
� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

PV030 Textual Information Systems

Petr Sojka

Faculty of Informatics
Masaryk University, Brno

Spring 2012

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Indexing methods+ manual vs. automatic, pros/cons+ stop-list (words with grammatical meaning – conjunctions,
prepositions, . . .)

1 not-driven
2 driven (a special dictionary of words: indexing language

assessment) – pass-list, thesaurus.+ synonyms and related words.+ inflective languages: creating of registry with language support –
lemmatization.

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Text analysis – choice of words for index

Frequency of word occurrences is for document identification significant.
English frequency dictionary:
1 the 69971 0.070
2 of 36411 0.073
3 and 28852 0.086
4 to 26149 0.104
5 a 23237 0.116

6 in 21341 0.128
7 that 10595 0.074
8 is 10099 0.088
9 was 9816 0.088

10 he 9543 0.095+ Zipf’s law (principle of least resistance)
order × frequency ∼= constant+ Cumulative proportion of used words CPW =

∑N
order=1 frequencyorder
text words count+ The rule 20–80: 20% of the most frequent words make 80% of text

[MEL, fig. 4.19].

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Automatic indexing method

Automatic indexing method is based on word significance derivation from
word frequencies (cf. Collins-Cobuild dictionary); words with low and high
frequency are cut out:
INPUT: n documents
OUTPUT: a list of words suitable for an index creation

1 We calculate a frequency FREQik for every document i ∈ 〈1, n〉 and
every word k ∈ 〈1, K〉 [K is a count of different words in all documents].

2 We calculate TOTFREQk =
∑n

i=1 FREQik.

3 We create a frequency dictionary for the words k ∈ 〈1, K〉.

4 We set down a threshold for an exclusion of very frequent words.

5 We set down a threshold for an exclusion of words with a low frequency.

6 We insert the remaining words to the index.

Questions of threshold determination [MEL, fig. 4.20].

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

IR using the Boolean model

Queries are Boolean expressions, e.g., Caesar AND Brutus

The seach engine returns all documents that satisfy the Boolean
expression

Does Google use the Boolean model?

Petr Sojka PV030 Textual Information Systems

term docID freq

ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i’ 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

=⇒

term coll. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 3 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

I 2 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 2 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Intersecting (“merging”) two postings lists

MERGE(p, q)
1 answer← 〈 〉
2 while p 6= NIL and q 6= NIL

3 do if docID[p] = docID[q]
4 then ADD(answer, docID[p])
5 else if docID[p] < docID[q]
6 then p← next[p]
7 else q← next[q]
8 return answer

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Optimized intersection of a set of postings lists

MERGE(〈ti〉)
1 terms ← SORTBYFREQ(〈ti〉)
2 result ← postings[first[terms]]
3 terms ← rest[terms]
4 while terms 6= NIL and result 6= NIL

5 do list ← postings[first[terms]]
6 terms ← rest[terms]
7 MERGEINPLACE(result, list)
8 return result

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Outline (Week seven)

+ Excursus to the computational linguistics.+ Corpus linguistics as an TIS example.+ Search methods with preprocessing of text and pattern (query).

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Lemmatization for index creation

Morphology utilization for creating of dictionary+ stem/ root of words (učit, uč);+ program ajka (abin),
http://nlp.fi.muni.cz/projekty/ajka/ examples;+ a techniques of patterns for stem determination;

Petr Sojka PV030 Textual Information Systems

http://nlp.fi.muni.cz/projekty/ajka/

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Registry creating – thesaurus+ Thesaurus – a dictionary, containing hierarchical and associative
relations and relations of equivalence between particular terms.+ Relations between terms/lemmas:

synonyms – relation to a standard term; e.g. ,,see“;
relation to a related term (RT); e.g. ,,see also“;
relation to a broader term (BT);
relation to a narrower term (NT);
hypernyms (car:means of transport); hyponyms (bird:jay);
meronym (door:lock); holonyms (hand:body); antonyms
(good:bad).+ Dog/Fı́k, Havel/president

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Thesaurus construction

manually/ half-automatically+ heuristics of thesaurus construction:

hierarchical structure/s of thesaurus
field thesauri, the semantics is context-dependent (e.g.
field, tree in informatics)
compounding of terms with a similar frequency
exclusion of terms with a high frequency+ breadth of application of thesaurus and lemmatizer: besides of

spelling indexing, base of grammar checker, fulltext search.+ projekts WORDNET, EUROWORDNET+ module add wordnet; wn

wn faculty -over -simsn -coorn

Petr Sojka PV030 Textual Information Systems

� yA|

Why information retrieval?
Inverted index

Query processing
Outlook

Hierarchical thesaurus

+ Knowledge base creation for exact evaluation of document
relevance.+ topic – processing of semantic maps of terms Visual Thesaurus
http://www.visualthesaurus.com.+ Tovek Tools, Verity.

Petr Sojka PV030 Textual Information Systems

http://www.visualthesaurus.com

� yA|

Tokenization
Phrase queries

Index System Implementation

Part I

Excursus to the Computational Linguistics

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Computational linguistics

+ string searching – words are strings of letters.+ word-forming – morphological analysis.+ grammar (CFG, DFG) – syntactic analysis.+ meaning of sentences (TIL) – semantic analysis.+ context – pragmatic analysis.+ full understanding and communication ability – information.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Corpus Query Processor

basic queries

,,Havel“;

45: Český prezident Václav <Havel> se včera na
89: jak řekl Václav <Havel> , každý občan
248: vı́ce než rokem <Havel> řekl Pravda vı́tězı́

regular expressions

,,Pravda|pravda“;

,,(P|p)ravda“;

,,(P|p)ravd[a,u,o,y]“;

,,pravd.*“; ,,pravd.+“; ,,post?el“;

word sequence

,,prezident(a|u)“ ,,Havl(a|ovi)“;

,,a tak“;

,,prezident“; []* ,,Havel“;

,,prezident“ (,,republiky“ ,,Vaclav“)? ,,Havel“;
Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Corpus Query Processor

queries for positional attributes

[word = ,,Havel“];

[lemma = ,,prezident“] []* [lemma = ,,Havel“];

. . . ženu prezidenta Havla . . .
[lemma = ,,hnát“] [] [lemma = ,,Havel“];

[word = ,,žen(u|eme)“ & lemma !=,,žena“]; I . . . or
! . . . not

some other possibilities

[lemma = ,,prezident“] []* [lemma = ,,Havel“] within s; . . . 10, 3 s

[lemma = ,,Havel“] within 20 </s>,,Pravda“

<s>a:[word= ,,Žena|Muž|Člověk“] []* [lemma = a.lemma]

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Face and back of relevant searching

Large computational power of today’s computers enables:

efficient storing of large amount of text data (compression, indexing);

efficient search for text strings.

A man sitting behind a computer uses all this, to obtain from so processed
documents information, that he is interested. Really?

Example: In text database there is stored a few last years of daily newspaper. I’d like
to obtain information about president Václav Havel.
a/>HAVEL
b/>more precise queries
c/. . .
. . .

Computer
(computational power)

+
human

(inteligence)
=

valuable
information

+ time
+ money

The goal of

everybody→ is to transfer the largest possible part of intelligence (time, money, . . .)

to computer.
Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Face and back of relevant searching

information ideal of ideals no Searching
pragmatic
analysis

context no information Correct

semantic
analysis

sentence
meaning TIL

starting-up Spell translation

syntactic
analysis

grammar
CFG, DCG

partially check

morphological
analysis

word-forming
lemma

yes Check Simple translation

words are strings
of letters

string
searching

yes

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Face and back of data acquisition from natural language

Do we really know, what is information contained in the text in natural language?

• František Novák weighs 100 kg. −→ RDB

object property value attribut1, attribut2, . . .

• František Novák likes beer. ? key value

František Novák likes ր
Jana Novotná

• F. N. is an old honest man. −→ ?
Spring erupted in full force.

Words of the natural language denote objects, their properties and relations between
them. It’s possible to see the words and sentences also as ,,functions“ of its kind,
defined by their meaning.

A man, who climbed a highest Czech eight-thousander, is my grandson.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Corpus linguistics

+ Corpus: electronic collection of texts, often indexed by linguistic
tags.+ Corpus as a text information system: corpus linguistics.+ BNC, Penn Treebank, DESAM, PNK, . . . ; ranges from millions to
billion positions (words), special methods necessary.+ Corpus managers CQP, GCQP, Manatee/Bonito,
http://www.fi.muni.cz/~pary/

see [MAR].

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/

� yA|

Tokenization
Phrase queries

Index System Implementation

What’s a corpus?

Definition: Corpus is a large, internaly structured compact file of
texts in natural language electronically stored and processable.

Indian languages have no script – for a finding of a grammar it’s
necessary to write up the spoken word.

1967 – 1. corpus in U. S. A. (Kučera, Francis) 1 000 000 words.

Noam Chomsky – refuses corpora.

Today – massive expansion.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Corpora on FI

WWW page of Pavel Rychlý (∼pary) links to basic information.
Bonito, Manatee.

IMS CORPUS WORKBENCH – a toolkit for efficient
representation and querying over large text files.

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/

� yA|

Tokenization
Phrase queries

Index System Implementation

Logical view of corpus

Sequence of words at numbered positions (first word, nth word), to which
tags are added (addition of tags called corpus tagging). Tags are
morphological, grammatical and any other information about a given word.
It leads to more general concept of position attributes, those are the
most important tagging type. Attributes of this class have a value (string)
at every corpus position. To every of them one word is linked as a basic and
positional attribute word. In addition to this attribute, further position
attributes may be bundled with each position of any text, representing the
morphological and other tags.
Structural attributes – sentences, paragraphs, title, article, SGML.

LEMMA

WORD

POS1

POS2

Českého

český

prezidenta

prezident

Václava

vaclav

Havla

havel

dnes

dnes
∼ 107

0 1 2 43
Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Internal architecture of corpus

Two key terms of internal representation of position attributes are:

Uniform representation: items for all attributes are encoded
as integer numbers, where the same values have the same digital
code. A sequence of items is then represented as a sequence of
integers. Internal representation of attribute word (as well as of
any other pos. attribute) is array(0..p-1) of Integer,
where p is position count of corpus.

Inverted file: for a sequence of numbers representing a sequence
of values of a given attribute, the inverted file is created. This file
contains a set of occurrences in position attribute for every
value (better value code). Inverted file is needed for searching,
because it directly shows a set of occurrences of a given item,
the occurrences then can be counted in one step.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Internal architecture of corpus (cont.)

File with encoded attribute values and inverted file as well have
auxiliary files.

The first data structure is a list of items or ,,lexicon“: it
contains a set of different values. Internally it’s a set of strings
occurring in the sequence of items, where a symbol Null (octal
000) is inserted behind every word. The list of items already
defines a code for every item, because we suppose the first item
in the list to have a code 0, following 1 etc.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Internal architecture of corpus (cont.)

There are three data structures for the inverted file:

The first is an independent inverted file, that contains a set of
corpus positions.

The second is an index of this file. This index returns for every
code of item an input point belonging to an occurrence in inverted
file.

The third is a table of frequency of item code, which for each item
code gives a number of code occurrence in corpus (that is of
course the same as the size of occurrence set).

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Tokenization

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Definitions

Word – A string of characters as it appears in the text.

Term – A “normalized” word (case, morphology, spelling etc); an
equivalence class of words.

Token – An instance of a word or term occurring in a document.

Type – A class of all tokens containing the same character
sequence.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Arabic script example

 ك ِ ت ا ب ٌ ⇐ آَِ��بٌ
 un b ā t i k
/kitābun/ ‘a book’

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Does stemming improve effectiveness?

In general, stemming increases effectiveness for some queries,
and decreases effectiveness for others.

Examples: “operational AND research”, “operating AND system”,
“operative AND dentistry”

Porter Stemmer equivalence class (“oper”): operate operating
operates operation operative operatives operational

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Faster postings mergers: Skip pointers

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Phrase queries

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Search methods IV.

Preprocessing of text and pattern (query): overwhelming majority of
today’s TIS. Types of preprocessing:+ n-gram statistics (fragment indexes).+ special algorithms for indexes processing (coding, compression)

and relevance evaluation (PageRank Google)+ usage of natural language processing methods (morphology,
syntactic analysis, semantic databases) an aggregation of
information from multiple sources (systems AnswerBus, START).+ signature methods.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Sensitivity

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Relevance

Definition: Relevance (of answers to a query) is a rate range, by which
a selected document coincides with requirements imposed on it.
Ideal answer ≡ real answer
Definition: Coefficient of completeness (recall) R = m

n , where m is a
count of selected relevant records and n is a count of all relevant
records in TIS.
Definition: Coefficient of precision P = m

o , where o is count of all
selected records by a query.
We want to achieve maximum R and P , tradeoff.

Standard values: 80% for P , 20 % for R.
Combination of completeness and precision:

coefficient Fb =
(b2+1)PR
b2P+R

. (F0 = P , F∞ = R, where F1 = F P and R
weighted equally).

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Fragment index

+ The fragment ybd is in English only in the word molybdenum.+ Advantages: fixed dictionary, no problems with updates.+ Disadvantages: language dependency and thematic area,
decreased precision of search.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Outline (Week ten)

+ Google as an example of web-scale information system.+ Jeff Dean’s video – historical notes of Google search
developments.+ Google – system architecture.+ Google – PageRank.+ Google File System.+ Implementation of index systems

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Goooooooooooooogle – a bit of history

An example of anatomy of global (hyper)text information system
(www.google.com).+ 1997: google.stanford.edu, students Page and Brin+ 1998: one of few quality search engines, whose basic

fundamentals and architecture (or at least their principles) are
known – therefore a more detailed analysis according to the
article [GOO]
http://www7.conf.au/programme/fullpapers/1921com1921.htm .+ 2012: clear leader in global web search

Petr Sojka PV030 Textual Information Systems

http://www7.conf.au/programme/fullpapers/1921com1921.htm

� yA|

Tokenization
Phrase queries

Index System Implementation

Goooooooooooooogle – anatomy

+ Several innovative concepts: PageRank, storing of local
compressed archive, calculation of relevance from texts of
hypertext links, PDF indexing and other formats, Google File
System, Google Link. . .+ The system anatomy. see [MAR]

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Google: Relevance

The crucial thing is documents’ relevance (credit) computation.+ Usage of tags of text and web typography for the relevance
calculation of document terms.+ Usage of text of hyperlink is referring to the document.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Google: PageRank+ PageRank: objective measure of page importance based on
citation analysis (suitable for ordering of answers for queries,
namely page relevance computation).+ Let pages T1,. . . ,Tn (citations) point to a page A, total sum of
pages is m. PageRank

PR(A) =
(1 − d)

m
+ d

(
PR(T1)

C(T1)
+ . . .

PR(Tn)

C(Tn)

)+ PageRank can be calculated by a simple iterative algorithm (for
tens of millions of pages in hours on a normal PC).+ PageRank is a probability distribution over web pages.+ PageRank is not the only applied factor, but coefficient of more
factors. A motivation with a random surfer, dumping factor d,
usually around 0.85.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Data structures of Google

+ Storing of file signatures+ Storing of lexicon+ Storing of hit list.+ Google File System

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Index system implementation

+ Inverted file – indexing file with a bit vector.+ Usage of document list to every key word.+ Coordinate system with pointers [MEL, fig. 4.18, page 46].+ Indexing of corpus texts: Finlib
http://www.fi.muni.cz/~pary/dis.pdf see [MAR].+ Use of Elias coding for a compression of hit list.

Petr Sojka PV030 Textual Information Systems

http://www.fi.muni.cz/~pary/dis.pdf

� yA|

Tokenization
Phrase queries

Index System Implementation

Index system implementation (cont.)

+ Efficient storing of index/dictionary [lemmas]: packed trie,
Patricia tree, and other tree structures.+ Syntactic neural network (S. M. Lucas: Rapid best-first retrieval
from massive dictionaries, Pattern Recognition Letters 17,
p. 1507–1512, 1996).+ Commercial implementations: Verity engine, most of web search
engines – with few exceptions – hide their key to success.

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Dictionary representation by FA I

Article M. Mohri: On Some Applications of Finite-State Automata
Theory to Natural Language Processing see [MAR]+ Dictionary representation by finite automaton.+ Ambiguities, unification of minimized deterministic automata.+ Example: done,do.V3:PP

done,done.A0+ Morphological dictionary as a list of pairs [word form, lemma].+ Compaction of storing of data structure of automata (Liang,
1983).+ Compression ratio up to 1:20 in the linear approach (given the
length of word).

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Dictionary representation by FA II+ Transducer for dictionary representation.+ Deterministic transducer with 1 output (subsequential
transducer) for dictionary representation including one string on
output (information about morphology, hyphenation,. . .).+ Deterministic transducer with p outputs (p−subsequential
transducer) for dictionary representation including more strings
on output (ambiguities).+ Determinization of the transducer generally unrealizable (the
class of deterministic transducers with an output is a proper
subclass of nondeterministic transducers); for purposes of
natural language processing, though, usually doesn’t occur
(there aren’t cycles).

Petr Sojka PV030 Textual Information Systems

� yA|

Tokenization
Phrase queries

Index System Implementation

Dictionary representation by FA III+ An addition of a state to a transducer corresponding (w1,w2)
without breaking the deterministic property: first a state for
(w1,ε), then with resulting state final state with output w2.+ Efficient method, quick, however not minimal; there are minimizing
algorithms, that lead to spatially economical solutions.+ Procedure: splitting of dictionary, creation of det. transducers
with p outputs, their minimization, then a deterministic
unification of transducers and minimizing the resulting.+ Another use also for the efficient indexing, speech recognition,
etc.

Petr Sojka PV030 Textual Information Systems

� yA|
Part II

Coding

Petr Sojka PV030 Textual Information Systems

� yA|

Outline (Week eleven)

+ Coding.+ Entropy, redundancy.+ Universal coding of the integers.+ Huffman coding.+ Adaptive Huffman coding.

Petr Sojka PV030 Textual Information Systems

� yA|

Coding – basic concepts

Definition: Alphabet A is a finite nonempty set of symbols.
Definition: Word (string, message) over A is a sequence of symbols
from A.
Definition: Empty string ε is an empty sequence of symbols. A set of
nonempty words over A is labeled A+.
Definition: Code K is a triad (S, C, f), where S is finite set of source
units, C is finite set of code units, f : S→ C+ is an injective mapping.
f can be expanded to S+ → C+: F(S1S2 . . . Sk) = f(S1)f(S2) . . . f(Sk).
C+ is sometimes called code.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic properties of the code

Definition: x ∈ C+ is uniquely decodable regarding f, if there is
maximum one sequence y ∈ S+ so, that f(y) = x.
Definition: Code K = (S, C, f) is uniquely decodable if all strings in C+

are uniquely decodable.
Definition: A code is called a prefix one, if no code word is a prefix of
another.
Definition: A code is called a suffix one, if no code word is a suffix of
another.
Definition: A code is called a affix one, if it is prefix and suffix code.
Definition: A code is called a full one, if after adding of any additional
code word a code arises, that isn’t uniquely decodable.

Petr Sojka PV030 Textual Information Systems

� yA|

Basic properties of code

Definition: Block code of length n is such a code, in which all code
words have length n.
Example: block ? prefix
block⇒ prefix, but not vice versa.
Definition: A code K = (S, C, f) is called binary, if |C| = 2.

Petr Sojka PV030 Textual Information Systems

� yA|

Compression and decompression

Definition: Compression (coding), decompression (decoding):

−→ Compression
(encoding)

−→
original
data

compressed
data

←− Decompression
(decoding)

←−
Definition: Compression ratio is a ratio of length of compressed
data and length of original data.
Example: Suggest a binary prefix code for decimal digits, if there are
often numbers 3 a 4, and rarely 5 and 6.

Petr Sojka PV030 Textual Information Systems

� yA|

Entropy and redundancy I

Let Y be a random variable with a probability distribution
p(y) = P (Y = y). Then the mathematical expectation (mean rate)

E(Y) =
∑

y∈Y

yp(y).

Let S = {x1, x2, . . . , xn} be a set of source units and let the
occurrence probability of unit xi in information source S is pi for
i = 1, . . . , n, n ∈ N.
Definition: Entropy of information content of unit xi (measure of
amount of information or uncertainty) is H(xi) = Hi = − log2 pi bits.
A source unit with more probability bears less information.

Petr Sojka PV030 Textual Information Systems

� yA|

Entropy and redundancy II

Definition: Entropy of information sourceS is H(S) = −
n∑

i=1

pi log2 pi

bits.

True, that H(S) =
∑

y∈Y

p(y) log
1

p(y)
= E

(
log

1

p(Y)

)
.

Definition: Entropy of source message X = xi1xi2 . . . xik ∈ S+ of

information sourceS is H(X,S) = H(X) =
k∑

j=1

Hi = −
k∑

j=1

log2 pij bits.

Definition: Length l(X) of encoded message X

l(X) =
k∑

j=1

|f(xij)| =
k∑

j=1

dij bits.

Theorem: l(X) ≥ H(X,S).

Petr Sojka PV030 Textual Information Systems

� yA|

Entropy a redundancy III

Axiomatic introduction of entropy see [MAR], details of derivation see
ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps

Definition: R(X) = l(X) − H(X) =
k∑

j=1

(dij + log2 pij) is redundancy of

code K for message X.

Definition: Average length of code word K is AL(K) =
n∑

i=1

pidi bits.

Definition: Average length of source S is

AE(S) =
n∑

i=1

piHi = −
n∑

i=1

pi log2 pi bits.

Definition: Average redundancy of code K is

AR(K) = AL(K) − AE(S) =
n∑

i=1

pi(di + log2 pi) bits.

Petr Sojka PV030 Textual Information Systems

ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps

� yA|

Entropy and redundacy IV

Definition: A code is an optimal one, if it has minimal redundancy.
Definition: A code is an asymptotically optimal, if for a given
distribution of probabilities the ratio AL(K)/AE(S) is close to 1, while
the entropy is close to ∞.
Definition: A code K is a universal one, if there are c1, c2 ∈ R so, that
average length of code word AL(K) ≤ c1 × AE + c2.
Theorem: Universal code is asymptotically optimal, if c1 = 1.

Petr Sojka PV030 Textual Information Systems

� yA|

Universal coding of integers

Definition: Fibonacci sequence of order m
Fn = Fn−m + Fn−m+1 + . . . + Fn−1 for n ≥ 1.
Example: F of order 2: F−1 = 0,, F0 = 1, F1 = 1, F2 = 2, F3 = 3,
F4 = 5, F5 = 8,. . .
Example: F of order 3: F−2 = 0, F−1 = 0, F0 = 1, F1 = 1, F2 = 2,
F3 = 4, F4 = 7, F5 = 13,. . .
Example: F of order 4: F−3 = 0, F−2 = 0, F−1 = 0, F0 = 1, F1 = 1,
F2 = 2, F3 = 4, F4 = 8, F5 = 15,. . .
Definition: Fibonacci representation R(N) =

∑k
i=1 diFi, where

di ∈ {0,1}, dk = 1
Theorem: Fibonacci representation is ambiguous, however there is
such a one, that has at most m− 1 consecutive ones in a sequence di.

Petr Sojka PV030 Textual Information Systems

� yA|

Fibonacci codes

Definition: Fibonacci code of order m FKm(N) = d1d2 . . . dk 1 . . . 1
︸ ︷︷ ︸
m−1 krát

,

where di are coefficients from previous sentence (ones end a word).
Example: R(32) = 0 ∗1+0 ∗2+1 ∗3+0 ∗5+1 ∗8+0 ∗13+1 ∗21,
thus F(32) = 00101011.
Theorem: FK(2) is a prefix, universal code with c1 = 2, c2 = 3, thus it
isn’t asymptotically optimal.

Petr Sojka PV030 Textual Information Systems

� yA|

The universal coding of the integers II+ unary code α(N) = 00 . . .0
︸ ︷︷ ︸

N−1

1.+ binary code β(1) = 1, β(2N + j) = β(N)j, j = 0,1.+ β is not uniquely decodable (it isn’t prefix code).+ ternary τ(N) = β(N)#.+ β′(1) = ǫ, β′(2N) = β′(N)0, β′(2N+ 1) = β′(N)1, τ′(N) = β′(N)#.+ γ: every bit β′(N) is inserted between a pair from α(|β(N)|).+ example: γ(6) = 01001+ Cγ = {γ(N) : N > 0} = (0{0,1})∗1 is regular and therefore it’s
decodable by finite automaton.

Petr Sojka PV030 Textual Information Systems

� yA|

The universal coding of the integers III+ γ′(N) = α(|β(N)|)β′(N) the same length (bit permutation γ(N)),
but more readable+ Cγ′ = {γ

′(N) : N > 0} = {0k1{0,1}k : k ≥ 0} is not regular and
the decoder needs a counter+ δ(N) = γ(|β(N)|)β′(N)+ example: δ(4) = γ(3)00 = 01100+ decoder δ: δ(?) = 0011?+ ω:

K := 0;
while ⌊log2(N)⌋ > 0 do

begin K := β(N)K;
N := ⌊log2(N)⌋

end.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Data compression – introduction+ Information encoding for communication purposes.+ Despite tumultuous evolution of capacities for data storage,
there is still a lack of space, or access to compressed data
saves time. Redundancy −→ a construction of a minimal
redundant code.+ Data model:

structure – a set of units to compression + context of
occurrences;
parameters – occurrence probability of particular units.
data model creation;
the actual encoding.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Data compression – evolution+ 1838 Morse, code e by frequency.+ 1949 Shannon, Fano, Weaver.+ 1952 Huffman; 5 bits per character.+ 1979 Ziv-Lempel; compress (Roden, Welsh, Bell, Knuth, Miller,
Wegman, Fiala, Green, . . .); 4 bits per character.+ eighties and nineties PPM, DMC, gzip (zlib), SAKDC;
2–3 bits/character+ at the turn of millenium bzip2; 2 bits per character.+ . . . ?

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Evolution of compression algorithms

s

s

s

s

s
s

s

s

1980 1990 20001950 1960 1970

6

5

4

3

2

1

C
om

pr
es
si
on

(o
f
bi
ts

pe
r
ch
ar
ac
te
r)

YEAR

Huffman

LZ78

LZ77
compress

GZip

SAKDCPPM

DMC

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Prediction and modeling+ redundancy (non-uniform probability of source unit occurrences)+ encoder, decoder, model+ statistical modeling (the model doesn’t depend on concrete
data)+ semiadaptive modeling (the model depends on data, 2 passes,
necessity of model transfer)+ adaptive modeling (only one pass, the model is created
dynamically by both encoder and decoder)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Prediction and modeling+ models of order 0 – probabilities of isolated source units (e.g.
Morse, character e)+ models with a finite context – Markov models, models of order n
(e.g. Bach), P (a|x1x2 . . . xn)+ models based on finite automata

synchronization string, nonsynchronization string
automaton with a finite context
suitable for regular languages, unsuitable for context-free
languages, P (a|qi)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week twelwe)

+ Huffman coding.+ Adaptive Huffman coding.+ Aritmetic coding.+ Dictionary methods.+ Signature methods.+ Similarity of documents.+ Compression using neural networks.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Statistical compression methods I

Character techniques+ null suppression – replacement of repetition ≥ 2 of character
null, 255, special character Sc+ run-length encoding (RLE) – ScXCc generalization to any
repetitious character $ ∗ ∗ ∗ ∗ ∗ ∗55→ $Sc ∗ 655+ MNP Class 5 RLE – CXXX DDDDDBBAAAA → 5DDDBB4AAA+ half-byte packing, (EBCDIC, ASCII) SI, SO+ diatomic encoding; replacement of character pairs with one
character.+ Byte Pair Encoding, BPE (Gage, 1994)+ pattern substitution+ Gilbert Held: Data & Image Compression

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Statistical compression methods II

+ Shannon-Fano, 1949, model of order 0,+ code words of length ⌊− log2 pi⌋ or ⌊− log2 pi + 1⌋+ AE ≤ AL ≤ AE + 1.+ code tree (2,2,2,2,4,4,8).+ generally it is not optimal, two passes of encoder through text,
static→x

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Shannon-Fano coding

Input: a sequence of n source units S[i], 1 ≤ i ≤ n, in order of nondecreasing
probabilities.
Output: n binary code words.

begin assign to all code words an empty string;
SF-SPLIT(S)

end

procedure SF-SPLIT(S);
begin if |S| ≥ 2 then

begin divide S to sequences S1 and S2 so, that both
sequences have roughly the same total probability;

add to all code words from S1 0;
add to all code words from S2 1;
SF-SPLIT(S1); SF-SPLIT(S2);

end

end

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Huffman coding

+ Huffman coding, 1952.+ static and dynamic variants.+ AEPL =
∑n

i=1 d[i]p[i].+ optimal code (not the only possible).+ O(n) assuming ordination of source units.+ stable distribution→ preparation in advance.

Example: (2,2,2,2,4,4,8)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Huffman coding – sibling property

Definition: Binary tree have a sibling property if and only if

1 each node except the root has a sibling,

2 nodes can be arranged in order of nondecreasing sequence so,
that each node (except the root) adjacent in the list with
another node, is his sibling (the left sons are on the odd
positions in the list and the right ones on even).

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Huffman coding – properties of Huffman trees

Theorem: A binary prefix code is a Huffman one⇔ it has the sibling
property.+ 2n − 1 nodes, max. 2n − 1 possibilities,+ optimal binary prefix code, that is not the Huffman one.+ AR(X) ≤ pn + 0,086, pn maximum probability of source unit.+ Huffman is a full code, (poor error detection).+ possible to extend to an affix code, KWIC, left and right context,

searching for ∗X∗.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Adaptive Huffman coding

+ FGK (Faller, Gallager, Knuth)+ suppression of the past by coefficient of forgetting, rounding, 1,
r, r2, rn.+ linear time of coding and decoding regarding the word length.+ ALHD ≤ 2ALHS.+ Vitter ALHD ≤ ALHS + 1.+ implementation details, tree representation code tables.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Principle of arithmetic coding

+ generalization of Huffman coding (probabilities of source units
needn’t be negative powers of two).+ order of source units; Cumulative probability cpi =

∑i−1
j=1 pj

source units xi with probability pi.+ Advantages:

any proximity to entropy.
adaptability is possible.
speed.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Dictionary methods of data compression

Definition: Dictionary is a pair D = (M, C), where M is a finite set of
words of source language, C mapping M to the set of code words.
Definition: L(m) denotes the length of code word C(m) in bits, for
m ∈ M.
Selection of source units:

static (agreement on the dictionary in advance)

semiadaptive (necessary two passes trough text)

adaptive

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Statical dictionary methods

Source unit of the length n – n-grams
Most often bigrams (n = 2)

n fixed

n variable (by frequency of occurrence)

adaptive

(50 % of an English text consits of about 150 most frequent words)
Disadvantages:

they are unable to react to the probability distribution of
compressed data

pre-prepared dictionary

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Semiadaptive dictionary methods

Dictionary Compressed data

Compressed dictionary Compressed data

Advantages: extensive date (the dictionary is a small part of data –
corpora; CQP).

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Semiadaptive dictionary methods – dictionary creation
procedure

1 The frequency of N-grams is determined for N = 1,2,

2 The dictionary is initialized by unigram insertion.

3 N-grams with the highest frequency are gradually added to the
dictionary. During K-gram insertion frequencies decrease for it’s
components of (K − 1)-grams, (K − 2)-grams If, by reducing
of frequencies, a frequency of a component is greatly reduced,
then it’s excluded from the dictionary.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week thirteen)

+ Adaptive dictionary methods with dictionary restructuring.+ Syntactic methods.+ Checking of text correctness.+ Querying and TIS models.+ Vector model of documents+ Automatic text structuring.+ Document similarity.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Adaptive dictionary methods

LZ77 – siliding window methods
LZ78 – methods of increasing dictionary
a b c b a b b a a b a c b

encoded part not enc. part
(window, N ≤ 8192) (|B| ∼10–20 b)

In the encoded part the longest prefix P of a string in not encoded part is

searched. If such a string is found, then P is encoded using (I, J, A), where I is

a distance of first character S from the border, J is a length of the string S

and A is a first character behind the prefix P . The window is shifted by J + 1

characters right. If the substring S wasn’t found, then a triple (0,0, A) is

created, where A is a first character of not encoded part.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZR (Rodeh)

|M| = (N − B) × B × t, t size of alphabet
L(m) = ⌈log2(N − B)⌉ + ⌈log2 B⌉ + ⌈log2 t⌉
Advantage: the search of the longest prefix [KMP]

LZR uses a tree containing all the prefixes in the yet encoded
part.

The whole encoded yet encoded part is used as a dictionary.

Because the i in (i, j, a) can be large, the Elias code for coding of
the integers is used.

Disadvantage: a growth of the tree size without any limitation⇒
after exceeding of defined memory it’s deleted and the construction
starts from the beginning.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZSS (Bell, Storer, Szymanski)

The code is a sequence of pointers and characters. The pointer (i, j)
needs a memory as p characters⇒ a pointer only, when it pays off,
but there is a bit needed to distinguish a character from a pointer.
The count of dictionary items is |M| = t + (N − B) × (B − p)
(considering only substrings longer than p). The bit count to encode is

L(m) = 1 + ⌈log2 t⌉ for m ∈ T

L(m) = 1 + ⌈log2 N⌉ + ⌈log2(B − p)⌉ otherways.

(The length d of substring can be represented as B − p).

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZB (Bell), LZH (Brent)

A pointer (i, j) (analogy to LZSS)
If

the window is not full (at the beginning) and

the compressed text is shorter than N,

the usage of log2 N bytes for encoding of i is a waste. LZB uses
phasing for binary coding. – prefix code with increasing count of bits
for increasing values of numbers. Elias code γ.
LZSS, where for pointer encoding the Huffman coding is used (i.e. by
distribution of their probabilities⇒ 2 throughpasses)

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Methods with increasing dictionary

The main idea: the dictionary contains phrases. A new phrase so, that
an already existing phrase is extended by a symbol. A phrase is
encoded by an index of the prefix and by the added symbol.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZ78 – example

Input a b ab c ba
Index 1 2 3 4 5
Output (0,a) (0,b) (1,b) (0,c) (2,a)

. . .

. . .
Input bab aa aaa aaaa
Index 6 7 8 9
Output (5,b) (1,a) (7,a) (8,a)

0

1 2

3

4

5

6

7

8

9

a

a

a

a

a

b

b

b

c

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZFG (Fiala, Green)

A dictionary is stored in a tree structure, edges are labeled with
strings of characters. These strings are in the window and each node
of the tree contains a pointer to the window and identifying symbols
on the path from the root to the node.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZW (Welch), LZC

The output indexes are only, or

the dictionary is initiated by items for all input symbols

the last symbol of each phrase is the first symbol of the following phrase.

Input a b a b c b a b a b a a a a a
Index 4 5 6 7 8 9 10
Output 1 2 4 3 5 8 1 10 11

Overflow⇒ next phrase is not transmitted and coding continues statically.
it’s a LZW +

Pointers are encoded with prolonging length.

Once the compression ratio will decrease, dictionary will be deleted and it
starts from the beginning.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

LZT, LZMW, LZJ

As LZC, but when a dictionary overflows, phrases, that were least used in the recent
past, are excluded from the dictionary. It uses phrasing for binary coding of phrase
indexes.
As LZT, but a new phrase isn’t created by one character addition to the previous
phrase, but the new phrase is constructed by concatenation of two last encoded
ones.
Another principle of dictionary construction.

At the beginning only the single symbols are inserted.

Dictionary is stored in a tree and contains all the substrings processed by
string of the length up to h.

Full dictionary⇒

statical procedure,
omitting of nodes with low usage frequency.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Dictionary methods with dictionary restructuring+ Ongoing organization of source units→ shorter strings of the
code.+ Variants of heuristics (count of occurrences, moving to the
beginning (BSTW), change the previous, transfer of X forward).+ BSTW (advantage: high locality of occurrences of a small number
of source units.+ Example: I’m not going to the forest, . . . , 1n2nkn.+ Generalization: recency coefficient, Interval coding.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Interval coding

Representation of the word by total sum of words from the last
occurrence.
The dictionary contains words a1, a2, . . . , an, input sequence contains
x1, x2, . . . , xm. The value LAST(ai) containing the interval form last
occurrence is initialized to zero.

for t := 1 to m do

begin {xt = ai}
if LAST(xt = 0) then y(t) = t + i − 1

else y(t) = t − LAST(xt);
LAST(xt):=t

end .

Sequence y1, y2, . . . , ym is an output of encoder and can be encoded
by one code of variable length.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Syntactical methods

+ the grammar of the message language is known.+ left partition of derivational tree of string.+ global numbering of rules.+ local numbering of rules.+ Decision-making states of LR analyzer are encoded.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Context modeling+ fixed context – model of order N.+ combined approach – contexts of various length.+ p(x) =
∑m

n=0 wnpn(x).+ wn fixed, variable.+ time and memory consuming.+ assignment of probability to the new source unit: e = 1
Cn+1

.+ automata with a finite context.+ dynamic Markov modeling.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Checking the correctness of the text

+ Checking of text using frequency dictionary.+ Checking of text using a double frequency dictionary.+ Interactive control of text (ispell).+ Checking of text based on regularity of words, weirdness
coefficient.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Weirdness coefficient

Weirdness coefficient of trigram xyz

KPT = [log(f(xy) − 1) + log(f(yz) − 1)]/2 − log(f(xyz) − 1), where
f(xy) resp. f(xyz) are relative frequencies of bigram resp. trigram,
log(0) is defined as −10.

Weirdness coefficient of word KPS =

√
n∑

i=1

(KPT i − SKPT2), where

KPT i is a weirdness coefficient of i-th trigram SKPT is a mean rate of
weirdness coefficients of all trigrams contained in the word.

Petr Sojka PV030 Textual Information Systems

� yA|

Huffman coding
Adaptive dictionary methods

Outline (Week fourteen)+ Querying and TIS models.+ Boolean model of documents.+ Vector model of documents.+ TIS Architecture.+ Signature methods.+ Similarity of documents.+ Vector model of documents (completion).+ Extended boolean model.+ Probability model.+ Model of document clusters.+ TIS Architecture.+ Automatic text structuring.+ Documents similarity.+ Lexicon storage.+ Signature methods.+ Compression using neural networks.
Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Querying and TIS models

Different methods of hierarchization and document storage→
different possibilities and efficiency of querying.+ Boolean model, SQL.+ Vector model.+ Extended boolean types.+ Probability model.+ Model of document clusters.

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Blair’s query tuning

The search lies in reducing of uncertainty of a question.

1 We find a document with high relevance.

2 We start to query with it’s key words.

3 We remove descriptors, or replace them with disjunctions.

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Infomap – attempt to semantic querying

System http://infomap.stanford.edu – for working with
searched meaning/concept (as opposed to mere strings of
characters).
Right query formulation is the half of the answer. The search lies in
determination of semantically closest terms.

Petr Sojka PV030 Textual Information Systems

http://infomap.stanford.edu

� yA|

Boolean model

Boolean model+ Fifties: representation of documents using sets of terms and
querying based on evaluation of boolean expressions.+ Query expression: inductively from primitives:

term
attribute name = attribute value (comparison)
function name(term) (application of function)

and also using parentheses and logical conjunctions X and Y, X or
Y, X xor Y, not Y.+ disjunctive normal form, conjunctive normal form+ proximity operators+ regular expressions+ thesaurus usage

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Languages for searching – SQL+ boolean operators and, or, xor, not.+ positional operators adj, (n) words, with, same, syn.+ SQL extension: operations/queries with use of thesaurus
BT(A) Broader term
NT(A) Narrower term
PT(A) Preferred term
SYN(A) Synonyms of the term A
RT(A) Related term
TT(A) Top term

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Querying – SQL examples

ORACLE SQL*TEXTRETRIEVAL

SELECT specification_of_items

FROM specification_of_tables

WHERE item

CONTAINS textov_expression

Example:

SELECT TITLE

FROM BOOK

WHERE ABSTRACT

CONTAINS ’TEXT’ AND RT(RETRIEVAL)

’string’ ’string’* *’string’ ’st?ing’

’str%ing’ ’stringa’ (m,n) ’stringb’

’multiword phrases’ BT(’string’,n)

BT(’string’,*) NT(’string’,n)

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Querying – SQL examples

Example:

SELECT NAME

FROM EMPLOYEE

WHERE EDUCATION

CONTAINS RT(UNIVERSITA)

AND LANGUAGES

CONTAINS ’ENGLISH’ AND ’GERMAN’

AND PUBLICATIONS

CONTAINS ’BOOK’ OR NT(’BOOK’,*)

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Stiles technique/ association factor

asoc(QA, QB) = log10
(fN − AB − N/2)2N

AB(N − A)(N − B)

A – number of documents ,,hit“ by the query QA

B – number of documents ,,hit“ by the query QB (its relevance we
count)
f – number of documents ,,hit“ by both the queries
N – total sum of documents in TIS
cutoff (relevant/ irrelevant)
clustering/nesting 1. generation, 2. generation, . . .

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Vector model

Vector model of documents: Let a1, . . . , an be terms, D1, . . . , Dm
documents, and relevance matrix W = (wij) of type m, n,

wij ∈ 〈0,1〉

{
0 is irrelevant
1 is relevant

Query Q = (q1, . . . , qn)

S(Q, Di) =
∑

i qiwij similarity coefficient

head(sort(S(Q, Di))) answer

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Vector model: pros & cons

CONS: doesn’t take into account ?”and”? ?”or”?
PROS: possible improvement:

normalization of weights

Term frequency TF
Inverted document frequency IDF ≡ log2

m
k

Distinction of terms

normalization of weights for document: TD√∑
j TD

3
j

normalization of weights for query:
(
1
2 ×

1
2 TF

max TFi

)
× log2

m
k

[POK, pages 85–113].

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Automatic structuring of texts

+ Interrelations between documents in TIS.+ Encyclopedia (OSN, Funk and Wagnalls New Encyclopedia).+ [SBA]
http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs+ Google/CiteSeer: ,,automatic structuring of text files“

Petr Sojka PV030 Textual Information Systems

http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs

� yA|

Boolean model

Similarity of documents

+ Most often cosine measure – advantages.+ Detailed overview of similarity functions see chapter 5.7
from [KOR] (similarity).

Petr Sojka PV030 Textual Information Systems

� yA|

Boolean model

Lexicon storage

[MeM] Mehryar Mohri: On Some Applications of Finite-State
Automata Theory to Natural Language Processing, Natural
Language Engineering, 2(1):61–80, 1996.
http://www.research.att.com/~mohri/cl1.ps.gz

Petr Sojka PV030 Textual Information Systems

	Why information retrieval?
	Inverted index
	Query processing
	Outlook
	Tokenization
	Phrase queries
	Index System Implementation
	Huffman coding
	Adaptive dictionary methods
	Boolean model

