
� yA|

Derivation of a regular expression
Characteristics of regular expressions

PV030 Textual Information Systems

Petr Sojka

Faculty of Informatics
Masaryk University, Brno

Spring 2013

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Outline (week four)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Similarity of regular expressions

Theorem: the axiomatization of RE is complete and consistent.

Definition: regular expressions are termed as similar, when they can
be mutually conversed using axioms A1 to A11.

Theorem: similar regular expressions have the same value.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Similarity of regular expressions

Theorem: the axiomatization of RE is complete and consistent.

Definition: regular expressions are termed as similar, when they can
be mutually conversed using axioms A1 to A11.

Theorem: similar regular expressions have the same value.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Length of a regular expression

Definition: the length d(E) of the regular expression E:

À If E consists of one symbol, then d(E) = 1.

Á d(V1 + V2) = d(V1) + d(V2) + 1.

Â d(V1.V2) = d(V1) + d(V2) + 1.

� d(V∗) = d(V) + 1.

Ä d((V)) = d(V) + 2.

Note: the length corresponds to the syntax of a regular expression.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE

Definition: a generalized NFA allows ε-transitions (transitions
without reading of an input symbol).

Theorem: for every RE E, we can create FA M such that h(E) = L(M).
Proof: by structural induction relative to the RE E:

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0

Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0

Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0

Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0

Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1

� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1

M2

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1

� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1

M2

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1

� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1

M2

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1

� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1

M2

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.

+ No edges come out of the final states.

+ The number of the states M ≤ 2 · d(E).

+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.

+ No edges come out of the final states.

+ The number of the states M ≤ 2 · d(E).

+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.

+ No edges come out of the final states.

+ The number of the states M ≤ 2 · d(E).

+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.

+ No edges come out of the final states.

+ The number of the states M ≤ 2 · d(E).

+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

NFA simulation

For the following methods of NFA simulation, we must remove the
ε-transitions. We can achieve it with the well-known procedure:
1)

q q′ε
a

b
b

b

a
a

q q′

2)
q′q ε q′q

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

NFA simulation (cont.)

We represent a state with a Boolean vector and we pass through all
the paths at the same time. There are two approaches:

+ The general algorithm that use a transition table.

+ Implementation of the automaton in a form of (generated)
program for the particular automaton.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

NFA simulation (cont.)

We represent a state with a Boolean vector and we pass through all
the paths at the same time. There are two approaches:

+ The general algorithm that use a transition table.

+ Implementation of the automaton in a form of (generated)
program for the particular automaton.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of (N)FA for given RE

Let E is a RE over the alphabet T. Then we create FA
M = (K, T, δ, q0, F) such that h(E) = L(M) this way:
À We assign different natural numbers to all the occurrences of the symbols of T

in the expression E. We get E′.

Á A set of starting symbols Z = {xi : a string of h(E
′) can start with the

symbol xi, xi 6= ε}.

Â A set of neighbours P = {xiyj : symbols xi 6= ε 6= yj can be next to each other in
a string of h(E′)}.

� A set of ending symbols F = {xi : a string of h(E′) can end with the symbol
xi 6= ε}.

Ä A set of states K = {q0} ∪ Z ∪ {yj : xiyj ∈ P}.

Å A transition function δ:

δ(q0, x) contains xi for,∀xi ∈ Z that originate from numbering of x.
δ(xi, y) contains yj for,∀xiyj ∈ P such that yj originates from numbering
of y.

Æ F is a set of final states, a state that corresponds to E is q0.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of (N)FA for given RE (cont.)

Example 1: R = ab∗a + ac + b∗ab∗.

Example 2: R = ab∗ + ac + b∗a.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of a regular expression

Definition: derivation dE
dx of the regular expression E by a

string x ∈ T∗:

À

dE

dε
= E.

Á For a ∈ T, these statements are true:
dε

da
= 0

db

da
=

{

0 if a 6= b
ε if a = b

d(E + F)

da
=

dE

da
+

dF

da

d(E.F)

da
=







dE

da
· F +

dF

da
if ε ∈ h(E)

dE

da
· F otherwise

d(E∗)

da
=

dE

da
· E∗

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of a regular expression

Definition: derivation dE
dx of the regular expression E by a

string x ∈ T∗:

À

dE

dε
= E.

Á For a ∈ T, these statements are true:
dε

da
= 0

db

da
=

{

0 if a 6= b
ε if a = b

d(E + F)

da
=

dE

da
+

dF

da

d(E.F)

da
=







dE

da
· F +

dF

da
if ε ∈ h(E)

dE

da
· F otherwise

d(E∗)

da
=

dE

da
· E∗

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of a regular expression

Definition: derivation dE
dx of the regular expression E by a

string x ∈ T∗:

À

dE

dε
= E.

Á For a ∈ T, these statements are true:
dε

da
= 0

db

da
=

{

0 if a 6= b
ε if a = b

d(E + F)

da
=

dE

da
+

dF

da

d(E.F)

da
=







dE

da
· F +

dF

da
if ε ∈ h(E)

dE

da
· F otherwise

d(E∗)

da
=

dE

da
· E∗

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of a regular expression (cont.)

Â For x = a1a2 . . . an, ai ∈ T, these statements are true

dE

dx
=

d

dan

(

d

dan−1

(

· · ·
d

da2

(

dE

da1

)

· · ·

))

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dFdx ∈ Q and a ∈ T, we set δ
(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dRd0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)
∗1+ε

d0 = R, (0+1)
∗1+ε

d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata

construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dRd0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)
∗1+ε

d0 = R, (0+1)
∗1+ε

d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata

construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dRd0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)
∗1+ε

d0 = R, (0+1)
∗1+ε

d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata

construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dRd0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)
∗1+ε

d0 = R, (0+1)
∗1+ε

d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata

construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Exercise

Example : let us have a set of the patterns P= {tis, ti, iti}:

+ Create NFA that searches for P.

+ Create DFA that corresponds to this NFA and minimize it. Draw
the transition graphs of both the automata (DFA and the
minimal DFA) and describe the procedure of minimization.

+ Compare it to the result of the search engine SE.

+ Solve the exercise using the algorithm of direct construction of
DFA (by deriving) and discuss whether the result automata are
isomorphic.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:
a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:
a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:
a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:
a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.
a . b∗ . c

∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.
a . b∗ . c

∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.
a . b∗ . c

∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.
a . b∗ . c

∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Derivation of a regular expression
Characteristics of regular expressions

Derivation of RE by position vector: an example

Example: a.b∗.c, derived by a, b, c.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Part I

Right-to-left search

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search of one pattern

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Boyer-Moore-Horspool algorithm

1: var: TEXT: array[1..T] of char;
2: PATTERN: array[1..P] of char; I,J: integer; FOUND: boolean;
3: FOUND := false; I := P ;
4: while (I ≤ T) and not FOUND do
5: J := 0;
6: while (J < P ) and (PATTERN[P − J] = TEXT[I − J]) do
7: J := J + 1;
8: end while
9: FOUND := (J = P );
10:
11: if not FOUND then
12: I := I + SHIFT(TEXT[I− J], J)
13: end if
14: end while

SHIFT(A,J) = if A does not occur in the not yet compared part of the pattern

then P − J else the smallest 0 ≤ K < P such that PATTERN[P − (J + K)] = A;

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

When is it faster than KMP? When O(T/P )?
The time complexity O(T + P ).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

When is it faster than KMP? When O(T/P )?
The time complexity O(T + P ).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

When is it faster than KMP? When O(T/P )?
The time complexity O(T + P ).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

When is it faster than KMP? When O(T/P )?
The time complexity O(T + P ).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW algorithm

The idea: AC + right-to-left search (BM) [1979]

const LMIN=/the length of the shortest pattern/

var TEXT: array [1..T] of char; I, J: integer;

FOUND: boolean; STATE: TSTATE;

g: array [1..MAXSTATE,1..MAXSYMBOL] of TSTATE;

F: set of TSTATE;

begin

FOUND:=FALSE; STATE:=q0; I:=LMIN; J:=0;

while (I<=T) & not (FOUND) do

begin

if g[STATE, TEXT[I-J]]=fail

then begin I:=I+SHIFT[STATE, TEXT[I-J]];

STATE:=q0; J:=0;

end

else begin STATE:=g[STATE, TEXT[I-J]]; J:=J+1 end

FOUND:=STATE in F

end

end

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Definition: shift[STATE, TEXT[I − J]] = min {A, shift2(STATE)},
where A = max {shift1(STATE), char(TEXT[I − J]) − J − 1}.

The functions are defined this way:
1 char(a) is defined for all the symbols from the alphabet T as the least depth of

a state, to that the CW search engine passes through a symbol a. If the
symbol a is not in any pattern, then char(a) = LMIN + 1, where LMIN is the
length of the shortest pattern. Formally:
char(a) = min

{

LMIN + 1,min{d(q)|w(q) = xa, x ∈ T∗}
}

.

2 Function shift1(q0) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k| k = d(q′) − d(q), where
w(q) is its own suffix w(q′) and a state q′ has higher depth than q}.

3 Function shift2(q0) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k| k = d(q′) − d(q), where w(q) is a
proper suffix w(q′) and q′ is a final state}, B = shift2(q′)| q′ is a predecessor
of q.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Definition: shift[STATE, TEXT[I − J]] = min {A, shift2(STATE)},
where A = max {shift1(STATE), char(TEXT[I − J]) − J − 1}.

The functions are defined this way:
1 char(a) is defined for all the symbols from the alphabet T as the least depth of

a state, to that the CW search engine passes through a symbol a. If the
symbol a is not in any pattern, then char(a) = LMIN + 1, where LMIN is the
length of the shortest pattern. Formally:
char(a) = min

{

LMIN + 1,min{d(q)|w(q) = xa, x ∈ T∗}
}

.

2 Function shift1(q0) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k| k = d(q′) − d(q), where
w(q) is its own suffix w(q′) and a state q′ has higher depth than q}.

3 Function shift2(q0) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k| k = d(q′) − d(q), where w(q) is a
proper suffix w(q′) and q′ is a final state}, B = shift2(q′)| q′ is a predecessor
of q.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Definition: shift[STATE, TEXT[I − J]] = min {A, shift2(STATE)},
where A = max {shift1(STATE), char(TEXT[I − J]) − J − 1}.

The functions are defined this way:
1 char(a) is defined for all the symbols from the alphabet T as the least depth of

a state, to that the CW search engine passes through a symbol a. If the
symbol a is not in any pattern, then char(a) = LMIN + 1, where LMIN is the
length of the shortest pattern. Formally:
char(a) = min

{

LMIN + 1,min{d(q)|w(q) = xa, x ∈ T∗}
}

.

2 Function shift1(q0) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k| k = d(q′) − d(q), where
w(q) is its own suffix w(q′) and a state q′ has higher depth than q}.

3 Function shift2(q0) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k| k = d(q′) − d(q), where w(q) is a
proper suffix w(q′) and q′ is a final state}, B = shift2(q′)| q′ is a predecessor
of q.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

LMIN = 3,
a b c X

char 1 1 2 4

w(q) shift1 shift2
ε 1 3
a 1 2
b 1 3

aa 3 2
ab 1 2
bc 2 3
ba 1 1

aab 3 2
aba 3 2
bca 2 2
bab 3 1
aabc 3 2
babc 3 1

aabca 3 2
babca 3 1
babcc 3 1

aabcac 3 2

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

LMIN = 3,
a b c X

char 1 1 2 4

w(q) shift1 shift2
ε 1 3
a 1 2
b 1 3

aa 3 2
ab 1 2
bc 2 3
ba 1 1

aab 3 2
aba 3 2
bca 2 2
bab 3 1
aabc 3 2
babc 3 1

aabca 3 2
babca 3 1
babcc 3 1

aabcac 3 2

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

CW—the function shift

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

LMIN = 3,
a b c X

char 1 1 2 4

w(q) shift1 shift2
ε 1 3
a 1 2
b 1 3

aa 3 2
ab 1 2
bc 2 3
ba 1 1

aab 3 2
aba 3 2
bca 2 2
bab 3 1
aabc 3 2
babc 3 1

aabca 3 2
babca 3 1
babcc 3 1

aabcac 3 2

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Outline (week four)

À Right-to-left search of an infinite set of patterns

Á Two-way jump automaton – a generalization of the so far learned
left-to-right and right-to-left algorithms.

Â Hierarchy of the exact search engines.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Outline (week four)

À Right-to-left search of an infinite set of patterns

Á Two-way jump automaton – a generalization of the so far learned
left-to-right and right-to-left algorithms.

Â Hierarchy of the exact search engines.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Outline (week four)

À Right-to-left search of an infinite set of patterns

Á Two-way jump automaton – a generalization of the so far learned
left-to-right and right-to-left algorithms.

Â Hierarchy of the exact search engines.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Part II

Search for an infinite set of patterns

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Right-to-left search for an inf. set of patterns

Generalization of SE

Search engine hierarchy

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Right-to-left search for an inf. set of patterns

Definition: reversed regular expression is created by reversion of all
concatenation in the expression.

Example: reversed RE for E = bc(a + a∗bc) is ER = (a + cba∗)cb:

✒✑
✓✏
✍✌
✎☞
4 ✛b

✒✑
✓✏
3

✑
✑✑✰
c ♠✒✑

✓✏

✕ a

2

❳❳❳❳❳❳②

c ✒✑
✓✏
5

✛ b
✒✑
✓✏
1

◗◗❦c

✏✏✏✏✏✮ a
✒✑
✓✏
0

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Right-to-left search for an inf. set of patterns (cont.)

Bucziłowski: we search for E such that we create ER and we use it for
determination of shift[STATE, SYMBOL] for each state and undefined
transition analogically as in the CW algorithm:

a b c X
0 1 3 ·
1 1 1 2 (3!) ·
2 1
3 1 1 1
4 1 1 1 1
5 1 1 1
· · ·

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton I

Definition: 2DFAS is M = (Q, Σ, δ, q0, k, ↑, F), where
Q a set of states
Σ an input alphabet
δ a projection. Q × Σ→ Q × {−1,1, . . . , k}
q0 ∈ Q an initial state
k ∈ N max. length of a jump
↑6∈ Q ∪ Σ a jump symbol
F ⊆ Q a set of final states

Definition: a configuration of 2DFAS is a string of Σ∗QΣ∗ ↑ Σ∗.
Definition: we denote a set of configurations 2DFAS M as K(M).

Example: a1a2 . . . ai−1 q ai . . . aj−1 ↑ aj . . . an ∈ K(M) :

q

čtecı́ hlava značka skoku

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton II

Definition: a transition of 2DFAS is a relation ⊢ ⊆ K(M) × K(M) such that

+ a1 . . . ai−1ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . ai−1 q
′ aiai+1 . . . aj−1 ↑

aj . . . an for i > 1, δ(q, ai+1) = (q′,−1) (right-to-left comparison),

+ a1 . . . ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . aiai+1 . . . at−1 q
′ ↑ at . . . an for

δ(q, ai+1) = (q′, m), m ≥ 1, t = min{j + m, n + 1} (right-to-left
jump),

+ a1 . . . aj q aj+1 . . . ai−1 ↑ ai . . . an ⊢ a1 . . . ajaj+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai) = (q′, m), m ≥ 1, t = min{i + m, n + 1} (left-to-right
jump), .

+ a1 . . . aj−1 q aj . . . ai−1 ↑ aiai+1 . . . an ⊢ a1 . . . aj−1 q′ aj . . . ai−1ai ↑
ai+1 . . . an for i > 1, δ(q, ai) = (q′,1) (left-to-right comparison).

(Left-to-right rules are for the left-to-right engines and vice versa.)

Definition: ⊢k, ⊢∗ analogically as in the SE.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton II

Definition: a transition of 2DFAS is a relation ⊢ ⊆ K(M) × K(M) such that

+ a1 . . . ai−1ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . ai−1 q
′ aiai+1 . . . aj−1 ↑

aj . . . an for i > 1, δ(q, ai+1) = (q′,−1) (right-to-left comparison),

+ a1 . . . ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . aiai+1 . . . at−1 q
′ ↑ at . . . an for

δ(q, ai+1) = (q′, m), m ≥ 1, t = min{j + m, n + 1} (right-to-left
jump),

+ a1 . . . aj q aj+1 . . . ai−1 ↑ ai . . . an ⊢ a1 . . . ajaj+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai) = (q′, m), m ≥ 1, t = min{i + m, n + 1} (left-to-right
jump), .

+ a1 . . . aj−1 q aj . . . ai−1 ↑ aiai+1 . . . an ⊢ a1 . . . aj−1 q′ aj . . . ai−1ai ↑
ai+1 . . . an for i > 1, δ(q, ai) = (q′,1) (left-to-right comparison).

(Left-to-right rules are for the left-to-right engines and vice versa.)

Definition: ⊢k, ⊢∗ analogically as in the SE.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton II

Definition: a transition of 2DFAS is a relation ⊢ ⊆ K(M) × K(M) such that

+ a1 . . . ai−1ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . ai−1 q
′ aiai+1 . . . aj−1 ↑

aj . . . an for i > 1, δ(q, ai+1) = (q′,−1) (right-to-left comparison),

+ a1 . . . ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . aiai+1 . . . at−1 q
′ ↑ at . . . an for

δ(q, ai+1) = (q′, m), m ≥ 1, t = min{j + m, n + 1} (right-to-left
jump),

+ a1 . . . aj q aj+1 . . . ai−1 ↑ ai . . . an ⊢ a1 . . . ajaj+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai) = (q′, m), m ≥ 1, t = min{i + m, n + 1} (left-to-right
jump), .

+ a1 . . . aj−1 q aj . . . ai−1 ↑ aiai+1 . . . an ⊢ a1 . . . aj−1 q′ aj . . . ai−1ai ↑
ai+1 . . . an for i > 1, δ(q, ai) = (q′,1) (left-to-right comparison).

(Left-to-right rules are for the left-to-right engines and vice versa.)

Definition: ⊢k, ⊢∗ analogically as in the SE.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Two-way jump automaton II

Definition: a transition of 2DFAS is a relation ⊢ ⊆ K(M) × K(M) such that

+ a1 . . . ai−1ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . ai−1 q
′ aiai+1 . . . aj−1 ↑

aj . . . an for i > 1, δ(q, ai+1) = (q′,−1) (right-to-left comparison),

+ a1 . . . ai q ai+1 . . . aj−1 ↑ aj . . . an ⊢ a1 . . . aiai+1 . . . at−1 q
′ ↑ at . . . an for

δ(q, ai+1) = (q′, m), m ≥ 1, t = min{j + m, n + 1} (right-to-left
jump),

+ a1 . . . aj q aj+1 . . . ai−1 ↑ ai . . . an ⊢ a1 . . . ajaj+1 . . . at−1 q′ ↑ at . . . an for
δ(q, ai) = (q′, m), m ≥ 1, t = min{i + m, n + 1} (left-to-right
jump), .

+ a1 . . . aj−1 q aj . . . ai−1 ↑ aiai+1 . . . an ⊢ a1 . . . aj−1 q′ aj . . . ai−1ai ↑
ai+1 . . . an for i > 1, δ(q, ai) = (q′,1) (left-to-right comparison).

(Left-to-right rules are for the left-to-right engines and vice versa.)

Definition: ⊢k, ⊢∗ analogically as in the SE.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Search engine hierarchy

Definition: the language accepted by the two-way automaton
M = (Q, Σ, δ, q0, k, ↑, F) is a set L(M) = {w ∈ Σ

∗ : q0 ↑ T ⊢
∗ w′fxw ↑,

where f ∈ F, w′ ∈ Σ
∗, x ∈ Σ}.

Theorem: L(M) for 2DKAS M is regular.
Example: formulate a right-to-left search of the pattern BANANA in
the text I-WANT-TO-FLAVOUR-NATURAL-BANANAS using BM as
2DFAS and trace the search as a sequence of configurations of the
2DFAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Search engine hierarchy

Definition: the language accepted by the two-way automaton
M = (Q, Σ, δ, q0, k, ↑, F) is a set L(M) = {w ∈ Σ

∗ : q0 ↑ T ⊢
∗ w′fxw ↑,

where f ∈ F, w′ ∈ Σ
∗, x ∈ Σ}.

Theorem: L(M) for 2DKAS M is regular.
Example: formulate a right-to-left search of the pattern BANANA in
the text I-WANT-TO-FLAVOUR-NATURAL-BANANAS using BM as
2DFAS and trace the search as a sequence of configurations of the
2DFAS.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Exercise

Let us have a regular expression R = 1(0 + 1∗02) over the alphabet
A = {0,1,2}.

+ Construct a right-to-left DFA R (Bucziłowski) and compute the
failure function. Draw the transition graph of this automaton
including the failure function visualization.

+ Express the resulting automaton as 2DFAS and trace searching
in the text 11201012102.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Summary of the exact search

2DFAS
ւ ց

DFA BUC ∞
↓ ↓
AC CW k
↓ ↓

KMP BM 1
→ ← direction — # of patterns.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Outline (week four)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.

Á Classification of search: 6D space of search problems.

Â Examples of creation of search engines.

� Completion of the chapter about searching without text
preprocessing.

Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Outline (week four)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.

Á Classification of search: 6D space of search problems.

Â Examples of creation of search engines.

� Completion of the chapter about searching without text
preprocessing.

Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Outline (week four)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.

Á Classification of search: 6D space of search problems.

Â Examples of creation of search engines.

� Completion of the chapter about searching without text
preprocessing.

Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Outline (week four)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.

Á Classification of search: 6D space of search problems.

Â Examples of creation of search engines.

� Completion of the chapter about searching without text
preprocessing.

Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search for an inf. set of patterns
Generalization of SE

Search engine hierarchy

Outline (week four)

À Fuzzy (proximity) search. Metrics for measurement of distance
of strings.

Á Classification of search: 6D space of search problems.

Â Examples of creation of search engines.

� Completion of the chapter about searching without text
preprocessing.

Ä Indexing basics.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Part III

Proximity search

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Fuzzy search: metrics

Classification of search problems

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics (for proximity search)

How to measure (metrics) the similarity of strings?

Definition: we call d : S × S → R metrics if the following is true:

1 d(x, y) ≥ 0

2 d(x, x) = 0

3 d(x, y) = d(y, x) (symmetry)

4 d(x, y) = 0⇒ x = y (identity of indiscernibles)

5 d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

We call the values of the function d (distance).

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics (for proximity search)

How to measure (metrics) the similarity of strings?

Definition: we call d : S × S → R metrics if the following is true:

1 d(x, y) ≥ 0

2 d(x, x) = 0

3 d(x, y) = d(y, x) (symmetry)

4 d(x, y) = 0⇒ x = y (identity of indiscernibles)

5 d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

We call the values of the function d (distance).

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics for proximity search

Definition: let us have strings X and Y over the alphabet Σ. The
minimal number of editing operation for transformation X to Y is

+ Hamming distance, R-distance, when we allow just the
operation Replace,

+ Levenshtein distance, DIR-distance, when we allow the
operations Delete, Insert and Replace,

+ Generalized Levenshtein distance, DIRT-distance, when we
allow the operations Delete, Insert, Replace and Transpose.
Transposition is possible at the neighbouring characters only.

They are metrics, Hamming must be performed over strings of the
same length, Levenshtein can be done over the different lengths.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics for proximity search

Definition: let us have strings X and Y over the alphabet Σ. The
minimal number of editing operation for transformation X to Y is

+ Hamming distance, R-distance, when we allow just the
operation Replace,

+ Levenshtein distance, DIR-distance, when we allow the
operations Delete, Insert and Replace,

+ Generalized Levenshtein distance, DIRT-distance, when we
allow the operations Delete, Insert, Replace and Transpose.
Transposition is possible at the neighbouring characters only.

They are metrics, Hamming must be performed over strings of the
same length, Levenshtein can be done over the different lengths.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics for proximity search

Definition: let us have strings X and Y over the alphabet Σ. The
minimal number of editing operation for transformation X to Y is

+ Hamming distance, R-distance, when we allow just the
operation Replace,

+ Levenshtein distance, DIR-distance, when we allow the
operations Delete, Insert and Replace,

+ Generalized Levenshtein distance, DIRT-distance, when we
allow the operations Delete, Insert, Replace and Transpose.
Transposition is possible at the neighbouring characters only.

They are metrics, Hamming must be performed over strings of the
same length, Levenshtein can be done over the different lengths.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Metrics for proximity search

Definition: let us have strings X and Y over the alphabet Σ. The
minimal number of editing operation for transformation X to Y is

+ Hamming distance, R-distance, when we allow just the
operation Replace,

+ Levenshtein distance, DIR-distance, when we allow the
operations Delete, Insert and Replace,

+ Generalized Levenshtein distance, DIRT-distance, when we
allow the operations Delete, Insert, Replace and Transpose.
Transposition is possible at the neighbouring characters only.

They are metrics, Hamming must be performed over strings of the
same length, Levenshtein can be done over the different lengths.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Proximity search—examples

Example: Find such an example of strings X and Y , that
simultaneously holds R(X, Y) = 5, DIR(X, Y) = 5, and DIRT(X, Y) = 5,
or prove the non-existence of such strings.

Example: find such an example of strings X and Y , that holds
simultaneously R(X, Y) = 5, DIR(X, Y) = 4, and DIRT(X, Y) = 3, or
prove the non-existence of such strings.

Example: find such an example of strings X and Y of the length 2n,
n ∈ N, that R(X, Y) = 2n and a) DIR(X, Y) = 2; b) DIRT(X, Y) = ⌈ n2⌉

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Proximity search—examples

Example: Find such an example of strings X and Y , that
simultaneously holds R(X, Y) = 5, DIR(X, Y) = 5, and DIRT(X, Y) = 5,
or prove the non-existence of such strings.

Example: find such an example of strings X and Y , that holds
simultaneously R(X, Y) = 5, DIR(X, Y) = 4, and DIRT(X, Y) = 3, or
prove the non-existence of such strings.

Example: find such an example of strings X and Y of the length 2n,
n ∈ N, that R(X, Y) = 2n and a) DIR(X, Y) = 2; b) DIRT(X, Y) = ⌈ n2⌉

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Proximity search—examples

Example: Find such an example of strings X and Y , that
simultaneously holds R(X, Y) = 5, DIR(X, Y) = 5, and DIRT(X, Y) = 5,
or prove the non-existence of such strings.

Example: find such an example of strings X and Y , that holds
simultaneously R(X, Y) = 5, DIR(X, Y) = 4, and DIRT(X, Y) = 3, or
prove the non-existence of such strings.

Example: find such an example of strings X and Y of the length 2n,
n ∈ N, that R(X, Y) = 2n and a) DIR(X, Y) = 2; b) DIRT(X, Y) = ⌈ n2⌉

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems



� yA|

Fuzzy search: metrics
Classification of search problems

Classification of search problems

Definition: Let T = t1t2 . . . tn and pattern P = p1p2 . . . pm. For
example, we can ask:

1 is P a substring of T?

2 is P a subsequence of T?

3 is a substring or a subsequence P in T?

4 is P in T such that D(P , X) ≤ k for k < m, where X = ti . . . tj is a
part of T (D is R, DIR or DIRT)?

5 is a string P containing don’t care symbol ∅ (*) in T?

6 is a sequence of patterns P in T?

Furthermore, the variants for more patterns, plus instances of the
search problem yes/no, the first occurrence, all the overlapping
occurrences, all the also non-overlapping occurrences.

Petr Sojka PV030 Textual Information Systems


	Derivation of a regular expression
	Characteristics of regular expressions
	Right-to-left search of one pattern
	Right-to-left search for an inf. set of patterns
	Generalization of SE
	Search engine hierarchy
	Fuzzy search: metrics
	Classification of search problems

