uncompressed datal

©

Premise: Decompression algorithms are fast.

©

This is true of the decompression algorithms we will use.
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Compression

Why compression in information retrieval?

o First, we will consider space for dictionary:
¢ Main motivation for dictionary compression: make it small
enough to keep in main memory.
@ Then for the postings file

@ Motivation: reduce disk space needed, decrease time needed to
read from disk.

@ Note: Large search engines keep significant part of postings in
memory.

@ We will devise various compression schemes for dictionary and
postings.
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Compression

Lossy vs. lossless compression

@ Lossy compression: Discard some information

o Several of the preprocessing steps we frequently use can be
viewed as lossy compression:

o downcasing, stop words, porter, number elimination
o Lossless compression: All information is preserved.
@ What we mostly do in index compression
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Term statistics

Model collection: The Reuters collection

symbol | statistic value

N documents 800,000

L avg. # word tokens per document 200

M word types 400,000
avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per word type 7.5

T non-positional postings 100,000,000
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Term statistics
Effect of preprocessing for Reuters

word types non-positional positional postings
(terms) postings (word tokens)
size of dictionary non-positional index | positional index
size Acml size A cml size  Acml
unfiltered | 484,494 109,971,179 197,879,290

no numbers| 473,723 -2 -2| 100,680,242 -8 -8| 179,158,204 -9 -9
case folding| 391,523-17-19| 96,969,056 -3 -12| 179,158,204 -0 -9
30 stopw’s | 391,493 -0-19| 83,390,443-14 -24| 121,857,825 -31-38
150 stopw's| 391,373 -0-19/ 67,001,847-30 -39| 94,516,599 -47 -52
stemming | 322,383-17 -33| 63,812,300 -4 -42| 94,516,599 -0-52

Explain differences between numbers non-positional vs positional:
—3vs 0, —14 vs —31, —30 vs —47, —4 vs O
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Term statistics

How big is the term vocabulary?

&
&
&
&
o
o

That is, how many distinct words are there?

Can we assume there is an upper bound?

Not really: At least 70%° ~ 103" different words of length 20.
The vocabulary will keep growing with collection size.

Heaps' law: M = kTP?

M is the size of the vocabulary, T is the number of tokens in
the collection.

o Typical values for the parameters k and b are: 30 < k < 100
and b =~ 0.5.
@ Heaps' law is linear in log-log space.

o |t is the simplest possible relationship between collection size
and vocabulary size in log-log space.
o Empirical law
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Term statistics

Heaps' law for Reuters

Vocabulary size M as a
function of collection size

© T (number of tokens) for
g Reuters-RCV1. For these
data, the dashed line

logio M =

0.49 * logyy T + 1.64 is the
best least squares fit.
ThLIS, M = 101.64 T0.49

and k = 1014 ~ 44 and

b =0.49.

log10 M

log10 T
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Term statistics

Empirical fit for Reuters

@ Good, as we just saw in the graph.

o Example: for the first 1,000,020 tokens Heaps' law predicts
38,323 terms:

44 % 1,000,020%4° ~ 38,323

@ The actual number is 38,365 terms, very close to the
prediction.

@ Empirical observation: fit is good in general.
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Term statistics

Exercise

@ What is the effect of including spelling errors vs. automatically
correcting spelling errors on Heaps' law?

Q@ Compute vocabulary size M

@ Looking at a collection of web pages, you find that there are
3,000 different terms in the first 10,000 tokens and
30,000 different terms in the first 1,000,000 tokens.

o Assume a search engine indexes a total of 20,000,000,000
(2 x 101) pages, containing 200 tokens on average

@ What is the size of the vocabulary of the indexed collection as
predicted by Heaps' law?
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Term statistics

Zipf's law

@ Now we have characterized the growth of the vocabulary in
collections.

o We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

@ In natural language, there are a few very frequent terms and
very many very rare terms.

o Zipf's law: The it" most frequent term has frequency cf;
proportional to 1/i.

9 cf; x %
o cf; is collection frequency: the number of occurrences of the
term t; in the collection.
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Term statistics

Zipt's law

o Zipf's law: The it most frequent term has frequency
proportional to 1/i.

o cf; x %
@ cf is collection frequency: the number of occurrences of the
term in the collection.

@ So if the most frequent term (the) occurs cfy times, then the
second most frequent term (of) has half as many occurrences
fy = Lef
Clp = 2C 1 ...

@ ...and the third most frequent term (and) has a third as
many occurrences cf3 = %cfl etc.

o Equivalent: cf; = ¢i¥ and logcf; = log c + klog i (for k = —1)

o Example of a power law
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Term statistics

Zipf's law for Reuters

Fit is not great. What
is important is the

| key insight: Few fre-
€] quent terms, many
o rare terms.
° T T T T T T T T
0 1 2 3 4 5 6 7
log10 rank
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Dictionary compression

Dictionary compression

@ The dictionary is small compared to the postings file.
o But we want to keep it in memory.

@ Also: competition with other applications, cell phones,
onboard computers, fast startup time

@ So compressing the dictionary is important.
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Dictionary compression

Recall: Dictionary as array of fixed-width entries

term document pointer  to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20 bytes 4 bytes 4 bytes

Space for Reuters: (20+4+4)*400,000 = 11.2 MB
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Dictionary compression

Fixed-width entries are bad.

@ Most of the bytes in the term column are wasted.
o We allot 20 bytes for terms of length 1.

@ We cannot handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

o Average length of a term in English: 8 characters (or a little
bit less)

@ How can we use on average 8 characters per term?
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Dictionary compression

Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

freq. postings ptr. term ptr.

9
92
5
71
12

1Ll ld

4 bytes 4 bytes 3 bytes
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Dictionary compression

Space for dictionary as a string

&
o
o
o

4 bytes per term for frequency
4 bytes per term for pointer to postings list
8 bytes (on average) for term in string

3 bytes per pointer into string (need log, 8 - 400,000 < 24 bits
to resolve 8 - 400,000 positions)

Space: 400,000 x (4 +4 +3+8) =7.6 MB (compared to
11.2 MB for fixed-width array)

©
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Dictionary compression

Dictionary as a string with blocking

...7systile9syzygetic8syzygial6syzygyllszaibelyite6szecin. ..

freq. postings ptr. term ptr.

9
92
5
71
12

Lilld

Sojka, IR Group: PV211: Index compression



Dictionary compression

Space for dictionary as a string with blocking

@ Example block size k = 4

@ Where we used 4 x 3 bytes for term pointers without blocking

@ ...we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

We save 12 — (3 +4) = 5 bytes per block.
Total savings: 400,000/4 «5 = 0.5 MB

This reduces the size of the dictionary from 7.6 MB to
7.1 MB.

©

©

©
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Dictionary compression

Lookup of a term without blocking
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Dictionary compression

Lookup of a term with blocking: (slightly) slower

N N ©

JOB @ @ WIN
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Dictionary compression

Front coding

One block in blocked compression (k =4) ...
8automata8automate9automaticlQautomation

¢

... further compressed with front coding.
8automatxaloe20ic3cion
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Dictionary compression

Dictionary compression for Reuters: Summary

data structure | size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k =4 7.1
~, with blocking & front coding 5.9
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Dictionary compression

Exercise

@ Which prefixes should be used for front coding? What are the
tradeoffs?

@ Input: list of terms (= the term vocabulary)

@ Output: list of prefixes that will be used in front coding
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Postings compression

Postings compression

o

The postings file is much larger than the dictionary, factor of
at least 10.

©

Key desideratum: store each posting compactly

©

A posting for our purposes is a doclD.

For Reuters (800,000 documents), we would use 32 bits per
doclD when using 4-byte integers.

Alternatively, we can use log, 800,000 ~ 19.6 < 20 bits per
doclID.

Our goal: use a lot less than 20 bits per doclD.

©

(]

©
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Postings compression
Key idea: Store gaps instead of doclDs

@ Each postings list is ordered in increasing order of doclD.

@ Example postings list: COMPUTER: 283154, 283159,
283202, ...

o It suffices to store gaps: 283159 — 283154 =5,
283202 — 283159 = 43

@ Example postings list using gaps: COMPUTER: 283154, 5,
43, ...

o Gaps for frequent terms are small.
@ Thus: We can encode small gaps with fewer than 20 bits.
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Postings compression

Gap encoding

encoding  postings list

THE doclDs oo 283042 283043 283044 283045
gaps 1 1 1
COMPUTER doclDs . 283047 283154 283159 283202
gaps 107 5 43
ARACHNOCENTRIC  doclDs 252000 500100
gaps 252000 248100

Sojka, IR Group: PV211: Index compression



Postings compression

Variable length encoding

o Aim:
@ For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
o For THE and other very frequent terms, we will use only a few
bits per gap (= posting).
@ In order to implement this, we need to devise some form of
variable length encoding.

o Variable length encoding uses few bits for small gaps and
many bits for large gaps.
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Postings compression

Variable byte (VB) code

@ Used by many commercial /research systems

@ Good low-tech blend of variable-length coding and sensitivity
to alignment matches (bit-level codes, see later).

o Dedicate 1 bit (high bit) to be a continuation bit c.

o If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set ¢ = 1.

o Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

@ At the end set the continuation bit of the last byte to 1
(¢ =1) and of the other bytes to 0 (¢ = 0).
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Postings compression

VB code examples

doclDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001
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Postings compression

VB code encoding algorithm

VBENCODENUMBER(n) VBENCODE(numbers)

1 bytes < () 1 bytestream < ()

2 while true 2 for each n € numbers

3 do PREPEND(bytes,n mod 128) 3 do bytes <~ VBENCODENUMBER(n)

4 if n <128 4 bytestream <— EXTEND(bytestream, bytes)
5 then BREAK 5 return bytestream

6 n < ndiv 128

7  bytes|[LENGTH(bytes)] += 128

8 return bytes
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Postings compression
VB code decoding algorithm

VBDECODE(bytestream)
numbers + ()
n<0
for i < 1 to LENGTH(bytestream)
do if bytestream[i] < 128
then n < 128 x n + bytestreaml|i]
else n < 128 x n + (bytestream|[i] — 128)
APPEND(numbers, n)
n<0
return numbers

© 0O ~NO O WDN -
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Postings compression

Other variable codes

@ Instead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

o Variable byte alignment wastes space if you have many small
gaps — nibbles do better on those.

@ There is work on word-aligned codes that efficiently “pack” a
variable number of gaps into one word — see resources at the
end
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Postings compression

Codes for gap encoding

@ You can get even more compression with another type of
variable length encoding: bitlevel code.

@ Gamma code is the best known of these.

@ First, we need unary code to be able to introduce gamma
code.

@ Unary code

o Represent n as n 1s with a final 0.

o Unary code for 3 is 1110

@ Unary code for 1 is 10, for 0 is 0, for 30 is
1111111111111111111111111111110
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Postings compression
Gamma code

o Represent a gap G as a pair of length and offset.

o Offset is the gap in binary, with the leading bit chopped off.
@ For example 13 — 1101 — 101 = offset

o Length is the length of offset.

o For 13 (offset 101), this is 3.

@ Encode length in unary code: 1110.

0

Gamma code of 13 is the concatenation of length and offset:
1110101.
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Postings compression

Another Gamma code () examples

number unary code length offset ~ code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Sojka, IR Group: PV211: Index compression



Postings compression

The universal coding of the integers: Elias codes

i unary code a(N) = 11...10. «(4) = 11110
N
binary code (1) = 1, 8(2N + j) = B(N)j, j = 0,1. 3(4) = 100
B is not uniquely decodable (it is not a prefix code).
ternary 7(N) = B(N)#. 7(4) = 100#
p'(1) =€ B'(2N) = '(N)O, 5'(2N +1) = B'(N)1,
T'(N) = B'(N)#. p'(4) = 00.
v(N) = a|B'(N)|B'(N). ~(4) = 11000
alternatively, 7': every bit 5'(N) is inserted between a pair from

a(|B'(N)]). the same length as ~ (bit permutation v(N)), but less
readable

1 example: 7/(4) = 10100

w C, ={y(N): N>0}=(1{0,1})*0 is regular and therefore it is
decodable by finite automaton.

E B § B

5

)
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Postings compression

Elias codes: gamma, delta, omega: formal definitions Il

w5 5(N) = ~(IB(N))B'(N)
i example: §(4) = v(3)00 = 01100
i decoder §: §(?) = 10017
s w:
K :=0;
while [log,(N)| >0 do
begin K := S(N)K;
N = [logy(N)|

end.
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Postings compression

Exercise

o Compute the variable byte code of 130
o Compute the gamma code of 130
o Compute §(42)
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Postings compression

Length of gamma code

&
&
&
o
o

The length of offset is |log, G| bits.
The length of length is |log, G| + 1 bits,
So the length of the entire code is 2 x [log, G| + 1 bits.

~ codes are always of odd length.

Gamma codes are within a factor of 2 of the optimal encoding
length log, G.
o (assuming the frequency of a gap G is proportional to log, G —
only approximately true)
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Postings compression

Gamma code: Properties

@ Gamma code is prefix-free: a valid code word is not a prefix of
any other valid code.

@ Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

@ This result is independent of the distribution of gaps!

@ We can use gamma codes for any distribution. Gamma code
is universal.

@ Gamma code is parameter-free.
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Postings compression

Gamma codes: Alignment

o

Machines have word boundaries — 8, 16, 32 bits

Compressing and manipulating at granularity of bits can be
slow.

©

©

Variable byte encoding is aligned and thus potentially more
efficient.

Another word aligned scheme: Anh and Moffat 2005

Regardless of efficiency, variable byte is conceptually simpler
at little additional space cost.

©

©
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Postings compression
Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k =4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, 7 encoded 101.0
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Postings compression

Term-document incidence matrix

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
BrutUs 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Entry is 1 if term occurs.

Example: CALPURNIA occurs in Julius Caesar.

Entry is 0 if term does not occur.

Example: CALPURNIA doesn't occur in The tempest.
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Postings compression
Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k =4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, 7 encoded 101.0
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Postings compression

Summary

©

We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

Only 4% of the total size of the collection.
Only 10-15% of the total size of the text in the collection.

However, we've ignored positional and frequency information.

¢ © ¢ ¢

For this reason, space savings are less in reality.
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Postings compression

Take-away today

For each term t, we store a list of all documents that contain t.

[ Brurus | — [1] 2] 4] 11 [31[45[ 173 [174]

[ Camsarn | — [1] 2] 4] 5] 6[16] 57 [132]... ]

—

—
dictionary postings file

@ Motivation for compression in information retrieval systems

@ How can we compress the dictionary component of the
inverted index?

@ How can we compress the postings component of the inverted
index?

o Term statistics: how are terms distributed in document
collections?
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Postings compression

Resources

http://ske.fi.muni.cz

o Chapter 5 of IIR

o Resources at https://www.fi.muni.cz/~sojka/PV211/
and http://cislmu.org, materials in MU IS and FI MU
library

@ Original publication on word-aligned binary codes by Anh and
Moffat (2005); also: Anh and Moffat (2006a).

& Original publication on variable byte codes by Scholer,
Williams, Yiannis and Zobel (2002).

@ More details on compression (including compression of
positions and frequencies) in Zobel and Moffat (2006).
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