PVYO20 Textual Information Systems

Petr Sojka

Faculty of Informatics
Masaryk University, Brno

Spring 2012

Petr Sojka PYO30 Textual Information Systems

Indexing methods

=5

manual vs. automatic, pros/cone

&

stop-list (words with grammatical meaning — conjunctions,
prepositions, ...)
@ not-driven
@ driven (a special dictionary of words: indexing language
assessment) — pasa—list, thesaurus.

&

synonyms and related words.

&

inflective languages: creating of registry with language support —
lemmatization.

Petr Sojka PYO30 Textual Information Systems

Text analysis —choice of words for index

Frequency of word occurrences is for document identification significant.
English frequency dictionary:

1 the 69971 0.070 G in 21341 01286
2 of 26411 0.073 7 that 10595 0.074
5 and 28852 0.086 & s 10099 0.086
4 to 206149 0104 9 was 9816 0.088
5 a 22237 0416 10 he 9543 0.095
=y

Zipf's law (principle of least resistance)
order X frequency = constant

N
Zorder:4 frequency order
text words count
15 The rule 20-80: 20 % of the most frequent words make 80 % of text

[MEL, fig. 419].

1¥ Cumulative proportion of used words CFW =

Petr Sojka PYO30 Textual Information Systems

Automatic indexing method

Automatic indexing method is based on word significance derivation from
word frequencies (cf. Collins-Cobuild dictionary); words with low and high
frequency are cut out:

INPUT: n documents

OUTPUT: a list of words suitable for an index creation

@ We calculate a frequency FRECQ for every document i € (1,n) and
every word k € (1,K) [Kis a count of different words in all documents].

© We calculate TOTFREQ, = >, FREQy.

© We create a frequency dictionary for the words k € (1,K).

©Q We set down a threshold for an exclusion of very frequent words.

@ We set down a threshold for an exclusion of words with a low frequency.

@ We insert the remaining words to the index.

Questions of threshold determination [MEL, fig. 4.20].

Unstructured (text) vs. structured
(database) data in 1996

160
140+
120+
100+
801 @Unstructured
=0l OStructured
A04
204
0-

Data volume Market Cap

Unstructured (text) vs. structured
(database) data in 2006

Google

YaHooO!

EUnstructured
OStructured

Data volume Market Cap

Why information retrieval?

IR using the Boolean model

@ Queries are Boolean expressions, e.g., Caesar AND Brutus

@ The seach engine returns all documents that satisfy the Boolean
expression

@ Does Google use the Boolean model?

Petr Sojka PYO30 Textual Information Systems

Unstructured data in 1650

m Which plays of Shakespeare contain the words
Brutus AND Caesarbut NOT Calournia?

= One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?
= Slow (for large corpora)
» NOT Galpurryais non-frivial
= Other operations (e.g., find the word Romansnear
counirymen) not feasible

= Ranked retrieval (best documents to return)
= Later lectures

Term-document incidence

Artony and Cleopatra Julius Caesar The Tempest Hamlet Othelo Wacheth
Antony 1 1 L] L] L] 1
Bnrtus 1 1] 1]]
Caesar 1 1 0 1 1 1
Calpumia] 1] L]]]
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1]
Brutus AND Caesar but NOT 1if play contains

Calpurnia word, O otherwise

Incidence vectors

s So we have a 0/1 vector for each term.

m To answer query: take the vectors for Bruifus,

Caesarand Calournia (complemented) = bitwise
AND.

= 110100 AND 110111 AND 101111 = 100100.

Answers to query

= Antony and Cleopatra, Act lll, Scene ii

= Agrinpa [Aside to DOMITIUS ENOBARBUS] Why, Encbarbus,

. When Antony found Julius Caesar dead,
. He cried almost to roaring; and he wept
. When at Philippi he found Brutus slain.

= Hamlet, Act Ill, Scene ii

s lord Polonius | did enact Julius Caesar | was killed i the
. Capitol, Brutus llled me.

Bigger corpora

e ——— |
m Consider /= 1M documents, each with about 1K
terms.

m Avg 6 bytes/term ingl spaces/punctuation
» 6GB of data in the documents.

n Say there are m= 500K disfinctterms among
these.

Can't build the matrix

m 500K x 1M matrix has half-a-trillion 0’s and 1’s.
s But it has no more than one billion 1's.

« Mmatrix is extremely sparse. #Why?
n What's a better representation?

» We only record the 1 positions.

Inverted index

m For each term 7, we must store a list of all
documents that contain 7.

s Do we use an array or a list for this?

Brutus| w——=>[214] 8 16] 32] 64[128] |

calpurnia|"——>[A1] 2] 3] 5[& [3] 21 34

Caesar| Ww——=[13J16] T [[[T 1]

What happens if the word Caesar is
added to document 147

Inverted index construction

Documents to

_ ﬁ-'._... ‘ Friends, Romans, countrymen. ‘
be indexed. =

Token stream J_L ‘ Friends || Romans | Countrymen ‘
More o Li . B
these jater inguistic modules
- .
Modified tokens. | friend | ‘ roman ‘ ‘ countryman ‘

—
Inverted index. U o

Indexer steps

= Sequence of (Modified token, Document ID) pairs. 1" ™"
e i
S
Doc 1 Doc 2 — AL !
| did enact Julius So let it be with g
Caesar | was killed Caesar. The noble e
i the Capitol; Brutus hath told you b
Brutus killed me. | | Caesar was ambitious e
caesar 2

anbtoes | 13 2

= Sort by terms.

Core indexing step.

Tm

|

il
eract
(LI
cagsar
|

was
Kl

r

the
capttol
bretes
Kk ol
me

0

the
1whk
brates
lat
tokl

am b o

Doc #

Term

Doc: #

ambitious.

be
brutus
brutus
capitol
caesar
Gaesar
caesar
did
enact
hath

L O O U O P P P

s Multiple term entries in a
single document are
merged.

m Frequency information is
added.

- =

Why frequency?
Will discuss later.

Term
ambitiouz
5

brutus
brutus
capitol
caezar
caezar
caesar
did
enact
hath

|

|

i

it

julius
hilled
hilled
lat

me
noble
=0

the

the
tald
wou
waz
waz
with

Doc #

{1 5))) ([e) W)))) Y

Tem Doc #
am btk s
b
bt
bntig
captol
cazar
cazar
Gl
ehact
hath

|

r

1§

(LILH
kled
kt

me
wbk
w0

the

the

okl

ou

war
war
with

Te m e

L) Y e 8 Y P)

Y 5 Y P) P)) P [)) 1

term doclD freq

ambitious 2 1 term coll. freq. — postings lists
be 2 1 ambitious — Z
brutus 1 1 be N Z
brutus 2 1 m‘ N Zﬁ
capitol g 1 capitol | 1 - []
caeear 1 4 caesar | 3 — Z —
o f f did | 1 - [
enact 1 1 enact | 1 - ;

hath 2 A hath | 1| - 2]

| 4 2 12 - []

' 4 K - [

v 2 1= - B
julius 1 1 julius N Z

killed g 2 Killed - []

let 2 1 let | 1 — ?

noble 2 1 =

o0 5 4 noble — i

the 1A - 2]

the 2 4 the - [1]-[2]
told 2 told - 2]
w2 A - [2

was 1 1 was — iH
was 2 A with - 2

with 2 1

s The result is split into a Dictionary file and a
Postingsfile.

Tem Doc # Freq)

am btk 2 i Doc # FEq
be] 1 Tem Ndoes Colfeq _._._____________._p 2 1
bmts 1 1 Ial'ﬂhleS : : _._._.___________._.-; ;_I- :
o i3
2;:1 II§I 1 : b rving 2 2 __.iy 5 T
caplil i 1 " ;]
ceEsar ,-I, ,I‘ caszar 2 3 1 1
ciar = < am 1 1 —‘—T'_‘ﬂ z E
L ! ! eract 1 1 ‘_‘—-—-—-_._________. : ;
e 1act d ! \ath i 1 o | !
L=t = ! 1 1 A "—‘—-—-—-__________.' = :
1 1 B T 1 1 e 3 =
r L T ——————
It 2 1 Iiins 1 1] i !
iz 1 i Kkl i z "“‘—'-—-—-—._.___________ = :
Klkd 1 3 Et 1 1 _“‘\-—-—._._,___‘_‘_‘_’ ! i
kt 2 1 me 1 1 _“_‘_H_""‘“‘—-—-—. il 2
me 1 1 10hE 1 1 ‘_‘_‘_'_'_"“‘-"—-_._.___ .I. :
e i : = ! l \%: 2 i
o 1 1 | i
i Z ! wai 2 2 = i
ok 2 ! Wl 1 1 k\‘ 2 1
o 2 1 2 |
war 2 1 o i
Wit 2 1 z !

s Where do we pay in storage?

Doc# Feq
Term M docz Collfreq_.___________._-—-—‘ 2 1
ambitious 1 q _______._._-—-—-—'—" 2| :
be 1 e : 5 ;
br ubus 2 e 1 i
capitol 1 A : 1 H
caesar 2 3_.___________‘_‘_‘_-. :I' VV-I" quantlfy
did 1 ——
e i i————= . thestorage,
hath 1 i
| e later.
P 1 1-—-—-_._.____‘_‘_‘___‘_* 2 1
Terms? p (L] gy R | S|
julius 1 1 _‘_'_'_‘—-—-_._,___‘_‘___’ i :
killed 1] T 2 !
Iet I e
me 1 1 2 1
noble 1 1\%: [1
50 1 1 2 :
the 2 2% E 1
il 1 1\ ! 1
ol 1 1] i
was 2 2 2 1
with 1 1
17

The index we just built

Today's
s How do we process a query? focus

» Later - what kinds of queries can we process™

Query processing: AND

s Consider processing the query:
Brutus AND Caesar
» Locate Brudusin the Dictionary;

= Retrieve its postings.

» Locate Caesarin the Dictionary;
= Retrieve its postings.

» “‘Merge” the two postings:

16H32H64H128\
- e Caosar

The merge

s Walk through the two postings simultaneously, in
time linear in the total number of postings entries

_16H32H64H128|
H . E E 34| Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclD.

20

Query processing

Intersecting (“merging”) two postings lists

MERGE(p, q)

1 anewer « ()

2 whilep #NiLand g # NIL

o doif doclD[p] = doclD[q]

4 then ApD(answer, doclD[p])
5 else if doclD[p] < doclD[q]
© then p «— next[p]

7 else g < next[q]
& return answer

Petr Sojka PYO30 Textual Information Systems

Boolean queries: Exact match

s The Boolean Retrieval model is being able to ask a
query that is a Boolean expression:

= Boolean Queries are queries using AND, OF and
NOT to join query terms
» “iews each document as a set of words
s |S precise; document matches condition or not.

= Primary commercial retrieval tool for 3 decades.

m Professional searchers (e.g., lawyers) still like
Boolean queries:

= You know exactly what you're getting.

21

Example: WestLaw i s westiav con

s Largest commercial (paying subscribers) legal
search service (started 1975; ranking added 1992)

m Tens of terabytes of data; 700,000 users

Majority of users stilf use booglean queries

Example query:

= What is the statute of limitations in cases involving
the federal tort claims act?

« LIMITI/3 STATUTE ACTION /S FEDERAL /2 TORT
/3 CLAIM

/3 = within 3 words, /S =in same sentence

22

Example: WestlLaw i oo wesiaw conv

= Another example query:

= Requirements for disabled people to be able to
access a workplace

= disabl! /p access! /s work-site work-place
(employment /3 place
Note that SPACE is disjunction, not conjunction!

Long, precise queries; proximity operators;
incrementally developed; not like web search

m Professional searchers often like Boolean search:
= Precision, transparency and control

But that doesn’'t mean they actually work better. 23

Boolean queries:

More general merges
]

» Exercise: Adapt the merge for the queries:
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time QO(x*1)
or what can we achieve?

24

Query optimization

s What is the best order for query processing?

s Consider a query that is an AV of fterms.

m For each of the fterms, get its postings, then
AND them together.

w——>>[2 [4 | 8 16] 32 64[128]]

|Brutus]
[calpurnia|e—=>[T T 2[3] 58 [16] 21 34

Caesar|] m—>[13J16] [T T T T 1

Query: Brutus AND Calpurnia AND Caesar

26

Query optimization example

m Process in order of increasing freq:
w Starf with smallest sef then keep cutfing firther.

{%

This is why we kept
freq in dictionary

Brutus| 'Ww——>[214 [8 [16] 32] 64[128]]
Calpurnia/™——=[1] 2] 3[518 [13[21 34
Caesar|] 'Ww——=[13[16] [[[T T 1

Execute the query as (Caesar AND &UM}ANDQQW

Query processing

Optimized intersection of a set of postings lists

MERGE((t:))

terms «— SORTBYFREQ((t;))

result «— postings|first[terms]]

terms «— rest[terms]

while terms # NIL and result # NIL

do list < postings[first[terms]]
terms « rest[terms]
MERGEINPLACE (result, list)

return result

(NS N O B G B N G U A O IR

Petr Sojka PYO30 Textual Information Systems

More general optimization

» e.g., (madding OR crowd) AND (ignoble
OR strife)

» Getfreg's for all terms.

= Estimate the size of each OR by the sum
of its freq’s (conservative).

= Process in increasing order of O sizes.

28

Exercise

= Recommend a query
processing order for

(tangerine OR trees) AND Term Freq
(marmalade OR skies) AND eyes 213312
(kaleidoscope OR eyes) kaleidoscope 87009
marmalade 107913
skies 271658
tangerine 46653

trees 316812

29

Exercise

m Try the search feature at
http:/fiwww.rhymezone.com/shakespeare/

s Write down five search features you think it could
do better

a1

What's ahead in IR?
Beyond term search

s What about phrases?
v Starnford University
s Proximity: Find Gafes NEAR Microsoft

» Need index to capture position information in
docs. More later.

m Zones in documents: Find documents with
(author = Ulimam AND (text contains aufomata).

az2

Ranking search results

s Boolean queries give inclusion or exclusion of
docs.
s Often we want to rank/group results
= Need to measure proximity from query to each
doc.
= Need to decide whether docs presented to user
are singletons, or a group of docs covering various
aspects of the query.

a4

Evidence accumulation
- --——
s 1vs. 0 occurrence of a search term
= 2vs. 1 occurrence
= 3 VS, 2 occurrences, efc.
= Usually more seems better
m Need term frequency information in docs

a3

IR vs. databases:
Structured vs unstructured data

m Structured data tends to refer to information in

“tables”
Employee Manager Salary
Smith Jones 50000
Chang Smith 60000
Ivy Smith 50000

Typically allows numerical range and exact match
(for text) queries, e.g.,

Salary < 60000 AND Manager = Smith.

35

The web and its challenges

s Unusual and diverse documents

» Unusual and diverse users, queries,
information needs

= Beyond terms, exploit ideas from social
networks

= link analysis, clickstreams ...

= How do search engines work”? And how

can we make them better?
40

Resources for today's lecture
- -——
= |ntroduction to Information Retrieval, ¢ch. 1
s Managing Gigabytes, Chapter 3.2
s Modern Information Retrieval, Chapter 8.2

s Shakespeare:
http :fiwww.rhymezone.comishakespeare/

» Try the neat browse by keyword sequence
feature!

Any questions? y

Outlook

Outline (Week seven)

15 Excursus to the computational linguistics.
15 Corpus linguistics as an TIS example.

15 Search methods with preprocessing of text and pattern (query).

Petr Sojka PYO30 Textual Information Systems

Outlook

Lemmatization for index creation

Morphology utilization for creating of dictionary
¥ stem/ root of words (ucit, uc);
¥ program ajka (abin),
http://nlp.fi.muni.cz/projekty/ajka/ examples;

I g techniques of patterns for stem determination;

Petr Sojka PYO30 Textual Information Systems

http://nlp.fi.muni.cz/projekty/ajka/

Outlook

Registry creating — thesaurus

= Thesaurus — a dictionary, containing hierarchical and associative
relations and relations of equivalence between particular terms.

15 Relations between terms/lemmas:

@ synonyms — relation to a standard term; e.g. ,,5e€”;
relation to a related term (RT); e.g. ,.see also®,
relation to a broader term (BT);
relation to a narrower term (NT);
hypernyms (car:means of transport); hyponyms (bird:jay);
meronym (door:lock); holonyms (hand:body); antonyms
(good:bad).

w5 Dog/Fik, Havel/president

o
o
o
o

Petr Sojka PYO30 Textual Information Systems

Outlook

Thesaurus construction

manually/ half-automatically

1= heuristics of thesaurus construction:
@ hierarchical structure/s of thesaurus
o field thesauri, the semantics is context-dependent (e.g.

field, tree in informatics)
@ compounding of terms with a similar frequency
@ exclusion of terms with a high frequency
15 breadth of application of thesaurus and lemmatizer: besides of
spelling indexing, base of grammar checker, fulltext search.

15 projekte WORDNET, EUROWORDNET

1z module add wordnet; wn
wn faculty -over -simsn —-coorn

Petr Sojka PYO30 Textual Information Systems

Outlook

Hierarchical thesaurus

1= Knowledge base creation for exact evaluation of document
relevance.

15 topic — processing of semantic maps of terms Visual Thesaurus
http://www.visualthesaurus.com

15 Tovek Tools, Verity.

Petr Sojka PYO30 Textual Information Systems

http://www.visualthesaurus.com

Part |

Excursus to the Computational Linguistics

Petr Sojka PYO30 Textual Information Systems

Computational linguistics

I string searching — words are strings of letters.

&

word-forming — morphological analysis.
grammar (CFG, DFG) — eyntactic analysis.
meaning of sentences (TIL) — semantic analysis.

context — pragmatic analysis.

5 8 & §

full understanding and communication ability — information.

Petr Sojka PYO30 Textual Information Systems

Corpus Query Processor

basic queries

@ Havel”
45; Cesky prezident Vaclav <Havel> s¢ viera na
89: jak = Fekl Véaclav <Havel>, kaZdy obéan
248: vice nez rokem <Havel> tekl Pravda vitézl

regular expressions
@ Pravdalpravda®;
@ . (Plp)ravda“;
@ . (Plp)ravd[a,u,0.y]%
@ ,pravd.™; ,pravd.+%; ,post?el”;

word sequence

@ prezident(alu)”,,Havl(a|ovi)";
9 ,atak"
@ prezident®; [1*,Havel”;

“ “ “ “

PYO30 Textual Information Systems

Corpus Query Processor

queries for positional attributes
@ [word = ,Havel“];
@ [lemma = ,prezident”] [1* [lemma = ,Havel“];

@ ... Zenu prezidenta Havla ...
[lemma = ,hnat“] [] [lemma = ,Havel"];

@ [word =, Zen(uleme)” & lemma |=,Zena“]; | ... or
I... not

some other possibilities
@ [lemma = ,prezident”] [1* [lemma = ,Havel“] within g;...10, 3 5
@ [lemma = ,Havel“] within 20 </s>,Pravda®

@ <s>a:[word=,.Zena|Mu?|Clovék“] [1* [lemma = alemma]

Petr Sojka PYO30 Textual Information Systems

Face and back of relevant searching

Large computational power of today’s computers enablee:

9 efficient storing of large amount of text data (compression, indexing);

@ efficient search for text strings.
A man sitting behind a computer uses all this, to obtain from so processed
documents information, that he is interested. Really?
Example: In text database there is stored a few last years of daily newspaper. I'd like
to obtain information about president Vaclav Havel.

a/>HAVEL
b/>more precise queries
cl...
Computer + human _ valuable
computational power inteligence | information
(putat power) (.|g) I] The goal of
+ time
+ money

everybody — is to transfer the largest possible part of intelligence (time, money, ...)

to computer.
Petr Sojka PYO30 Textual Information Systems

Face and back of relevant searching

information ideal of ideals no Searching
ragmatic
prad . context no information Correct
analysis
semantic sentence) ,
. i starting-up Spell translation
analysis meaning TIL
syntactic grammar ,
artiall check
analysis CFG,pcG | PPN
morphological | word-formin
P g g yes Check Simple translat
analysis lemma
words are strings string
; yes
of letters searching

Petr Sojka PYO30 Textual Information Systems

Face and back of data acquisition from natural language

Do we really know, what is information contained in the text in natural language?

e Frantigek Novak weighs 100 kg. — RDB
object property value attribut1, attribut2, ...
o Frantidek Novak likes beer. ? key value
Frantigek Novak likes /'

Jana Novotna

e F. N. is an old honest man. — .?
Spring erupted in full force.

Words of the natural language denote objects, their properties and relations between
them. It’'s possible to see the words and sentences also as functions” of its kind,
defined by their meaning.

@ A man, who climbed a highest Czech eight-thousander, is my grandson.

Petr Sojka PYO30 Textual Information Systems

Corpus linguistics

©5 Corpus: electronic collection of texts, often indexed by linguistic
tage.
15 Corpus as a text information system: corpus linguistice.

1 BNC, Penn Treebank, DESAM, PNK, ...; ranges from millions to
billion positions (words), special methods necessary.

15 Corpus managers CQP, GCQP, Manatee/Bonito,
http://www.fi.muni.cz/"pary/

see [MAR].

Petr Sojka PYO30 Textual Information Systems

http://www.fi.muni.cz/~pary/

What's a corpua?’

Definition: Corpus is a large, internaly structured compact file of
texts in natural language electronically stored and processable.

@ Indian languages have no script — for a finding of a grammar it’s
necessary to write up the spoken word.

@ 1967 — . corpus in U. 5. A. (KuCera, Francis) 1 000 000 words.

@ Noam Chomsky — refuses corpora.

@ Today — massive expansion.

Petr Sojka PYO30 Textual Information Systems

Corpora on Fl

@ WWW page of Pavel Rychly (~pary) links to basic information.
Bonito, Manatee.

o IMS CORPUS WORKBENCH — a toolkit for efficient
representation and querying over large text files.

Petr Sojka PYO30 Textual Information Systems

http://www.fi.muni.cz/~pary/

Logical view of corpus

Sequence of words at numbered positions (first word, nth word), to which
tags are added (addition of tags called corpus tagging). Tags are
morphological, grammatical and any other information about a given word.
It leads to more general concept of position attributes, those are the
most important tagging type. Attributes of this class have a value (string)
at every corpus position. To every of them one word is linked as a basic and
positional attribute word. In addition to this attribute, further position
attributes may be bundled with each position of any text, representing the
morphological and other tage.

Structural attributes — sentences, paragraphs, title, article, SGML.

POS2

POS1

LEMMA &esky prezident vaclav havel dnes

WORD Ceského prezidenta Vaclava Havla dnes ~ 107

L I 1 1 I
(0] d 2 5 4

Petr Sojka PYO30 Textual Information Systems

Internal architecture of corpus

Two key terms of internal representation of position attributes are:

@ Uniform representation: items for all attributes are encoded
as integer numbers, where the same values have the same digital
code. A sequence of items is then represented as a sequence of
integers. Internal representation of attribute word (as well as of
any other pos. attribute) is array(0..p-1) of Integer,
where p is position count of corpus.

@ Inverted file: for a sequence of numbers representing a sequence
of values of a given attribute, the inverted file is created. This file
contains a set of occurrences in position attribute for every
value (better value code). Inverted file is needed for searching,
because it directly shows a set of occurrences of a given item,
the occurrences then can be counted in one step.

Petr Sojka PYO30 Textual Information Systems

Internal architecture of corpus (cont.)

File with encoded attribute values and inverted file as well have
auxiliary files.

@ The first data structure is a list of items or ,lexicon®: it
contains a set of different values. Internally it’s a set of strings
occurring in the sequence of items, where a symbol Null (octal
000) is inserted behind every word. The list of items already
defines a code for every item, because we suppose the first item
in the list to have a code O, following 1 etc.

Petr Sojka PYO30 Textual Information Systems

Internal architecture of corpus (cont.)

There are three data structures for the inverted file:

@ The first is an independent inverted file, that contains a set of
corpus positions.

@ The second is an index of this file. This index returns for every
code of item an input point belonging to an occurrence in inverted
file.

@ The third is a table of frequency of item code, which for each item
code gives a number of code occurrence in corpus (that is of
course the same as the size of occurrence set).

Petr Sojka PYO30 Textual Information Systems

Recap of the previous lecture

= Basic inverted indexes:

» Structure: Dictionary and Postings
n Key step in construction: Sorting
= Boolean query processing
» Simple optimization
= Linear time merging
= Overview of course topics

Plan for this lecture

Finish basic indexing
= [he Dictionary
» Tokenization
» What terms do we put in the index?
s Postings
» Query processing — faster merges
» Proximity/phrase queries

Recall basic indexing pipeline

Documents to
be indexed.

H—'._'.. Friends, Romans, countrymen.

E

Token stream. J_L Friends || Romans | | Countrymen
‘ Linguistic modules W
Modified tokens. N friend | |roman| |countryman

Indexer | friend
ﬂ roman

Inverted index.

w2 3]

| counrrymaﬂﬂﬂ’ID

o [1H2}-
13 — 16

Parsing a document

= What format is it in?
» pdf/word/excel/html?
= What language is it in?
= What character set is in use?

Each of these is a classification problem, which
we will study later in the course.

But these tasks are often done heuristically ...

Complications: Format/language
—

s Documents being indexed can include docs from
many different languages

» A single index may have to contain terms of
several languages.

» Sometimes a document or its components can
contain multiple languages/formats

= French email with a German pdf attachment.
s What is a unit document?
= Afile?
» An email? (Perhaps one of many in an mhox.)
= An email with 5 attachments?
= A group of files (PPT or LaTeX in HTML)

Tokenization

Tokenization

Petr Sojka PYO30 Textual Information Systems

Tokenization

Definitions

@ Word — A string of characters as it appears in the text.

@ Term — A “normalized” word (case, morphology, spelling etc); an
equivalence class of words.

@ Token — An instance of a word or term occurring in a document.

@ Type — A class of all tokens containing the same character
sequence.

Petr Sojka PYO30 Textual Information Systems

Tokenization

= Input: “Friends, Romans and Countrymen’
s Output: Tokens

=« Friends

= Romans

= Countrymen
m Each such token is now a candidate for an index

entry, after further processing

= Described below

s But what are valid tokens to emit?

Tokenization

= Issues in tokenization:
» Finland’s capital —
Finland? Finlands? Finland’s?
» Hewlett-Packard — Hewlett

and Packard as two tokens?
= State-of-the-art break up hyphenated sequence.
= co-education ?
= the hold-him-back-and-drag-him-away-maneuver ?
= [T's effective to get the user to put in possible hyphens
» San Francisco: one token or two? How

do you decide it is one token?

Numbers

= 3/12/91 Mar. 12, 1991
= 55 B.C.

= B-52

= My PGP key is 324a3df234ch23e

= 100.2.86.144

» Often, don't index as text.
= But often very useful think about things like looking up
error codesistackiraces on the web
= (ONe answer is Using n-grams: Lecture 3}
« Will often index *meta-data” separately
= Creation date, format, etc.

Tokenization: Language issues

s L'ensemble — one token or two?
« L?7L'?Le?
« Want Fensemble to match with un ensemble

= German noun compounds are not segmented
o Lebensversicherunasaesellschaftsanasstellter
s 'life insurance company employee’

Tokenization: language issues

s Chinese and Japanese have no spaces between
words:

= P54V R P EITE EAE 1 EE R FEP R B Bk,
= Not always guaranteed a unique tokenization

s Further complicated in Japanese, with multiple
alphabets intermingled

« Dates/amounts in multiple formats
5004 [HIFIET. z-gh%ﬁb’w;m
Katakana Hiragana Kanji Romaiji

End-user can express query entirely in hiraganal

Arabic script example

K &« T aola Jd
unba tik
[kitabun/ ‘a book’

PYO30 Textua | Information Systems

Tokenization: language issues

= Arabic (or Hebrew) is basically written right to
left, but with certain items like numbers written
left to right

m Words are separated, but letter forms within a
word form complex ligatures

m el (DAY e lele 132 20 1962 4iw (3)i jali Cliw

u ‘ o > «— start

» ‘Algeria achieved its independence in 1962 after 132
years of French occupation.’

s With Unicode, the surface presentation is complex,
but the stored form is straightforward

Normalization
—

Need to “normalize” terms in indexed text as well
as query terms into the same form
« We want to match U.S.A. and USA

We most commonly implicitly define equivalence
classes of terms
» e.9., by deleting periods in a term
Alternative is to do asymmetric expansion:
= Enter: window Search: window, windows
» Enter windows Search: Windows, windows
=« Enter Windows Search: Windows
Potentially more powerful, but less efficient

Normalization: other languages

s Accents: résumeé vs. resume.
= Most important criterion:

= How are your users like to write their queries for
these words?

= Evenin languages that standardly have accents,
users often may not type them

= German: Tuebingen vs. Tibingen

= Should be equivalent

Normalization: other languages

s Needto “hormalize” indexed text as well as query
terms into the same form
7H30H vs. 7/30
s Character-level alphabet detection and
conversion
= Tokenization not separable from this.

= Sometimes ambiguous:

Is this
Morgen will ich in W/ German “mit™?

Case folding

= Reduce all letters to lower case

» exception: upper case (in mid-sentence?)
= 2.0, General Motors
= Fedvs. fed
= SAIL vs. sail

» Often best to lower case everything, since users
will use lowercase regardless of ‘correct’
capitalization. ..

Stop words

= With a stop list, you exclude from dictionary
entirely the commonest words. Intuition:

= They have little semantic content: the, a and fo, bs
= Theytake alot of space: ~30% of postings for top 30

s But the trend is away from doing this:
» Good compression technigues (lecture 2) means the space for
including stopwiards in a system is very small
= Good query optimization techniques mean you pay little at
query time for including stop words.
= Youneedthem for:
= Phrase queries: "King of Denmark”
= Warious song titles, etc: "Let it be”, "To be or not to be”
= "Relational" queries: "flights to London”

Thesauri and soundex

= Handle synonyms and homonyms

» Hand-constructed equivalence classes
= .., car = automobile

= color = ¢golour
= Rewrite to form equivalence classes
= Index such equivalences

= VWhen the document contains automobile, index it
under car as well (usually, also vice-versa)

s Or expand query?

» When the query contains automobile, look under
caras well

Soundex

m Traditional class of heuristics to expand a query
into phonetic equivalents
» Language specific — mainly for names
« E.g., chebyshev — tchebycheff

= More on this later ...

Lemmatization

= Reduce inflectional/variant forms to base form
] E.Q.,

» am, are, is > be

= car, cars, car's, cars'— car

n the boy's cars are different colors — the boy car
be different color

s Lemmatization implies doing “proper” reduction
to dictionary headword form

Stemming

]
= Reduce terms to their “roots” before indexing
s “Stemming” suggest crude affix chopping

» language dependent

» e.9., automate(s), automatic, automation all
reduced to automat.

for example compressed for exampl compress and
and compression are both E> compress ar both accept
accepted as equivalent to as equival to compress

compress.

Porter's algorithm

s Commonest algorithm for stemming English
» Results suggest at least as good as other
stemming options
s Conventions + 5 phases of reductions
» phases applied sequentially
» each phase consists of a set of commands

» sample convention: Ofthe rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter
- 00000000
m SS€S — 88
[] {Q§—)J
m ational — ate
= tiona/ — tion

Weight of word sensitive rules
(m>1) EMENT —

» feplacemsnt — raplar

» cement — cament

Other stemmers

m Other stemmers exist, e.g., Lovins stemmer
htto: Come, S.an Uk omnutingyes e eneral/inving htm
» Single-pass, longest suffix removal (about 250
rules)

» Motivated by linguistics as well as IR

s Full morphological analysis — at most modest
benefits for retrieval

s Do stemming and other normalizations help?

» Often very mixed results: really help recall for
some queries but harm precision on others

Tokenization

Does stemming improve effectiveness?

@ In general, stemming increases effectiveness for some queriee,
and decreases effectiveness for others.

@ Examples: “operational AND research”, “operating AND eystem?”,
“operative AND dentistry”
@ Porter Stemmer equivalence class (“oper”): operate operating

operates operation operative operative5 operational

Petr Sojka PYO30 Textual Information Systems

Language-specificity

s Many of the above features embody
transformations that are

= Language-specific and
= Often, application-specific

s These are “plug-in” addenda to the indexing
process

= Both open source and commercial plug-ins
available for handling these

Dictionary entries — first cut

entries.enalish

sometimes.enalish

Kenizati is!

Tokenization

Faster postings mergers: Skip pointers

Petr Sojka PYO30 Textual Information Systems

Recall basic merge

s Walk through the two postings simultaneously, in
time linear in the total number of postings entries

64

—

128

23l e}l
2Hs] L] G HsHeH

el

21

—~ 31

If the list lengths are m and n, the merge takes O(m+n)

operations.

Can we do better?

Yes, if index isn't changing too fast.

Brutus
Caesar

Augment postings with skip
pointers (at indexing time)

p—— Jos——

16132 {64 1128

34—

. l . . E 17+21-+-_§1

Why?

To skip postings that will not figure in the search
results.

s How?

Where do we place skip pointers?

Query processing with skip
pointers

g 128————

om

i
—
[#)]

¥
(3]
[

}
[9)]
B

1
—~ |/
MI
[0s)

3

Suppose we've stepped through the lists until we process 8
on each list.

When we get to 16 on the top list, we see that its
successoris 32.

But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

Where do we place skips?

= Tradeoff:

» More skips — shorter skip spans = more likely to
skip. But lots of comparisons to skip pointers.

» Fewer skips — few pointer comparison, but then
long skip spans = few successful skips.

o Y W o M
o R o R B R

Placing skips
-
= Simple heuristic: for postings of length L, use L
evenly-spaced skip pointers.
= This ignores the distribution of query terms.

s Easy if the index is relatively static; harder if L
keeps changing because of updates.

= This definitely used to help; with modern
harcdware it may not (Bahle et al. 2002)
» The cost of loading a bigger postings list
outweighs the gain from quicker in memory
merging

Phrase queries

Phrase queries

Petr Sojka PYO30 Textual Information Systems

Phrase queries

= Want to answer queries such as “stanford
university” — as a phrase

s Thus the sentence “/ went to university at
Stanford” is not a match.

» The concept of phrase queries has proven easily
understood by users; about 10% of web queries
are phrase queries

= No longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes

= Index every consecutive pair of terms in the text
as a phrase

m For example the text “Friends, Romans,
Countrymen” would generate the biwords
« friends romans
= Fomans countrymen

= Each of these biwords is now a dictionary term

s Two-word phrase query-processing is now
immedliate.

Longer phrase queries
]
m Longer phrases are processed as we did with
wild-cards:
m stanford university palo aito can be broken into
the Boolean query on hiwords:
stanford university AND university palo AND

palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain

the phrase. —_——

Can have false positives!

Extended biwords

= Parse the indexed text and perform part-of-speech-
tagging (POST).

= Bucket the terms into (say) Nouns (N) and
articles/prepositions (X).

= Now deem any string of terms of the form NX*N to be an

extended biword.

« Each such extended biword is now made a term in the

dictionary.
= Example: catcher in the rye
N X X N

s Query processing: parse itinto N's and X's

= Segment query into enhanced biwords
= Look upindex

Issues for biword indexes

n False positives, as noted before
= Index blowup due to bigger dictionary

n For extended biword index, parsing longer
queries into conjunctions:

= E.g., the query tangerine trees and marmalade
skies is parsed into

= tangerine trees AND trees and marmalade AND
marmalade skies

s Not standard solution (for all biwords)

Solution 2: Positional indexes

N
n Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 ... ;
doc2: position1, position2 ... ;
etc.>

Positional index example

1:7,18,33, 72, 86, 231

,
4
i

be: 993427

03, 149,
017,191, 291, 430,

5:363,367, .=

434, <:

P TRt

could contain “fo be

ornotio be’?

s Can compress position values/offsets
m Nevertheless, this expands postings storage

Substantially

Processing a phrase query

m Extract inverted index entries for each distinct
term: to, be, or, not.

m Merge their doc:position lists to enumerate all
positions with “to be or not to be’.

« O
w 2:1,17,74,222 551; 4:8,16,190,429 433;
7:13,23191; ...
s be:

w 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...
s Same general method for proximity searches

Proximity queries

m LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
Here, /k means “within & words of™.

m Clearly, positional indexes can be used for
such queries; biword indexes cannot.

m Exercise: Adapt the linear merge of postings
to handle proximity queries. Can you make it
work for any value of k7

Positional index size

= You can compress position values/offsets: we'll
talk bout that in lecture 5

= Nevertheless, a positional index expands
postings storage substantially

= Nevertheless, it is now standardly used because
of the power and usefulness of phrase and
proximity queries ... whether used explicitly or
implicitly in a ranking retrieval system.

Positional index size

= Need an entry for each occurrence, not just once

per document

= Index size depends on average document size <W_h—£|
» Average web page has <1000 terms

» SEC filings, books, even some epic poems ...
easily 100,000 terms

s Consider a term with frequency 0.1%

Document size

Postings

Fositional postings

1000

1

100,000

100

Rules of thumb

= A positional index is 2—4 as large as a non-
positional index

m Positional index size 35-50% of volume of
original text

m Caveat: all of this holds for “English-like”
languages

Combination schemes

» These two approaches can be profitably
combined
« For particular phrases (“Michael Jackson”,
“Britney Spears”) itis inefficient to keep on
merging positional postings lists
=« Even more so for phrases like “The Who"
s Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

» Atypical web query mixture was executed in ¥4 of
the time of using just a positional index

» It required 26% more space than having a
positional index alone

Resources for today’s lecture
T

= |IR2
= MG36,43 MR7.2

s Porter's stemmer:
http Ay tartarus. org/~martin/ForterStemmer/

s Skip Lists theory: Pugh {(1990)
= Multilevel skip lists give same Qflog n) efficiency as trees

m HE Wiliams, J Zobel, and D Bahle. 2004, "Fast Phrase
Querying with Combined Indexes", ACM Transactions on
Information Systems.
hitpeHsnensd Sec rmit.edu. awresearchiresearch php?author=4
D. Bahle, H. Willams, and J. Zobel Efficient phrase querying
with an auxiliary index. SIGIR 2002, pp. 215-221.

Phrase queries

Search methods V.

Preprocessing of text and pattern (query): overwhelming majority of
today’s TIS. Types of preprocessing:

I n-gram statistics (fragment indexes).

¥ special algorithms for indexes processing (coding, compression)
and relevance evaluation (FageRank Google)

1 usage of natural language processing methods (morphology,
syntactic analysis, semantic databases) an aggregation of
information from multiple sources (systems AnswerBus, START).

15 signature methods.

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Sensitivity

FALSE
SELECTED ITEMS

TP-
TRUE POSITIVE

TOTAL
POPULATION

TRUE

tp+tn

Accuracy = Foy ey s

Recall (Sensitivity) = ﬁ
Precision (Positive
Predictive Value) e
False Positive Rate = %

False Negative Rate = ,/){rﬁ

tn
tn+7p

Specificity =

Negative

Predictive Value = Tntrn

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Relevance

Definition: Relevance (of answers to a query) is a rate range, by which
a selected document coincides with requirements imposed on it.

ldeal answer = real answer

Definition: Coefficient of completeness (recall) R = 7, where m is a
count of selected relevant records and n is a count of all relevant
records in TIS.

Definition: Coefficient of precision F = % where 0 is count of all
selected records by a query.

We want to achieve maximum R and P, tradeoff.

Standard values: &0 % for F, 20 % for R.
Combination of completeness and precision:

coefficient F, = UK (R = P, F,, = R, where Fy = F P and R
weighted equally).

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Fragment index

15 The fragment ybd is in English only in the word molybdenum.
15 Advantages: fixed dictionary, no problems with updates.

1r Disadvantages: language dependency and thematic area,
decreased precision of search.

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Outline (Week ten)

15 Google as an example of web-scale information system.

1 Jeff Dean’s video — historical notes of Google search
developments.

= Google — system architecture.
= Google — PageRank.
= Google File System.

15 Implementation of index systems

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Goooooooooooooogle — a bit of history

An example of anatomy of global (hyper)text information system
(www.google.com).

1 1997 google.stanford.edu, students Page and Brin

15 1998: one of few quality search engines, whose basic
fundamentals and architecture (or at least their principles) are
known — therefore a more detailed analysis according to the

article [GOO]
http://www7.conf.au/programme/fullpapers/1921com1921.htm.

1 2012 clear leader in global web search

Petr Sojka PYO30 Textual Information Systems

http://www7.conf.au/programme/fullpapers/1921com1921.htm

Phrase queries

(Gooo00000000000gle — anatomy

15 Several innovative concepts: PageRank, storing of local
compressed archive, calculation of relevance from texts of
hypertext links, PDF indexing and other formats, Google File
System, Google Link. ..

1= The system anatomy. see [MAR]

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Google: Relevance

The crucial thing is documents’ relevance (credit) computation.

15 Usage of tags of text and web typography for the relevance
calculation of document terms.

15 Usage of text of hyperlink is referring to the document.

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Google: PageRank

15 PageRank: objective measure of page importance based on
citation analysis (suitable for ordering of anewers for queries,
namely page relevance computation).

' Let pages T4,...,T, (citations) point to a page A, total sum of
pages is m. PageRank

(1 —d) PR(T/]) PR(Tn)
m ”(C(m e cm)

PR(A) =

15 PageRank can be calculated by a simple iterative algorithm (for
tens of millions of pages in hours on a normal PC).

15 PageRank is a probability distribution over web pages.

15 PageRank is not the only applied factor, but coefficient of more
factors. A motivation with a random surfer, dumping factor d,
usually around 0.65.

Petr Sojka PYO30 Textual Information Systems

Phrase queries

Data structures of Google

= Storing of file sighatures
= Storing of lexicon
Storing of hit list.

5 8

Google File System

Petr Sojka PYO30 Textual Information Systems

Index System Implementation

Index system implementation

= |nverted file — indexing file with a bit vector.
= Usage of document list to every key word.
15 Coordinate system with pointers [MEL, fig. 4.16, page 46].

15 Indexing of corpus texte: Finlib
http://www.fi.muni.cz/ pary/dis.pdf see [MAR].

15 Use of Elias coding for a compression of hit list.

Petr Sojka PYO30 Textual Information Systems

http://www.fi.muni.cz/~pary/dis.pdf

Index System Implementation

Index system implementation (cont.)

w5 Efficient storing of index/dictionary [lemmas]: packed trie,
Patricia tree, and other tree structures.

1 Syntactic neural network (S. M. Lucas: Rapid best-firet retrieval
from massive dictionaries, Pattern Recognition Letters 17,
p. 1607-1512, 1990).

15 Commercial implementations: Verity engine, most of web search
engines — with few exceptions — hide their key to success.

Petr Sojka PYO30 Textual Information Systems

Index System Implementation

Dictionary representation by FA |

Article M. Mohri: On Some Applications of Finite-State Automata
Theory to Natural Language FProcessing see [MAR]

15 Dictionary representation by finite automaton.
15 Ambiguities, unification of minimized deterministic automata.

15 Example: done,do.V3:PP
done,done.AO

15 Morphological dictionary as a list of pairs [word form, lemma].

1= Compaction of storing of data structure of automata (Liang,
1983).

15 Compression ratio up to 1:20 in the linear approach (given the
length of word).

Petr Sojka PYO30 Textual Information Systems

Index System Implementation

Dictionary representation by FA I

=5

Transducer for dictionary representation.

&

Deterministic transducer with 1 output (subsequential
transducer) for dictionary representation including one string on
output (information about morphology, hyphenation,...).

1= Deterministic transducer with p outputs (p—subsequential
transducer) for dictionary representation including more strings
on output (ambiguities).

1= Determinization of the transducer generally unrealizable (the
class of deterministic transducers with an output is a proper
subclass of nondeterministic transducers); for purposes of
natural language processing, though, usually doesn’t occur
(there aren’t cycles).

Petr Sojka PYO30 Textual Information Systems

Index System Implementation

Dictionary representation by FA Il

¥ An addition of a state to a transducer corresponding (w.,w2)
without breaking the deterministic property: first a state for
(w4,€), then with resulting state final state with output wo.

5 Efficient method, quick, however not minimal; there are minimizing
algorithms, that lead to spatially economical solutions.

15 Procedure: eplitting of dictionary, creation of det. transducers
with p outputs, their minimization, then a deterministic
unification of transducers and minimizing the resulting.

15 Another use also for the efficient indexing, speech recognition,
etc.

Petr Sojka PYO30 Textual Information Systems

Part Il

Petr Sojka PYO30 Textual Information Systems

Outline (Week eleven)

= Coding.

15 Entropy, redundancy.

1= Universal coding of the integers.
Huffman coding.

Adaptive Huffman coding.

Petr Sojka PYO30 Textual Information Systems

Coding — basic concepts

Definition: Alphabet A is a finite nonempty set of symbole.

Definition: Word (string, message) over A is a sequence of symbols
from A.

Definition: Empty string € is an empty sequence of symbols. A set of
nonempty words over A is labeled A™.

Definition: Code K is a triad (S, C,), where S is finite set of source
units, C is finite set of code units, f: 5 — CT is an injective mapping.
f can be expanded to ST — C*: F(545,...5¢) = f(S4)f(S2) ... F(Sk).
C* is sometimes called code.

Petr Sojka PYO30 Textual Information Systems

Basic properties of the code

Definition: x € C* is uniquely decodable regarding f, if there is
maximum one sequence y € S* so, that f(y) = x.

Definition: Code K = (5,C, f) is uniquely decodable if all strings in ct
are uniquely decodable.

Definition: A code is called a prefix one, if no code word is a prefix of
another.

Definition: A code is called a suffix one, if no code word is a suffix of
another.

Definition: A code is called a affix one, if it is prefix and suffix code.
Definition: A code is called a full one, if after adding of any additional
code word a code arises, that isn’t uniquely decodable.

Petr Sojka PYO30 Textual Information Systems

Basic properties of code

Definition: Block code of length n is such a code, in which all code
words have length n.

Example: block 2 prefix

block = preﬁx, but not vice versa.

Definition: A code K = (5, C, f) is called binary, if |C| = 2.

Petr Sojka PYO30 Textual Information Systems

Compreaaion and decompre%ion

Definition: Compression (coding), decompression (decoding):

3 Compression 3
(encoding)
original compressed
data data
— Decom pression —
(decoding)

Definition: Compression ratio i a ratio of length of compressed
data and length of original data.

Example: Suggest a binary prefix code for decimal digits, if there are
often numbers 3 a 4, and rarely 5 and ©.

Petr Sojka PYO30 Textual Information Systems

Entropy and redundancy |

Let Y be a random variable with a probability distribution
p(y) = P(Y = y). Then the mathematical expectation (mean rate)
E(Y) = > yp(y).

YEY
Let S = {x4, X2,..., X, } be a set of source units and let the
occurrence probability of unit x; in information source S is p; for
i=A4,...,n,neN.
Definition: Entropy of information content of unit x; (measure of
amount of information or uncertainty) is H(x;) = H; = —log, p; bits.
A source unit with more probability bears less information.

Petr Sojka PYO30 Textual Information Systems

Entropy and redundancy lI

Definition: Entropy of information sourceS is H(S) = — Zp,' log, pi

bits.

1
True, that H(S)lo =E|log— |.
Z Py g < ? P(Y)>

YEY
Definition: Entropy of source message X = x,,l Xip « x,k € st of

information sourceS is H(X, S) Z Hi = Z log, pi; bite.
Deﬁmtlon Length I(X) of encoded mesaage X

Z |F(xi,)| = Z di, bits.

Theorem I(X) > H(X 5)

Petr Sojka PYO30 Textual Information Systems

Entropy a redundancy lll

Axiomatic introduction of entropy see [MAR], details of derivation see
ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps
k

Definition: R(X) = I(X) — H(X) = Z(d’J + log, pi;) ie redundancy of
code K for message X. =

Definition: Average length of code word K is AL(K) = ip,-d,- bits.
Deﬁnition:fverage Ierltqgth of source S is .

AE(S) = Zp,-H,- = - Zp,- log, p; bite.

Deﬁnition’;:,lverage r:dﬁundanc_y of codeK is

AR(K) = AL(K) — AE(S) = ipi(d,’ + logy pi) bits.
=1

Petr Sojka PYO30 Textual Information Systems

ftp://www.math.muni.cz/pub/math/people/Paseka/lectures/kodovani.ps

Entropy and redundacy IV

Definition: A code is an optimal one, if it has minimal redundancy.
Definition: A code is an asymptotically optimal, if for a given
distribution of probabilities the ratio AL(K)/AE(S) is close to 1, while
the entropy is close to .

Definition: A code K is a universal one, if there are c4,co € R s0, that
average length of code word AL(K) < ¢4 X AE + ¢».

Theorem: Universal code is asymptotically optimal, if ¢4 = 1.

Petr Sojka PYO30 Textual Information Systems

Universal coding of integers

Definition: Fibonacci sequence of order m

Fo=Fn—m+ Fo—msa + ...+ Fp_g forn > 1.

Example: Foforder2: F_4 =0, Fo =1,F1 =1,F>, =2, F5 = 3,
F4 = 5, F5 = (5,,,,

Example: F of order 2: F_o =0, F_4 =0,Fp =1,F4 =1,F2 =2,
F5 = 4, F4 = 7, F5 = /]5,...

Example: F of order 4: F_3 =0,F 2 =0,F_4 =0,Fp =1,F1 =1,
Fg = 2, F5 = 4, F4 = (5, F5 = /]5,

Definition: Fibonacci representation R(N) = Z,.kﬂ diF;, where

d; € {0,4}, dy =1

Theorem: Fibonacci representation is ambiguous, however there is
such a one, that has at most m — 11 consecutive ones in a sequence d;.

Petr Sojka PYO30 Textual Information Systems

Fibonacci codes

Definition: Fibonacci code of order m FK,(N) = dqdo ... d¢ 1...1,

-

m—1 krat
where d; are coeficients from previous sentence (ones end a word).

Example: R(32) = O*x14+0%2+1%x3+0x5+1%8+0x13+1 %21,
thus F(32) = 00101011.

Theorem: FK(2) is a prefix, universal code with ¢4 = 2, co = 3, thus it
isn’t asymptotically optimal.

Petr Sojka PYO30 Textual Information Systems

The universal coding of the integers |l

1= unary code a(N) = 00...01.

Lc&‘)

N—1
1= binary code p(1) =1, p(2N + j) = p(N)j, j = O, 1.
1= Pis not uniquely decodable (it isnt prefix code).
1= ternary t(N) = P(N)#.
w P(1) = 6 f/(2N) = P/(N)O, /(2N + 1) = F(NV1, /(N) = P (N)#.
v y: every bit P/(N) is inserted between a pair from a(|p(N)]).
w example: y(6) = 01001

w C, = {y(N) : N >0} = (0{0,1})*1 is regular and therefore it’s
decodable by finite automaton.

Petr Sojka PYO30 Textual Information Systems

The universal coding of the integers Il

o = d(|p(N)])P’(N) the same length (bit permutation y(N)),
but more readable
= {y'(N): N> 0} = {0"1{0,1}* : k > O} is not regular and

the decoder needs a counter

N) = y([P(N)])E'(N)
example: 6(4) = y(3)00 = 01100
decoder 6: 6(?) = 00117
w:
K:=0;
while [log,(N)] >0 do

begin K := P(N)K;

N i= Log,(W)]

&

5 %5 & §

end.

Petr Sojka PYO30 Textual Information Systems

DEY! compr‘eaaion — introduction

15 Information encoding for communication purposes.

= Deepite tumultuous evolution of capacities for data storage,
there is still a lack of space, or access to compressed data
saves time. Redundancy — a construction of a minimal
redundant code.
5 Data model:
@ structure — a set of units to compression + context of
occurrences;
@ parameters — occurrence probability of particular units.
@ data model creation;
@ the actual encoding.

Petr Sojka PYO30 Textual Information Systems

DEY! compre%ion — evolution

=5
=5
=5
=5

1838 Moree, code e by frequency.
1949 Shannon, Fano, Weaver.
1952 Huffman; 5 bits per character.

1979 Ziv-Lempel; compress (Roden, Welsh, Bell, Knuth, Miller,
Wegman, Fiala, Green, ...); 4 bits per character.

eighties and nineties FFM, DMC, gzip (zlib), SAKDC;
2-3 bits/character

&

15 at the turn of millenium bzip2; 2 bits per character.

LS

Petr Sojka PYO30 Textual Information Systems

Evolution of compression algorithms

o
|

e Huffman

o L78

N

°
LZ77

® compress
GZi
[]]P

»

DMC
[]
peMe | SAKDC

o
|

Compression (of bits per character)

Tt
1950 1960 1970 1980 1990 2000
YEAR

Prediction and modeling

=5

redundancy (non-uniform probability of source unit occurrences)

&

encoder, decoder, model

&

statistical modeling (the model doesn’t depend on concrete
data)

= eemiadaptive modeling (the model depende on data, 2 passes,
necessity of model transfer)

15 adaptive modeling (only one pass, the model is created
dynamically by both encoder and decoder)

Petr Sojka PYO30 Textual Information Systems

Prediction and modeling

15 models of order O — probabilities of isolated source units (e.g.
Morse, character e)
5 models with a finite context — Markov models, models of order n
(e.g. Bach), P(a|x1xz. .. Xn)
15 models based on finite automata
@ synchronization string, nonsynchronization string
9@ automaton with a finite context
@ suitable for regular languages, unsuitable for context-free
languages, F(alq;)

Petr Sojka PYO30 Textual Information Systems

Outline (Week twelwe)
(IS5
=5
=5
=5
=5
=5
=5

Petr Sojka PYO30 Textual Information Systems

Huffman coding.
Adaptive Huffman coding.
Aritmetic coding.
Dictionary methods.
Signature methods.
Similarity of documents.

Compression using neural networks.

Statistical compression methods |

Character techniques
15 null suppression — replacement of repetition > 2 of character
null, 255, special character S,

== run-length encoding (RLE) — S,XC, generalization to any
repetitious character $ * x x x x65 — $5, x 655

1z MNP Class 5 RLE — CXXX DDDDDBBAAAA — BDDDBB4AAAA
w5 half-byte packing, (EBCDIC, ASCII) SI, S0

15 diatomic encoding; replacement of character pairs with one
character.

1 Byte Pair Encoding, BPE (Gage, 1994)
1 pattern substitution

15 Gilbert Held: Data & Image Compression

Petr Sojka PYO30 Textual Information Systems

Statistical compression methods |

Shannon-Fano, 1949, model of order O,

code words of length | —log, p;] or |—log, pi + 1]
1w AE < AL < AE +1.

1= code tree (2,2,2,2,4,4,8).

15 generally it is not optimal, two passes of encoder through text,
static —x

Petr Sojka PYO30 Textual Information Systems

Shannon-Fano coding

Input: a sequence of n source units S[i], 1 < i < n, in order of nondecreasing

probabilities.
Output: n binary code words.

begin assign to all code words an empty string;
SF-SPLIT(9)
end
procedure SF-SPLIT(S);
begin if |S| > 2 then
begin divide S to sequences 51 and S2 so, that both
sequences have roughly the same total probability;
add to all code words from 51 O;
add to all code words from 52 1;
SF-SPLIT(51); SF-SPLIT(S2);
end
end

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Huffman coding

Huffman coding, 1952.

static and dynamic variants.

W AEPL = 31, d[ipli].

15 optimal code (not the only possible).

1 O(n) assuming ordination of source units.

15 stable distribution — preparation in advance.

Example: (2,2,2,2,4,4,8)

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Huffman coding — sibling property

Definition: Binary tree have a sibling property if and only if
@ cach node except the root has a sibling,

@ nodes can be arranged in order of nondecreasing sequence so,
that each node (except the root) adjacent in the list with
another node, is his sibling (the left sons are on the odd
positions in the list and the right ones on even).

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Huffman coding — properties of Huffman trees

Theorem: A binary prefix code is a Huffman one & it has the sibling
property.

15 2n — 1 nodes, max. 2n — 1 possibilities,

15 optimal binary prefix code, that is not the Huffman one.

15 AR(X) < pn + 0,066, p, maximum probability of source unit.

15 Huffman is a full code, (poor error detection).
= poesible to extend to an affix code, KWIC, left and right context,
searching for xXx.

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Adaptive Huffman coding

1 FCGK (Faller, Gallager, Knuth)

15 suppression of the past by coefficient of forgetting, rounding, 1,

r, e, e,

1= linear time of coding and decoding regarding the word length.
= Alyp < 2ALys.
= Vitter ALyp < Alps + 1.

15 implementation details, tree representation code tables.

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Principle of arithmetic coding

15 generalization of Huffman coding (probabilities of source units
neednt be negative powers of two).

15 order of source units; Cumulative probability cp; = Z'j_:: pj
source units x; with probability p;.
= Advantages:

@ any proximity to entropy.
@ adaptability is possible.
@ speed.

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Dictionary methods of data compression

Definition: Dictionary is a pair D = (M, C), where M is a finite set of
words of source language, C mapping M to the set of code words.
Definition: L(m) denotes the length of code word C(m) in bits, for

m e M.

Selection of source units:

@ static (agreement on the dictionary in advance)
@ semiadaptive (necessary two passes trough text)

@ adaptive

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Statical dictionary methods

Source unit of the length n — n-grams
Most often bigrams (n = 2)

@ n fixed
@ nvariable (by frequency of occurrence)
@ adaptive

(50 % of an English text consits of about 150 most frequent words)
Disadvantages:

@ they are unable to react to the probability distribution of
compressed data

@ pre-prepared dictionary

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Semiadaptive dictionary methods

Dictionary Compressed data
| [Comp |

‘ Compressed dictionary ‘ Compressed data ‘

Advantages: extensive date (the dictionary is a small part of data —
corpora; CQP).

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Semiadaptive dictionary methods — dictionary creation
procedure

@ The frequency of N-grams is determined for N = 1,2,....

@ The dictionary is initialized by unigram insertion.

© N-grams with the highest frequency are gradually added to the
dictionary. During K-gram insertion frequencies decrease for it’s
components of (K —1)-grams, (K — 2)-grams If, by reducing

of frequencies, a frequency of a component is greatly reduced,
then it’s excluded from the dictionary.

Petr Sojka PYO30 Textual Information Systems

Huffman coding

Outline (Week thirteen)

=5
=5
=5
=5
=5

Adaptive dictionary methods with dictionary restructuring.
Syntactic methods.

Checking of text correctness.

Querying and TIS models.

Vector model of documents

&

Automatic text structuring.

= Document similarity.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Adaptive dictionary methods

LZ77 — siliding window methods
LZ78 — methods of increasing dictionary
[alvlclblalvlblallalb]alc]r]
encoded part not enc. part
(window, N < 8192) (|B] ~10-20b)
In the encoded part the longest prefix P of a string in not encoded part is

searched. If such a string is found, then F is encoded using (I, J, A), where [is
a distance of first character S from the border, J is a length of the string S
and A is a first character behind the prefix P. The window is shifted by J + 1
characters right. If the substring S wasn't found, then a triple (0,0, A) is
created, where A is a first character of not encoded part.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZR (Rodeh)

M| = (N —B) x B x t, t size of alphabet
L(m) = [loga(N — B)] + [log, B] + [log, t'
Advantage: the search of the longest prefix [KMF]
@ LZR uses a tree containing all the prefixes in the yet encoded
part.
@ The whole encoded yet encoded part is used as a dictionary.
@ Because theiin (i, j, a) can be large, the Elias code for coding of
the integers is used.

Disadvantage: a growth of the tree size without any limitation =
after exceeding of defined memory it’s deleted and the construction
starts from the beginning.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZSS (Bell, Storer, Szymanski)

The code is a sequence of pointers and characters. The pointer (i, j)
needs a memory as p characters = a pointer only, when it pays off,
but there is a bit needed to distinguish a character from a pointer.
The count of dictionary items is [M| =t + (N — B) x (B — p)
(considering only substrings longer than p). The bit count to encode is
@ L(m) =1+ [logyt]| formeT
o L(m) =1+ [logs N + [log,(B — p)] otherways.
(The length d of substring can be represented as B — p).

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZB (Bell), LZH (Brent)

A pointer (i, j) (analogy to LZSS)
If

@ the window is not full (at the beginning) and

@ the compressed text is shorter than N,
the usage of log, N bytes for encoding of i is a waste. LZB uses
phasing for binary coding. — prefix code with increasing count of bite
for increasing values of numbers. Elias code y.
LZSS, where for pointer encoding the Huffman coding is used (i.e. by
distribution of their probabilities = 2 throughpasses)

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Methods with increasing dictionary

The main idea: the dictionary contains phrases. A new phrase so, that
an already existing phrase is extended by a symbol. A phrase is
encoded by an index of the prefix and by the added symbol.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZ78 — example

Input a b ab c ba

Index 1 2 %) 4 5

Output || (O,a) | (Ob) | (1.b) | (Oc) | (2.a)
Input bab aa aaa | aaaa
Index

Output

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZFG (Fiala, Green)

A dictionary is stored in a tree structure, edges are labeled with
strings of characters. These strings are in the window and each node
of the tree contains a pointer to the window and identifying symbols
on the path from the root to the node.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZW (Welch), LZC

The output indexes are only, or
@ the dictionary is initiated by items for all input symbols
@ the last symbol of each phrase is the first symbol of the following phrase.

lnput |a b abcbababaa a a a

Index 4 5 6 7 15 9 10

Output |1 2 43 5 &1 10 11

Overflow = next phrase is not transmitted and coding continues statically.
it's a LZW +

@ Pointers are encoded with prolonging length.

@ Once the compression ratio will decrease, dictionary will be deleted and it
starts from the beginning.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

LZT, LZMW, LZJ

As LZC, but when a dictionary overflows, phrases, that were least used in the recent
past, are excluded from the dictionary. It uses phrasing for binary coding of phrase
indexes.

As LZT, but a new phrase ien’t created by one character addition to the previous
phrase, but the new phrase is constructed by concatenation of two last encoded
ones.

Another principle of dictionary construction.

@ At the beginning only the single symbols are inserted.

@ Dictionary is stored in a tree and contains all the substrings processed by
string of the length up to h.

@ Full dictionary =

8 statical procedure,
@ omitting of nodes with low usage frequency.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Dictionary methods with dictionary restructuring

1= Ongoing organization of source units — shorter strings of the
code.

1 Variants of heuristics (count of occurrences, moving to the
beginning (BSTW), change the previous, transfer of X forward).

1w BSTW (advantage: high locality of occurrences of a small number
of source units.

15 Example: I'm not going to the forest, ..., 172",

15 Generalization: recency coefficient, Interval coding.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Interval coding

Representation of the word by total sum of words from the last

occurrence.
The dictionary contains words a4, az, ..., an, input sequence contains
X4, X2, ..., Xm. The value LAST(a;) containing the interval form last

occurrence is initialized to zero.

fort:=1tomdo
begin {x; = a;}
if LAST(x; = 0O) then y(t) =t +i—1
else y(t) =t — LAST(xz);
LAST(x¢):=t
end .

Sunence Y45 Y25 -+ Ym I8 an output of encoder and can be encoded
by one code of variable length.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Syntactical methods

= the grammar of the message language is known.
15 |eft partition of derivational tree of string.

global numbering of rules.

5 8

local numbering of rules.

= Decision-making states of LR analyzer are encoded.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Context modeling

= fixed context — model of order N.

15 combined approach — contexts of various length.

plx) = an:o Wnpn(X)-

w, fixed, variable.

&

&

time and memory consuming.

/I

assignment of probability to the new source unit: e = —.

automata with a finite context.

5 8 B §

dynamic Markov modeling.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Checking the correctness of the text

15 Checking of text using frequency dictionary.
15 Checking of text using a double frequency dictionary.

Interactive control of text (ispell).

5 8

Checking of text based on regularity of words, weirdness
coefficient.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Weirdness coefficient

Weirdness coefficient of trigram xyz

KPT = [log(f(xy) — 1) + log(f(yz) — 1)]/2 — log(f(xyz) — 1), where
f(xy) reep. f(xyz) are relative frequencies of bigram resp. trigram,
log(0) is defined as —10.

n

Weirdness coefficient of word KFS = Z(KPT,' — SKPT?), where
=1

KFT; is a weirdness coefficient of i-th trigram SKFT is a mean rate of

weirdness coefficients of all trigrams contained in the word.

Petr Sojka PYO30 Textual Information Systems

Adaptive dictionary methods

Outline (Week fourteen)

=5
=
=5
=
=5
=
=5
=
=5
=
=5
=5
=
=5

Querying and TIS models.
Boolean model of documents.
Yector model of documents.
TIS Architecture.

Signature methods.
Similarity of documents.
Vector model of documents (completion).
Extended boolean model.
Probability model.

Model of document clusters.
TIS Architecture.

Automatic text structuring.
Documents similarity.
Lexicon storage.

Petr Sojka PYO30 Textual Information Systems

Boolean model

Querying and TIS models

Different methods of hierarchization and document storage —
different possibilities and efficiency of querying.

1 Boolean model, SQL.

= Vector model.

15 Extended boolean types.
1= Probability model.

= Model of document clusters.

Petr Sojka PYO30 Textual Information Systems

Boolean model

Blair’s query tuning

The search lies in reducing of uncertainty of a question.
@ We find a document with high relevance.
© We start to query with it’s key words.

© We remove descriptore, or replace them with disjunctions.

Petr Sojka PYO30 Textual Information Systems

Boolean model

Infomap — attempt to semantic querying

System http://infomap.stanford.edu— for working with
searched meaning/concept (as opposed to mere strings of
characters).

Right query formulation is the half of the anewer. The search lies in
determination of semantically closest terms.

Petr Sojka PYO30 Textual Information Systems

http://infomap.stanford.edu

Boolean model

Boolean model

15 Fifties: representation of documents using sets of terms and
querying based on evaluation of boolean expressions.
15 Query expression: inductively from primitives:
@ term
@ attribute_name = attribute_value (comparison)
@ function_name(term) (application of function)

and also using parentheses and logical conjunctions X and Y, X or
Y, Xxor Y, not Y.

15 disjunctive normal form, conjunctive normal form

L= proximity operators
1 regular expressions

1= thesaurus usage

Petr Sojka PYO30 Textual Information Systems

Boolean model

Languages for searching — SQL

5 boolean operators and, or, xor, not.
= poeitiona] operators adj, (n) words, with, same, syn.

¥ SQL extension: operations/queries with use of thesaurus

BT(A) Broader term

NT(A) Narrower term

PT(A) Preferred term

SYN(A) Synonyms of the term A

RT(A) Related term
TT(A) Top term

Petr Sojka PYO30 Textual Information Systems

Boolean model

Querying — SQL examples

ORACLE SQL*TEXTRETRIEVAL
SELECT specification_of_items
FROM specification_of_tables
WHERE item

CONTAINS textov_expression

Example:

SELECT TITLE

FROM BOOK

WHERE ABSTRACT

CONTAINS ’TEXT’ AND RT(RETRIEVAL)
’string’ ’string’* *’string’ ’st?ing’
’striing’ ’stringa’ (m,n) ’stringb’
’multiword phrases’ BT(’string’,n)
BT(’string’,*) NT(’string’,n)

Petr Sojka PYO30 Textual Information Systems

Boolean model

Querying — SQL examples

Example:

SELECT NAME

FROM EMPLOYEE

WHERE EDUCATION

CONTAINS RT(UNIVERSITA)

AND LANGUAGES

CONTAINS ’ENGLISH’ AND ’GERMAN’
AND PUBLICATIONS

CONTAINS ’BOOK’ OR NT(’BOOK’,*)

Petr Sojka PYO30 Textual Information Systems

Boolean model

Stiles technique/ association factor

(FN — AB — N/2)°N
AB(N — A)(N — B)

A — number of documents ,,hit” by the query Qa

B — number of documents ,hit“ by the query Qg (its relevance we
count)

f — number of documents ,hit“ by both the queries

N —total sum of documents in TIS

cutoff (relevant/ irrelevant)

clustering/nesting 1. generation, 2. generation, ...

asoc(Qa, Qe) = log,o

Petr Sojka PYO30 Textual Information Systems

Boolean model

Vector model

Vector model of documents: Let a4,...,a, be terms, D4,...,Dn
documents, and relevance matrix W = (w;;) of type m,n,

O isirrelevant
i 0,1
wiy € { >{ 1 is relevant

Query Q = (q44,...,9n)
® 5(Q.D;) = 3, qw; similarity coefficient
9 head(sort(S(Q, D;))) answer

Petr Sojka PYO30 Textual Information Systems

Boolean model

Vector model: pros & cons

CONS: doesn’t take into account 2”°and”? ¢2”or”?
PROS: possible improvement:
@ normalization of weights

o Term frequency TF
o Inverted document frequency IDF = log,
o Distinction of terms

m
k

D
N 2757
e . 1 1TF m
@ normalization of weights for query: (é X —2) X log, ¢

max TF;
[POK, pages £66-113].

@ normalization of weights for document:

Petr Sojka PYO30 Textual Information Systems

Boolean model

Automatic structuring of texts

¥ |nterrelations between documents in TIS.

15 Encyclopedia (OSN, Funk and Wagnalls New Encyclopedia).
1 [SBA]

http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs

1= Google/CiteSeer: ,automatic structuring of text files”

Petr Sojka PYO30 Textual Information Systems

http://columbus.cs.nott.ac.uk/compsci/epo/epodd/ep056gs

Boolean model

Similarity of documents

15 Most often cosine measure — advantages.

1= Detailed overview of similarity functions see chapter 5.7
from [KOR] (similarity).

Petr Sojka PYO30 Textual Information Systems

Boolean model

Lexicon storage

® [MeM] Mehryar Mohri: On Some Applications of Finite-State
Automata Theory to Natural Language Frocessing, Natural
Language Engineering, 2(1):61-50, 1996.
http://www.research.att.com/ mohri/cll.ps.gz

Petr Sojka PYO30 Textual Information Systems

	Why information retrieval?
	Inverted index
	Query processing
	Outlook
	Tokenization
	Phrase queries
	Index System Implementation
	Huffman coding
	Adaptive dictionary methods
	Boolean model

