B

P [Vl +L 2

124 4. Concept learning

Learnability
Legrge g

In this chapter we have seen several hypothesis languages for concept learning, includ- 'C’O(’U\M/’ o@h& %

ing conjunctions of literals (possibly with internal disjunction), conjunctions of Horn
clauses, and clauses in first-order logic. It is intuitively clear that these in_gggg_eg,dif—c
fer in expressivity: for example, a conjunction of literals is also a conjunction of Horn
MW if-part, so Horn theories are strictly more expressive than conjunc-__
tive concepts. The downside of a more expressive concept language is that it may be

harder to l@q}.—The field of computational learning theory studies exactly this ques-

ﬁﬁl@bi[ii}u
To Kickthings off we need a learning model: a clear statement of what we mean if
we say that a concept language is learnable. One of the most common learning models
is the model of probably approximately correct (PAC) learning. PAC-learnability means
that there exists a learning algorithm that gets it ng_frjght, most 5? the time. The
del makes an allowance for mistakes on non-typical examples: hence the ‘mostly
right’ ‘aFE?roximately y correct’. The model also makes an allowance for sometimes
getting it com/pkem?r-ong, for example when ge training data contains lots of non-

typical examples: hence the ‘mo§t of the time’ or ‘probably’. We assume that typiéf

ity of examples is determined by some unspecified probability distribution D, and we
evaluate the error rate errp of a hypothesis with respect to this distribution D. More
formally, for arbitrary allowable error rate € < 1/2 and failure rate § < 1/2 we require
a PAC-learning algorithm to output with probability at least 1 — § a hypothesis & such
that errp <e. T

Let’s assume for the moment that our data is noise-free, and that the target hypoth-
esis is chosen from our hypothesis language. Furthermore, we assume our learner al-
ways outputs a hypothesis that is complete and consistent with the training sample.
There is a possibility that this zero training error is misleading, and that the hypothesis
is actually a ‘bad’ one, having a true error over the instance space that is larger than
€. We just want to make sure that this happens with probability less than §. I will now
show that this can be guaranteed by choosing the training sample large enough. Sup-
pose our hypothesis space H contains a single bad hypothesis, then the probability it
is complete and consistent on m independently sampled training examples is at most
(1-€)™. Since 1-€ < ™€ for any 0 < € < 1, we have that this probability is at most e~"¢,
We want this to be at most §, which can be achieved by setting m = %ln %. Now, H may
contain several bad hypotheses, say k < |H|; then the probability that at least one of
them is complete and consistent on m independently sampled training examples is at
most k(1 —-¢€)™ < |H|(1-¢€)"™ < |H|e ™, which is at most § if
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This is called the sample complexity of a complete and consistent learner. The good
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news is that it is linear in 1/¢ and logarithmic in 1/5. Notice that this suggests that it is
exponentially cheaper to reduce the failure rate than it is to reduce the error. Any learn-
ing algorithm that takes time polynomial in 1/¢ and 1/ to process a single training ex-
ample will therefore also take polynomial training time, another requirement for PAC-
learnability. However, finding a complete and consistent hypothesis is not tractable in
many hypothesis languages.

Notice that the term In|H| arose because in the worst case almost all hypotheses
in H are bad. However, in practice this means that the bound in Equation 4.1 is overly
pessimistic. Still, it allows us to see that concept languages whose size is exponential in
some parameter 7 are PAC-learnable. For example, the number of conjunctions over
n Boolean variables is 3", since each variable can occur unnegated, negated or not at
all. Consequently, the sample complexity is (1/€) (nIn3 +1n(1/6)). For example, if we
set 6 = 0.05 and € = 0.1 then the sample complexity is approximately 10(n-1.1+3) =
117+ 30. For our dolphin example with n = 4 this is clearly pessimistic, since there
are only 2% = 16 distinct examples! For larger 7 this is more realistic. Notice also that
the PAC model is distribution-free: the learner is not given any information about the
instance distribution D. This is another source for pessimism in the bound on the
sample complexity.

We may not always be able to output a complete and consistent hypothesis: for
instance, this may be computationally intractable, the target hypothesis may not be
representable in our hypothesis language, or the examples may be noisy. A reasonable
strategy would be to choose the hypothesis with lowest training error. A ‘bad’ hypoth-
esis is then one whose true error exceeds the training error by at least €. Using some
results from probability theory, we find that this probability is at most e2me Agare-
sult, the 1/¢ factor in Equation 4.1 is replaced by 1/2¢?: for € = 0.1 we thus need 5 times
as many training examples compared to the previous case.

It has already been mentioned that the | H| term is a weak point in the above analy-
sis. What we need is a measure that doesn't just count the size of the hypothesis space,
but rather gives its expressivity or capacity in terms of classification. Such a measure
does in fact exist and is called the VC-dimension after its inventors Vladimir Vapnik and
Alexey Chervonenkis. We will illustrate the main idea by means of an example.

Example 4.7 (Shattering a set of instances). Consider the following instances:
m= ManyTeeth A ~Gills A =Short A =Beak
g= ~—ManyTeeth A Gills A =Short A =Beak
s= —ManyTeeth A =Gills A Short A =Beak
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b= —ManyTeeth A —Gills A =Short A Beak

There are 16 different subsets of the set {m, g, s,b}. Can each of them be rep-
resented by its own conjunctive concept? The answer is yes: for every instance
we want to exclude, we add the corresponding negated literal to the conjunc-
tion. Thus, {m,s} is represented by —Gills A =Beak, {g, s, b} is represented by
“ManyTeeth, {s} is represented by =Many Teeth A =Gills A =Beak, and so on. We
say that this set of four instances is shairered by the hypothesis language of con-
junctive concepts.

The VC-dimension is the size of the largest set of instances that can be shattered
by a particular hypothesis language or model class. The previous example shows that
the VC-dimension of conjunctive concepts over d Boolean literals is at least d. It is in
fact equal to d, although this is harder to prove (since it involves showing that no set
of d +1 instances can be shattered). This measures the capacity of the model class for
representing concepts or binary classifiers. As another example, the VC-dimension of
a linear classifier in d dimensions is d + 1: a threshold on the real line can shatter two
points but not three (since the middle point cannot be separated from the other two by
a single threshold); a straight line in a two-dimensional space can shatter three points
but not four; and so on.

The VC-dimension can be used to bound the difference between sample error and
true error of a hypothesis (which is the step where | H| appeared in our previous argu-
ments). Consequently, it can also be used to derive a bound on the sample complexity
of a complete and consistent learner in terms of the VC-dimension D rather than | H]:

m>—1-max 8Dlo E;—410 E) (4.2)
_6 g2 e’ g26 *

We see that the bound is linear in D, where previously it was logarithmic in | H|. This is
natural, since to shatter D points we need at least 22 hypotheses, and so lo g, |H| = D.
Furthermore, it is still logarithmic in 1/8, but linear times logarithmic in 1/e. Plug-
ging in our previous values of § = 0.05 and € = 0.1, we obtain a sample complexity of
max(562 - D,213).

We conclude that the VC-dimension allows us to derive the sample complexity of
infinite concept classes, as long as they have finite VC-dimension. It is furthermore
worth mentioning a classical result from computational learning theory which says
that a concept class is PAC-learnable if and only if its VC-dimension is finite.



