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Search engine (finite automaton)
Construction of the KMP engine

Outline (week three)

À Summary of the previous lecture, searching with SE.

Á Universal search algorithm.

Â Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

� Left-to-right search of infinite patterns algorithms.

Ä Regular expressions (RE).

Å Direct construction of (N)FA for given RE.
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Universal search algorithm,

that uses transition table g derived from the searched pattern,
(g relates to the transition function δ of FA):

var i,T:integer; found: boolean;

text: array[1..T] of char; state,q0: TSTATE;

g:array[1..maxstate,1..maxsymb] of TSTATE;

F: set of TSTATE;...

begin

found:= FALSE; state:= q0; i:=0;

while (i <= T) and not found do

begin

i:=i+1; state:= g[state,text[i]];

found:= state in F;

end;

end;

How to transform pattern into g?

Petr Sojka PV030 Textual Information Systems



� yA|

Search engine (finite automaton)
Construction of the KMP engine

Search engine (SE) for left-to-right search

+ SE for left-to-right search A = (Q, T, g, h, q0, F)

Q is a finite set of states.
T is a finite input alphabet.
g: Q× T → Q∪{

✿✿✿

fail} is a forward state-transition function.
h: (Q − q0) → Q is a backward state-transition function.
q0 is an initial state.
F is a set of final states.

+ A depth of the state q: d(q) ∈ N0 is a length of the shortest
forward sequence of the state transitions from q0 to q.
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Search engine (cont.)

+ Characteristics g, h:

g(q0, a) 6=
✿✿✿

fail for ∀a ∈ T (there is no backward transition in
the initial state).
If h(q) = p, then d(p) < d(q) (the number of the backward
transitions is restricted from the top by a multiple of the
maximum depth of the state c and the sum of the forward
transitions V). So the speed of searching is linear in
relation to V .
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SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.
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Searching with SE

During the forward transition, a single input symbol is read and the
engine switches to the next state p. However, if g(q, a) =

✿✿✿

fail, the
backward transition is executed without reading an input symbol.
S = O(T) (we measure the number of SE transitions).
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Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page ?? by the below mentioned algorithm.
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Finite automata for searching

Part I

Search of a finite set of patterns
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Aho-Corasick algorithm

Finite automata for searching

Search of a set of patterns

SE for left-to-right search of a set of patterns p = {v1, v2, . . . , vP}.

Instead of repeated search of text for every pattern, there is only
“one” pass (FA).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm

var text: array[1..T] of char;

i: integer; found: boolean; state: tstate;

g: array[1..maxstate,1..maxsymbol] of tstate;

h: array[1..maxstate] of tstate; F: set of tstate;

found:=false; state:=q0; i:=0;

while (i<=T) and not found do

begin i:=i+1;

while g[state,text[i]]=fail do state:=h[state];

state:=g[state,text[i]]; found:=state in F

end
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Finite automata for searching

Common SE algorithm (cont.)

Construction of the state-transition functions h, g?

How about for P patterns? The main idea?

Aho, Corasick, 1975 (AC search engine).
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Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.
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Finite automata for searching

The failure function h (AC II)

Construction of h for AC SE for a set of patterns p = {v1, v2, . . . , vP}

At first, we define the failure function f inductively relative to the
depth of the states this way:

À For ∀q of the depth 1, f(q) = q0.

Á Let us assume that f is defined for each state of the depth d
and lesser. The variable qD denotes the state of the depth d and
g(qD, a) = q′. Then we compute f(q′) as follows:

q := f(qD);
while g(q, a) =

✿✿✿

fail do q := f(q);
f(q′) := g(q, a).
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Finite automata for searching

The failure function h (AC II, cont.)

The cycle terminates, since g(q0, a) 6=
✿✿✿

fail.

If the states q, r represent prefixes u, v of some of the patterns
from p, then f(q) = r ⇔ v is the longest proper suffix u.
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The failure function h (AC III)

1

2 r 4

5 6 q 8
a a

b
f(qD)

f(f(qD)) f(q′) qD q′
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Finite automata for searching

Construction of h for AC SE for a set of patterns

p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).
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in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).
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Construction of h for AC SE (cont.)

1

2 3

4 5 6
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h(q)

q
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Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.
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Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.

Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.

Â An initial configuration M is (q0, w), where w is the entire text
to be searched.

� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.
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Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.

+ Transition M: is defined by a state and an input symbol; relation
⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.

+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.

+ L(M) = {w ∈ T∗ : (q0, w) ⊢
∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the

language accepted by FA M.

+ time complexity O(T) (we measure the number of transitions of
FA M).
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Nondeterministic FA

Definition: Nondeterministic finite automaton (NFA) is
M = (K, T, δ, q0, F), where K, T, q0, F are the same as those in the
deterministic version of FA, but δ : K × T → 2K δ(q, a) is now a set of
states.

Definition: ⊢∈ (K × T∗) × (K × T∗) transition: if p ∈ δ(q, a), then
(q, aw) ⊢ (p, w) for ∀w ∈ T∗.

Definition: a final state, L(M) analogically as in DFA.
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Construction of SE (DFA) from NFA

Theorem: for every nondeterministic finite automaton M=(K,T,δ,q0,F),
we can build deterministic finite automaton M′=(K′,T,δ′,q′0 , F

′) such
that L(M) = L(M′).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.
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Construction of g for SE

Construction g′ for SE for a set of patterns p = {v1, v2, . . . , vP}

À We create NFA M:

An initial state q0.
For ∀a ∈ T, we define g(q0, a) = q0.
For ∀i ∈ {1, . . . , P}, we define g(q, bj+1) = q′, where q′ is
equivalent to the prefix b1b2 . . . bj+1 of the pattern v

i.
The state corresponding to the entire pattern is the final
one.

Á . . . and its corresponding DFA M′ with g′.
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Part II

Search for an infinite set of patterns
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Regular expression (RE)

Definition: Regular expression E over the alphabet A:

À ε,0 are RE and for ∀a ∈ A is a RE.

Á If x, y are RE over A, then:

(x + y) is RE (union);
(x.y) is RE (concatenation);
(x)∗ is RE (iteration).

A convention about priority of regular operations:
union < concatenation < iteration.
Definition: Thereafter, we consider as a (generalized) regular

expression even those terms that do not contain, with regard to this
convention, the unnecessary parentheses.
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Characteristics of regular expressions

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).
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Characteristics of regular expressions

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗
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Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Outline (week three)

À Summary of the previous lecture.

Á Regular expressions, value of RE, characteristics.

Â Derivation of regular expressions.

� Direct construction of equivalent DFA for given RE by derivation.

Ä Derivation of regular expressions by position vector.

Å Right-to-left search (BMH, CW, BUC).
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Characteristics of regular expressions

Similarity of regular expressions

Theorem: the axiomatization of RE is complete and consistent.

Definition: regular expressions are termed as similar, when they can
be mutually conversed using axioms A1 to A11.

Theorem: similar regular expressions have the same value.
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Characteristics of regular expressions

Length of a regular expression

Definition: the length d(E) of the regular expression E:

À If E consists of one symbol, then d(E) = 1.

Á d(V1 + V2) = d(V1) + d(V2) + 1.

Â d(V1.V2) = d(V1) + d(V2) + 1.

� d(V∗) = d(V) + 1.

Ä d((V)) = d(V) + 2.

Note: the length corresponds to the syntax of a regular expression.
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Derivation of a regular expression

Characteristics of regular expressions

Construction of NFA for given RE

Definition: a generalized NFA allows ε-transitions (transitions
without reading of an input symbol).

Theorem: for every RE E, we can create FA M such that h(E) = L(M).
Proof: by structural induction relative to the RE E:
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Characteristics of regular expressions

Construction of NFA for given RE (a proof)

À E = a
aq0

Á E = E∗1 M1 automaton for E1 (h(E1) = L(M1))

ε

ε

ε

ε

M1
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Characteristics of regular expressions

Construction of NFA for given RE (cont. of a proof)

Â E = E1 · E2

M2M1

� E = E1 + E2 M1, M2 automata for E1, E2 (h(E1) = L(M1),

h(E2) = L(M2))

ε

ε ε

εM1
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Characteristics of regular expressions

Construction of NFA for given RE (cont.)

+ No more than two edges come out of every state.

+ No edges come out of the final states.

+ The number of the states M ≤ 2 · d(E).

+ The simulation of automaton M is performed in O(d(E)T) time
and in O(d(E)) space.
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Characteristics of regular expressions

NFA simulation

For the following methods of NFA simulation, we must remove the
ε-transitions. We can achieve it with the well-known procedure:
1)

q q′ε
a

b
b

b

a
a

q q′

2)
q′q ε q′q
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Characteristics of regular expressions

NFA simulation (cont.)

We represent a state with a Boolean vector and we pass through all
the paths at the same time. There are two approaches:

+ The general algorithm that use a transition table.

+ Implementation of the automaton in a form of (generated)
program for the particular automaton.
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Characteristics of regular expressions

Direct construction of (N)FA for given RE

Let E is a RE over the alphabet T. Then we create FA
M = (K, T, δ, q0, F) such that h(E) = L(M) this way:
À We assign different natural numbers to all the occurrences of the symbols of T

in the expression E. We get E′.

Á A set of starting symbols Z = {xi : a string of h(E
′) can start with the

symbol xi, xi 6= ε}.

Â A set of neighbours P = {xiyj : symbols xi 6= ε 6= yj can be next to each other in
a string of h(E′)}.

� A set of ending symbols F = {xi : a string of h(E′) can end with the symbol
xi 6= ε}.

Ä A set of states K = {q0} ∪ Z ∪ {yj : xiyj ∈ P}.

Å A transition function δ:

δ(q0, x) contains xi for,∀xi ∈ Z that originate from numbering of x.
δ(xi, y) contains yj for,∀xiyj ∈ P such that yj originates from numbering
of y.

Æ F is a set of final states, a state that corresponds to E is q0.
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Characteristics of regular expressions

Direct construction of (N)FA for given RE (cont.)

Example 1: R = ab∗a + ac + b∗ab∗.

Example 2: R = ab∗ + ac + b∗a.
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Derivation of a regular expression

Definition: derivation dE
dx of the regular expression E by a

string x ∈ T∗:

À

dE

dε
= E.

Á For a ∈ T, these statements are true:
dε

da
= 0

db

da
=

{

0 if a 6= b
ε if a = b

d(E + F)

da
=

dE

da
+

dF

da

d(E.F)

da
=







dE

da
· F +

dF

da
if ε ∈ h(E)

dE

da
· F otherwise

d(E∗)

da
=

dE

da
· E∗
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Derivation of a regular expression (cont.)

Â For x = a1a2 . . . an, ai ∈ T, these statements are true

dE

dx
=

d

dan

(

d

dan−1

(

· · ·
d

da2

(

dE

da1

)

· · ·

))

.
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Characteristics of regular expressions

Example: Derive E = fi + fi∗ + f∗ifi by i and f.
Example: Derive (o∗sle)∗cno by o, s, l, c and osle.

Theorem: h
(

dE
dx

)

= {y : xy ∈ h(E)}.
Example: Prove the above-mentioned statement. Instruction: use
structural induction relative to E and x.

Definition: Regular expressions x, y are similar if one of them can
be transformed to the other one with axioms of the axiomatic theory
of RE (Salomaa).

Example: Is there a RE similar to E = fi + fi∗ + f∗ifi that has length 7,
15?
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Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.
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Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(
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dx , a
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= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently
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5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T, δ, q0, F) such that h(E) = L(M).

1 Let us state Q = {E}, Q0 = {E}, i := 1.

2 Let us create the derivation of all the expressions of Qi−1 by all
the symbols of T. Into Qi, we insert all the expressions created by
the derivation of the expressions of Qi−1 that are not similar to
the expressions of Q.

3 If Qi 6= ∅, we insert Qi into Q, set i := i + 1 a move to the step 2.

4 For ∀dF
dx ∈ Q and a ∈ T, we set δ

(

dF
dx , a

)

= dF
dx′ , in case that the

expression dF
dx′ is similar to the expression

dF
d xa . (Concurrently

dF
dx′ ∈ Q.)

5 The set F =
{

dF
dx ∈ Q : ε ∈ h

(

dF
dx

)}

.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Example: RE= R = (0 + 1)∗1.
Q = Q0 = {(0 + 1)∗1}, i = 1
Q1 = {dR

d0 = R, dR1 } = {(0 + 1)∗1 + ε}

Q2 = { (0+1)∗1+ε
d0 = R, (0+1)

∗1+ε
d1 = (0 + 1)∗1 + ε} = ∅

Example: RE= (10)∗(00)∗1.

For more, see Watson, B. W.: A taxonomy of finite automata

construction algorithms, Computing Science Note 93/43, Eindhoven
University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html
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Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Exercise

Example : let us have a set of the patterns P= {tis, ti, iti}:

+ Create NFA that searches for P.

+ Create DFA that corresponds to this NFA and minimize it. Draw
the transition graphs of both the automata (DFA and the
minimal DFA) and describe the procedure of minimization.

+ Compare it to the result of the search engine SE.

+ Solve the exercise using the algorithm of direct construction of
DFA (by deriving) and discuss whether the result automata are
isomorphic.
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Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:

a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:

a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:

a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector I

Definition: Position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning of
the tail of the string that is a part of the value of the given RE.

Example: let us have a regular expression:
a . b∗ . c (1)

To denote the position, we are going to use the wedge symbol ∧. So the
expression (1) is represented as:

a . b∗ . c
∧ (2)

By deriving a denoted expression, we get a new denoted regular expression.
The basic rule of derivation is this:

1 If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:
a . b∗ . c

∧ (3a)
Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector II

2 Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:
a . b∗ . c

∧ ∧ (3b)

Now, by deriving by the operand b of the expression (3b), we get:
a . b∗ . c

∧ (4a)

3 Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.

a . b∗ . c
∧ ∧ (4b)

By deriving the expression (4b) by the operand c, we get:
a . b∗ . c

∧ (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression ε.
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Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector III

+ For every syntactic construction, we make a list of the starting positions at
the initials of the members.

+ If a construction symbol equals to the symbol we use for deriving, and it is
located in the denoted position, then we move the denotation in front of the
following position.

+ If an iteration operator is located after the construction, and the denotation
is at the end of the construction, then we append the list of the starting
positions, which belong to this construction, to the resulting list.

+ If the denotation is located before a construction, then we append the list of
the starting positions of this construction to the resulting list.

+ If the denotation is before the construction which generates also an empty
string, then we append the list of the starting positions of the following
construction to the resulting list.

+ When we want to denote a construction inside parentheses, we must denote all
the initials of the members inside the parentheses.
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Left-to-right methods
Derivation of a regular expression

Characteristics of regular expressions

Derivation of RE by position vector: an example

Example: a.b∗.c, derived by a, b, c.

Petr Sojka PV030 Textual Information Systems



� yA|

Right-to-left search of one pattern

Part III

Right-to-left search
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Right-to-left search of one pattern

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

+ one pattern—Boyer-Moore (BM, 1977), Boyer-Moore-Horspool
(BMH, 1980), Boyer-Moore-Horspool-Sunday (BMHS, 1990)

+ n patterns—Commentz-Walter (CW, 1979)

+ an infinite set of patterns: reversed regular
expression—Bucziłowski (BUC)
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Right-to-left search of one pattern

Boyer-Moore-Horspool algorithm

1: var: TEXT: array[1..T] of char;
2: PATTERN: array[1..P] of char; I,J: integer; FOUND: boolean;
3: FOUND := false; I := P ;
4: while (I ≤ T) and not FOUND do
5: J := 0;
6: while (J < P ) and (PATTERN[P − J] = TEXT[I − J]) do
7: J := J + 1;
8: end while
9: FOUND := (J = P );
10:
11: if not FOUND then
12: I := I + SHIFT(TEXT[I− J], J)
13: end if
14: end while

SHIFT(A,J) = if A does not occur in the not yet compared part of the pattern

then P − J else the smallest 0 ≤ K < P such that PATTERN[P − (J + K)] = A;
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Right-to-left search of one pattern

When is it faster than KMP? When O(T/P )?
The time complexity O(T + P ).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.
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Right-to-left search of one pattern

CW algorithm

The idea: AC + right-to-left search (BM) [1979]

const LMIN=/the length of the shortest pattern/

var TEXT: array [1..T] of char; I, J: integer;

FOUND: boolean; STATE: TSTATE;

g: array [1..MAXSTATE,1..MAXSYMBOL] of TSTATE;

F: set of TSTATE;

begin

FOUND:=FALSE; STATE:=q0; I:=LMIN; J:=0;

while (I<=T) & not (FOUND) do

begin

if g[STATE, TEXT[I-J]]=fail

then begin I:=I+SHIFT[STATE, TEXT[I-J]];

STATE:=q0; J:=0;

end

else begin STATE:=g[STATE, TEXT[I-J]]; J:=J+1 end

FOUND:=STATE in F

end

end
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Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {v1, v2, . . . , vk}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the evaluation of
the individual states w:

1 An initial state q0; w(q0) = ε.

2 Each state of the search engine corresponds to the suffix
bmbm+1 . . . bn of a pattern vi of the set P . Let us define
g(q, a) = q′, where q′ corresponds to the suffix abmbm+1 . . . bn of
a pattern vi: w(q) = bn . . . bm+1bm; w(q

′) = w(q)a.

3 g(q, a) =
✿✿✿

fail for every q and a, for which g(q, a) was not defined in
the step 2.

4 Each state, that correspond to the full pattern, is a final one.
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Right-to-left search of one pattern

CW—the function shift

Definition: shift[STATE, TEXT[I − J]] = min {A, shift2(STATE)},
where A = max {shift1(STATE), char(TEXT[I − J]) − J − 1}.

The functions are defined this way:

1 char(a) is defined for all the symbols from the alphabet T as the least depth of
a state, to that the CW search engine passes through a symbol a. If the
symbol a is not in any pattern, then char(a) = LMIN + 1, where LMIN is the
length of the shortest pattern. Formally:
char(a) = min

{

LMIN + 1,min{d(q)|w(q) = xa, x ∈ T∗}
}

.

2 Function shift1(q0) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k| k = d(q′) − d(q), where
w(q) is its own suffix w(q′) and a state q′ has higher depth than q}.

3 Function shift2(q0) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k| k = d(q′) − d(q), where w(q) is a
proper suffix w(q′) and q′ is a final state}, B = shift2(q′)| q′ is a predecessor
of q.
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Right-to-left search of one pattern

CW—the function shift

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

LMIN = 3,
a b c X

char 1 1 2 4

w(q) shift1 shift2
ε 1 3
a 1 2
b 1 3

aa 3 2
ab 1 2
bc 2 3
ba 1 1

aab 3 2
aba 3 2
bca 2 2
bab 3 1
aabc 3 2
babc 3 1

aabca 3 2
babca 3 1
babcc 3 1

aabcac 3 2
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