
� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

PV030 Textual Information Systems

Petr Sojka

Faculty of Informatics
Masaryk University, Brno

Spring 2013

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Outline (week two)

À Watson

Á Exact search methods I (without pattern preprocessing) –
completion.

Â Exact search methods II (with pattern preprocessing, left to
right): KMP (animation), Rabin-Karp, AC.

� Search with an automaton.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Outline (week two)

À Watson

Á Exact search methods I (without pattern preprocessing) –
completion.

Â Exact search methods II (with pattern preprocessing, left to
right): KMP (animation), Rabin-Karp, AC.

� Search with an automaton.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Outline (week two)

À Watson

Á Exact search methods I (without pattern preprocessing) –
completion.

Â Exact search methods II (with pattern preprocessing, left to
right): KMP (animation), Rabin-Karp, AC.

� Search with an automaton.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Evaluation of questionnaire

À Yes: syllabus suits expectations; positively is awaited dissect of
Google; indexing and search; examples.

Á No: too much theory, deep digestion of algorithms.

Â Examples.

� This year: further enrichment of information retrieval part
(Google), textual (mathematical) digital libraries and languages
enhancements of TIS (on the example of Watson).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Evaluation of questionnaire

À Yes: syllabus suits expectations; positively is awaited dissect of
Google; indexing and search; examples.

Á No: too much theory, deep digestion of algorithms.

Â Examples.

� This year: further enrichment of information retrieval part
(Google), textual (mathematical) digital libraries and languages
enhancements of TIS (on the example of Watson).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Evaluation of questionnaire

À Yes: syllabus suits expectations; positively is awaited dissect of
Google; indexing and search; examples.

Á No: too much theory, deep digestion of algorithms.

Â Examples.

� This year: further enrichment of information retrieval part
(Google), textual (mathematical) digital libraries and languages
enhancements of TIS (on the example of Watson).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

II – Exact search with query preprocessing

Karp-Rabin search algorithm

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Motivation

À Search in text editor (Vim, Emacs), in the source code of a web
page.

Á Data search (biological molecules approximated as sequences of
nucleotides or amino acids).

Â Literature/abstracts search—recherche, corpus linguistics.

The size of available data doubles every 18 months (Moore’s law)→
higher effectiveness of algorithms needed.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right direct search methods

During the preprocessing, structure of the query pattern(s) is
examined and, on that basis, the search engine is built (on-the-fly).

Definition: exact (vs. fuzzy (proximitnı́)) search aims at exact
match (localization of searched pattern(s)).

Definition: left-to-right (LR, sousměrné) (vs. right-to-left (RL,
protisměrné)) search compares query pattern to the text from left
to right (vs. right to left).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right direct search methods

During the preprocessing, structure of the query pattern(s) is
examined and, on that basis, the search engine is built (on-the-fly).

Definition: exact (vs. fuzzy (proximitnı́)) search aims at exact
match (localization of searched pattern(s)).

Definition: left-to-right (LR, sousměrné) (vs. right-to-left (RL,
protisměrné)) search compares query pattern to the text from left
to right (vs. right to left).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right direct search methods

During the preprocessing, structure of the query pattern(s) is
examined and, on that basis, the search engine is built (on-the-fly).

Definition: exact (vs. fuzzy (proximitnı́)) search aims at exact
match (localization of searched pattern(s)).

Definition: left-to-right (LR, sousměrné) (vs. right-to-left (RL,
protisměrné)) search compares query pattern to the text from left
to right (vs. right to left).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right methods

À 1 query pattern (vzorek):

Shift-Or algorithm.
Karp-Rabin algorithm, (KR, 1987).
Knuth-Morris-Pratt algorithm, (KMP, designed (MP) in
1970, published 1977).

Á n patterns: Aho-Corasick algorithm, (AC, 1975).

Â ∞ patterns: construction of a search engine (finite automaton)
for the search of a potentially infinite set of patterns (given as
regular expression).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right methods

À 1 query pattern (vzorek):

Shift-Or algorithm.
Karp-Rabin algorithm, (KR, 1987).
Knuth-Morris-Pratt algorithm, (KMP, designed (MP) in
1970, published 1977).

Á n patterns: Aho-Corasick algorithm, (AC, 1975).

Â ∞ patterns: construction of a search engine (finite automaton)
for the search of a potentially infinite set of patterns (given as
regular expression).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Left-to-right methods

À 1 query pattern (vzorek):

Shift-Or algorithm.
Karp-Rabin algorithm, (KR, 1987).
Knuth-Morris-Pratt algorithm, (KMP, designed (MP) in
1970, published 1977).

Á n patterns: Aho-Corasick algorithm, (AC, 1975).

Â ∞ patterns: construction of a search engine (finite automaton)
for the search of a potentially infinite set of patterns (given as
regular expression).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm

+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.

+ Incidence matrix X (m × c), Xij =

{

0 if vi = aj
1 otherwise.

+ Let matrix column X corresponding to aj is named Aj.

+ At the beginning, we put unitary vector/column into R. In every
algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.

+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm

+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.

+ Incidence matrix X (m × c), Xij =

{

0 if vi = aj
1 otherwise.

+ Let matrix column X corresponding to aj is named Aj.

+ At the beginning, we put unitary vector/column into R. In every
algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.

+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm

+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.

+ Incidence matrix X (m × c), Xij =

{

0 if vi = aj
1 otherwise.

+ Let matrix column X corresponding to aj is named Aj.

+ At the beginning, we put unitary vector/column into R. In every
algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.

+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm

+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.

+ Incidence matrix X (m × c), Xij =

{

0 if vi = aj
1 otherwise.

+ Let matrix column X corresponding to aj is named Aj.

+ At the beginning, we put unitary vector/column into R. In every
algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.

+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm

+ Pattern v1v2 . . . vm over an alphabet Σ = a1, . . . , ac.

+ Incidence matrix X (m × c), Xij =

{

0 if vi = aj
1 otherwise.

+ Let matrix column X corresponding to aj is named Aj.

+ At the beginning, we put unitary vector/column into R. In every
algorithm, step R moves down by one line/position, top-most
position is filled by zero and one character aj is read from input.
Resulted R is combined with Aj by binary disjunction:
R := SHIFT(R) ORAj.

+ Algorithm stops successfully when 0 appears at the
bottom-most position in R.

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Shift-Or algorithm (cont.) – example

Example: V = vzorek over Σ = {e, k, o, r, v, z}.
Cf. [POK, page 31–32].

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search

Quite different approach: usage of hash function. Instead of
matching of pattern with text on every position, we check the match
only when pattern ‘looks similar’ as searched text substring. For
similarity, a hash function is used. It has to be

+ efficiently computable,

+ and it should be good at separating different strings (close to
perfect hashing).

KR search is quadratic at the worst case, but on average O(T + V).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search

Quite different approach: usage of hash function. Instead of
matching of pattern with text on every position, we check the match
only when pattern ‘looks similar’ as searched text substring. For
similarity, a hash function is used. It has to be

+ efficiently computable,

+ and it should be good at separating different strings (close to
perfect hashing).

KR search is quadratic at the worst case, but on average O(T + V).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search

Quite different approach: usage of hash function. Instead of
matching of pattern with text on every position, we check the match
only when pattern ‘looks similar’ as searched text substring. For
similarity, a hash function is used. It has to be

+ efficiently computable,

+ and it should be good at separating different strings (close to
perfect hashing).

KR search is quadratic at the worst case, but on average O(T + V).

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search (cont.)—implementation

#define REHASH(a, b, h) (((h-a*d)<<1+b)

void KR(char *y, char *x, int n, int m) {
int hy, hx, d, i;

/* preprocessing: computation of d = 2m−1 */

d=1; for (i=1; i<m; i++) d<<=1;

hx=hy=0;

for (i=0; i<m; i++)

{ hx=((hx<<1)+x[i]); hy=((hy<<1)+y[i]); }
/* search */

for (i=m; i<=n; i++) {
if (hy==hx) && strncmp(y+i-m,x,m)==0) OUTPUT(i-m);

hy=REHASH(y[i-m], y[i], hy);

} }

Petr Sojka PV030 Textual Information Systems



� yA|

II – Exact search with query preprocessing
Karp-Rabin search algorithm

Karp-Rabin search (cont.)—example

Example: ([HCS, Ch. 6]) V = ing, T = string matching.
Preprocessing: hash = 105 × 22 + 110 × 2 + 103 = 743.
Search:

T= s t r i n g

hash= 806 797 776 743 678

m a t c h i n g

585 443 746 719 766 709 736 743

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Part I

Exact search of one pattern

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

(K)MP

Search engine (finite automaton)

Construction of the KMP engine

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Morris-Pratt algorithm (MP)

Idea: Inefficiency of naı̈ve search are caused by the fact that in the
case of mismatch the pattern is shifted by only one position to the
right and checking starts from the beginning. This does not use the
information that was gained by the inspection of text position that
failed. The idea is to shift as much as possible so that we do not have
to go back in searched text.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

The main part of the (K)MP algorithm

var text: array[1..T] of char; pattern: array[1..V] of char;
i, j: integer; found: boolean;
i := 1; ⊲ text index
j := 1; ⊲ pattern index
while (i ≤ T) and (j ≤ V) do

while (j > 0) and (text[i] 6= pattern[j]) do
j := h[j];

end while

i := i + 1; j := j + 1
end while
found := j > V ; ⊲ if found, it is on the position i − V

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Analysis of (K)MP

+ O(T) complexity plus complexity of preprocessing (creation of the
array h).

+ Animation of tracing of the main part of KMP.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Analysis of (K)MP

+ O(T) complexity plus complexity of preprocessing (creation of the
array h).

+ Animation of tracing of the main part of KMP.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm

+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.

+ May I shift by more than 1? By j? How to compute h?

+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.

+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).

+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm

+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.

+ May I shift by more than 1? By j? How to compute h?

+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.

+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).

+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm

+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.

+ May I shift by more than 1? By j? How to compute h?

+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.

+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).

+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm

+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.

+ May I shift by more than 1? By j? How to compute h?

+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.

+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).

+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Knuth-Morris-Pratt algorithm

+ h is used when prefix of pattern v1v2 . . . vj−1 matches with
substring of text ti−j+1ti−j+2 . . . ti−1 and vj 6= ti.

+ May I shift by more than 1? By j? How to compute h?

+ h(j) the biggest k < j such that v1v2 . . . vk−1 is suffix of
v1v2 . . . vj−1, e.g. v1v2 . . . vk−1 = vj−k+1vj−k+2 . . . vj−1 and vj 6= vk.

+ KMP: backward transitions for so long, so that j = 0 (prefix of
pattern is not contained in the searched text) or ti = vj
(v1v2 . . . vj = ti−j+1ti−j+2 . . . ti−1ti).

+ Animation Lecroq, also [POK, page 27], also see [MAR] for
detailed description.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of h for KMP

i:=1; j:=0; h[1]:=0;

while (i<V) do

begin while (j>0) and (v[i]<>v[j]) do j:=h[j];

i:=i+1; j:=j+1;

if (i<=V) and (v[i]=v[j])

then h[i]:=h[j] else h[i]:=j (*MP*)

end;

Complexity of h computation, e.g. preprocessing, is O(V), thus in total
O(T + V).
Example: h for ababa. KMP vs. MP.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Universal search algorithm,

that uses transition table g derived from the searched pattern,
(g relates to the transition function δ of FA):

var i,T:integer; found: boolean;

text: array[1..T] of char; state,q0: TSTATE;

g:array[1..maxstate,1..maxsymb] of TSTATE;

F: set of TSTATE;...

begin

found:= FALSE; state:= q0; i:=0;

while (i <= T) and not found do

begin

i:=i+1; state:= g[state,text[i]];

found:= state in F;

end;

end;

How to transform pattern into g?

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Search engine (SE) for left-to-right search

+ SE for left-to-right search A = (Q, T, g, h, q0, F)

Q is a finite set of states.
T is a finite input alphabet.
g: Q× T → Q∪{

✿✿✿

fail} is a forward state-transition function.
h: (Q − q0) → Q is a backward state-transition function.
q0 is an initial state.
F is a set of final states.

+ A depth of the state q: d(q) ∈ N0 is a length of the shortest
forward sequence of the state transitions from q0 to q.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Search engine (SE) for left-to-right search

+ SE for left-to-right search A = (Q, T, g, h, q0, F)

Q is a finite set of states.
T is a finite input alphabet.
g: Q× T → Q∪{

✿✿✿

fail} is a forward state-transition function.
h: (Q − q0) → Q is a backward state-transition function.
q0 is an initial state.
F is a set of final states.

+ A depth of the state q: d(q) ∈ N0 is a length of the shortest
forward sequence of the state transitions from q0 to q.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Search engine (cont.)

+ Characteristics g, h:

g(q0, a) 6=
✿✿✿

fail for ∀a ∈ T (there is no backward transition in
the initial state).
If h(q) = p, then d(p) < d(q) (the number of the backward
transitions is restricted from the top by a multiple of the
maximum depth of the state c and the sum of the forward
transitions V). So the speed of searching is linear in
relation to V .

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Search engine (cont.)

+ Characteristics g, h:

g(q0, a) 6=
✿✿✿

fail for ∀a ∈ T (there is no backward transition in
the initial state).
If h(q) = p, then d(p) < d(q) (the number of the backward
transitions is restricted from the top by a multiple of the
maximum depth of the state c and the sum of the forward
transitions V). So the speed of searching is linear in
relation to V .

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

SE configuration, transition

+ SE configuration (q, w), q ∈ Q, w ∈ T∗ the not yet searched part
of the text.

+ An initial configuration of SE (q0, w), w is the entire searched
text.

+ An accepting configuration of SE (q, w), q ∈ F, w is the not yet
searched text, the found pattern is immediately before w.

+ SE transition: relation ⊢⊆ (Q × T∗) × (Q × T∗):

g(q, a) = p, then (q, aw) ⊢ (p, w) forward transition for
∀w ∈ T∗.
h(q) = p, then (q, w) ⊢ (p, w) backward transition for
∀w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Searching with SE

During the forward transition, a single input symbol is read and the
engine switches to the next state p. However, if g(q, a) =

✿✿✿

fail, the
backward transition is executed without reading an input symbol.
S = O(T) (we measure the number of SE transitions).

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Construction of the KMP SE for pattern v1v2 . . . vV

À An initial state q0.

Á g(q, vj+1) = q′, where q′ is equivalent to the prefix v1v2 . . . vjvj+1 .

Â For q0, we define g(q0, a) = q0 for∀a, for which g(q0, a) has not
been defined in the previous step.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

Å The backward state-transition function h is defined on the
page 17 by the below mentioned algorithm.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.

Á Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

Â Left-to-right search of infinite patterns algorithms.

� Regular expressions (RE).

Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.

Á Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

Â Left-to-right search of infinite patterns algorithms.

� Regular expressions (RE).

Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.

Á Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

Â Left-to-right search of infinite patterns algorithms.

� Regular expressions (RE).

Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.

Á Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

Â Left-to-right search of infinite patterns algorithms.

� Regular expressions (RE).

Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems



� yA|

(K)MP
Search engine (finite automaton)
Construction of the KMP engine

Outline (week two)

À Summary of the previous lecture, searching with SE.

Á Left-to-right search of n patterns algorithms. (AC,
NFA → DFA.)

Â Left-to-right search of infinite patterns algorithms.

� Regular expressions (RE).

Ä Direct construction of (N)FA for given RE.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Part II

Search of a finite set of patterns

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Search of n patterns

Aho-Corasick algorithm

Finite automata for searching

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Search of a set of patterns

SE for left-to-right search of a set of patterns p = {v1, v2, . . . , vP}.

Instead of repeated search of text for every pattern, there is only
“one” pass (FA).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm

var text: array[1..T] of char;

i: integer; found: boolean; state: tstate;

g: array[1..maxstate,1..maxsymbol] of tstate;

h: array[1..maxstate] of tstate; F: set of tstate;

found:=false; state:=q0; i:=0;

while (i<=T) and not found do

begin i:=i+1;

while g[state,text[i]]=fail do state:=h[state];

state:=g[state,text[i]]; found:=state in F

end

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm (cont.)

Construction of the state-transition functions h, g?

How about for P patterns? The main idea?

Aho, Corasick, 1975 (AC search engine).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm (cont.)

Construction of the state-transition functions h, g?

How about for P patterns? The main idea?

Aho, Corasick, 1975 (AC search engine).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Common SE algorithm (cont.)

Construction of the state-transition functions h, g?

How about for P patterns? The main idea?

Aho, Corasick, 1975 (AC search engine).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Aho-Corasick algorithm I

Construction of g for AC SE for a set of patterns p = {v1, v2, . . . , vP}

À An initial state q0.

Á g(q, bj+1) = q′, where q′ is equivalent to the prefix b1b2 . . . bj+1 of
the pattern vi, for ∀i ∈ {1, . . . , P}.

Â For q0, we define g(q0, a) = q0 for ∀a, for which g(q0, a) has not
been defined in the previous steps.

� g(q, a) =
✿✿✿

fail for ∀q and a, for which g(q, a) has not been defined
in the previous steps.

Ä A state that corresponds to the complete pattern is the final
one.

An example: p ={he, she, her} over T ={h, e, r, s, x}, where x is
anything else than {h, e, r, s}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II)

Construction of h for AC SE for a set of patterns p = {v1, v2, . . . , vP}

At first, we define the failure function f inductively relative to the
depth of the states this way:

À For ∀q of the depth 1, f(q) = q0.

Á Let us assume that f is defined for each state of the depth d
and lesser. The variable qD denotes the state of the depth d and
g(qD, a) = q′. Then we compute f(q′) as follows:

q := f(qD);
while g(q, a) =

✿✿✿

fail do q := f(q);
f(q′) := g(q, a).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II)

Construction of h for AC SE for a set of patterns p = {v1, v2, . . . , vP}

At first, we define the failure function f inductively relative to the
depth of the states this way:

À For ∀q of the depth 1, f(q) = q0.

Á Let us assume that f is defined for each state of the depth d
and lesser. The variable qD denotes the state of the depth d and
g(qD, a) = q′. Then we compute f(q′) as follows:

q := f(qD);
while g(q, a) =

✿✿✿

fail do q := f(q);
f(q′) := g(q, a).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II)

Construction of h for AC SE for a set of patterns p = {v1, v2, . . . , vP}

At first, we define the failure function f inductively relative to the
depth of the states this way:

À For ∀q of the depth 1, f(q) = q0.

Á Let us assume that f is defined for each state of the depth d
and lesser. The variable qD denotes the state of the depth d and
g(qD, a) = q′. Then we compute f(q′) as follows:

q := f(qD);
while g(q, a) =

✿✿✿

fail do q := f(q);
f(q′) := g(q, a).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II, cont.)

The cycle terminates, since g(q0, a) 6=
✿✿✿

fail.

If the states q, r represent prefixes u, v of some of the patterns
from p, then f(q) = r ⇔ v is the longest proper suffix u.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC II, cont.)

The cycle terminates, since g(q0, a) 6=
✿✿✿

fail.

If the states q, r represent prefixes u, v of some of the patterns
from p, then f(q) = r ⇔ v is the longest proper suffix u.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

The failure function h (AC III)

1

2 r 4

5 6 q 8
a a

b
f(qD)

f(f(qD)) f(q′) qD q′

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE for a set of patterns

p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE for a set of patterns

p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE for a set of patterns

p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE for a set of patterns

p = {v1, v2, . . . , vP} (cont.)

We could use f as the backward state-transition function h,
however, redundant backward transitions would be performed.

We define function h inductively relative to the depth of the
states this way:

For ∀ state q of the depth 1, h(q) = q0.
Let us assume that h is defined for each state of the depth d and
lesser. Let the depth q be d + 1. If the set of letters, for which is
in a state f(q) the value of the function g different from

✿✿✿

fail, is
the subset of the set of letters, for which is the value of the
function g in a state q different from

✿✿✿

fail, then h(q) := h(f(q)),
otherwise h(q) := f(q).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of h for AC SE (cont.)

1

2 3

4 5 6
a

a
f(q)

h(q)

q

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

Deterministic finite automaton (DFA) M=(K,T,δ,q0,F)

À K is a finite set of inner states.

Á T is a finite input alphabet.

Â δ is a projection from K × T to K.

� q0 ∈ K is an initial state.

Ä F ⊆ K is a set of final states.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.

Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.

Â An initial configuration M is (q0, w), where w is the entire text
to be searched.

� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.

Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.

Â An initial configuration M is (q0, w), where w is the entire text
to be searched.

� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.

Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.

Â An initial configuration M is (q0, w), where w is the entire text
to be searched.

� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Finite automata for searching

À Completely specified automaton if δ is defined for every pair
(q, a) ∈ K × T, otherwise incompletely specified automaton.

Á Configuration M is a pair (q, w), where q ∈ K, w ∈ T∗ is the not
yet searched part of the text.

Â An initial configuration M is (q0, w), where w is the entire text
to be searched.

� An accepting configuration M is (q, w), where q ∈ F and w ∈ T∗.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.

+ Transition M: is defined by a state and an input symbol; relation
⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.

+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.

+ L(M) = {w ∈ T∗ : (q0, w) ⊢
∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the

language accepted by FA M.

+ time complexity O(T) (we measure the number of transitions of
FA M).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.

+ Transition M: is defined by a state and an input symbol; relation
⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.

+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.

+ L(M) = {w ∈ T∗ : (q0, w) ⊢
∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the

language accepted by FA M.

+ time complexity O(T) (we measure the number of transitions of
FA M).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.

+ Transition M: is defined by a state and an input symbol; relation
⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.

+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.

+ L(M) = {w ∈ T∗ : (q0, w) ⊢
∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the

language accepted by FA M.

+ time complexity O(T) (we measure the number of transitions of
FA M).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Searching with FA M

During the transition, a single input symbol is read and the engine
switches to the next state p.

+ Transition M: is defined by a state and an input symbol; relation
⊢⊆ (K × T∗) × (K × T∗); if δ(q, a) = p, then (q, aw) ⊢ (p, w) for
every ∀w ∈ T∗.

+ The kth power, transitive or more precisely transitive
reflexive closure of the relation ⊢: ⊢k, ⊢+, ⊢∗.

+ L(M) = {w ∈ T∗ : (q0, w) ⊢
∗ (q, w′) for some q ∈ F, w′ ∈ T∗} the

language accepted by FA M.

+ time complexity O(T) (we measure the number of transitions of
FA M).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Nondeterministic FA

Definition: Nondeterministic finite automaton (NFA) is
M = (K, T, δ, q0, F), where K, T, q0, F are the same as those in the
deterministic version of FA, but δ : K × T → 2K δ(q, a) is now a set of
states.

Definition: ⊢∈ (K × T∗) × (K × T∗) transition: if p ∈ δ(q, a), then
(q, aw) ⊢ (p, w) for ∀w ∈ T∗.

Definition: a final state, L(M) analogically as in DFA.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Nondeterministic FA

Definition: Nondeterministic finite automaton (NFA) is
M = (K, T, δ, q0, F), where K, T, q0, F are the same as those in the
deterministic version of FA, but δ : K × T → 2K δ(q, a) is now a set of
states.

Definition: ⊢∈ (K × T∗) × (K × T∗) transition: if p ∈ δ(q, a), then
(q, aw) ⊢ (p, w) for ∀w ∈ T∗.

Definition: a final state, L(M) analogically as in DFA.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Nondeterministic FA

Definition: Nondeterministic finite automaton (NFA) is
M = (K, T, δ, q0, F), where K, T, q0, F are the same as those in the
deterministic version of FA, but δ : K × T → 2K δ(q, a) is now a set of
states.

Definition: ⊢∈ (K × T∗) × (K × T∗) transition: if p ∈ δ(q, a), then
(q, aw) ⊢ (p, w) for ∀w ∈ T∗.

Definition: a final state, L(M) analogically as in DFA.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA

Theorem: for every nondeterministic finite automaton M=(K,T,δ,q0,F),
we can build deterministic finite automaton M′=(K′,T,δ′,q′0 , F

′) such
that L(M) = L(M′).

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of SE (DFA) from NFA (cont.)

A constructive proof (of the algorithm):
Input: nondeterministic FA M = (K, T, δ, q0, F).
Output: deterministic FA.

À K′={{q0}}, state {q0} in unmarked.

Á If there are in K′ all the states marked, continue to the step 4.

Â We choose from K′ unmarked state q′:

δ′(q′, a) =
⋃

{δ(p, a)} for,∀p ∈ q′ and a ∈ T;
K′ = K′ ∪ δ′(q′, a) for ∀a ∈ T;
we mark q′ and continue to the step 2.

� q′0 = {q0}; F
′ = {q′ ∈ K′ : q′ ∩ F 6= ∅}.

Petr Sojka PV030 Textual Information Systems



� yA|

Search of n patterns
Aho-Corasick algorithm

Finite automata for searching

Construction of g for SE

Construction g′ for SE for a set of patterns p = {v1, v2, . . . , vP}

À We create NFA M:

An initial state q0.
For ∀a ∈ T, we define g(q0, a) = q0.
For ∀i ∈ {1, . . . , P}, we define g(q, bj+1) = q′, where q′ is
equivalent to the prefix b1b2 . . . bj+1 of the pattern v

i.
The state corresponding to the entire pattern is the final
one.

Á . . . and its corresponding DFA M′ with g′.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Part III

Search for an infinite set of patterns

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Left-to-right methods

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Regular expression (RE)

Definition: Regular expression E over the alphabet A:

À ε,0 are RE and for ∀a ∈ A is a RE.

Á If x, y are RE over A, then:

(x + y) is RE (union);
(x.y) is RE (concatenation);
(x)∗ is RE (iteration).

A convention about priority of regular operations:
union < concatenation < iteration.
Definition: Thereafter, we consider as a (generalized) regular
expression even those terms that do not contain, with regard to this
convention, the unnecessary parentheses.

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Value of RE

À h(0) = ∅, h(ε) = {ε}, h(a) = {a}

Á h(x + y) = h(x) ∪ h(y)
h(x.y) = h(x).h(y)
h(x∗) = (h(x))∗

+ h(x∗) = ε ∪ x ∪ x.x ∪ x.x.x ∪ . . .

+ The value of RE is a regular language (RL).

+ Every RL can be represented as RE.

+ For ∀ RE V ∃ FA M: h(V) = L(M).

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems



� yA|

Left-to-right methods

Axiomatization of RE (Salomaa 1966)

A1: x + (y + z) = (x + y) + z = x + y + z associativity of union

A2: x.(y.z) = (x.y).z = x.y.z associativity of concatenation

A3: x + y = y + x commutativity of union

A4: (x + y).z = x.z + y.z right distributivity

A5: x.(y + z) = x.y + x.z left distributivity

A6: x + x = x idempotence of union

A7: ε.x = x identity element for concatenation

A8: 0.x = 0 inverse element for concatenation

A9: x + 0 = x identity element for union

A10: x∗ = ε + x∗x

A11: x∗ = (ε + x)∗

Petr Sojka PV030 Textual Information Systems


	II -- Exact search with query preprocessing
	Karp-Rabin search algorithm
	(K)MP
	Search engine (finite automaton)
	Construction of the KMP engine
	Search of n patterns
	Aho-Corasick algorithm
	Finite automata for searching
	Left-to-right methods

