Computational Learning Theory

> [read Chapter 7]
> [Suggested exercises: 7.1, 7.2, 7.5, 7.8]

- Computational learning theory
- Setting 1: learner poses queries to teacher
- Setting 2: teacher chooses examples
- Setting 3: randomly generated instances, labeled by teacher
- Probably approximately correct (PAC) learning
- Vapnik-Chervonenkis Dimension
- Mistake bounds

Computational Learning Theory

What general laws constrain inductive learning?
We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

Prototypical Concept Learning Task

- Given:

- Instances X : Possible days, each described by the attributes Sky, AirTemp, Humidity, Wind, Water, Forecast
- Target function c: EnjoySport : $X \rightarrow\{0,1\}$
- Hypotheses H : Conjunctions of literals. E.g.〈?, Cold, High, ?, ?, ?〉.
- Training examples D : Positive and negative examples of the target function

$$
\left\langle x_{1}, c\left(x_{1}\right)\right\rangle, \ldots\left\langle x_{m}, c\left(x_{m}\right)\right\rangle
$$

- Determine:
- A hypothesis h in H such that $h(x)=c(x)$ for all x in D ?
- A hypothesis h in H such that $h(x)=c(x)$ for all x in X ?

Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher

- Learner proposes instance x, teacher provides $c(x)$

2. If teacher (who knows c) provides training examples

- teacher provides sequence of examples of form $\langle x, c(x)\rangle$

3. If some random process (e.g., nature) proposes instances

- instance x generated randomly, teacher provides $c(x)$

Sample Complexity: 1

Learner proposes instance x, teacher provides $c(x)$ (assume c is in learner's hypothesis space H)

Optimal query strategy: play 20 questions

- pick instance x such that half of hypotheses in $V S$ classify x positive, half classify x negative
- When this is possible, need $\left\lceil\log _{2}|H|\right\rceil$ queries to learn c
- when not possible, need even more

Sample Complexity: 2

Teacher (who knows c) provides training examples (assume c is in learner's hypothesis space H)

Optimal teaching strategy: depends on H used by learner

Consider the case $H=$ conjunctions of up to n boolean literals and their negations
e.g., $($ AirTemp $=$ Warm $) \wedge($ Wind $=$ Strong $)$, where AirTemp, Wind,... each have 2 possible values.

- if n possible boolean attributes in $H, n+1$ examples suffice
- why?

Sample Complexity: 3

Given:

- set of instances X
- set of hypotheses H
- set of possible target concepts C
- training instances generated by a fixed, unknown probability distribution \mathcal{D} over X

Learner observes a sequence D of training examples of form $\langle x, c(x)\rangle$, for some target concept $c \in C$

- instances x are drawn from distribution \mathcal{D}
- teacher provides target value $c(x)$ for each

Learner must output a hypothesis h estimating c

- h is evaluated by its performance on subsequent instances drawn according to \mathcal{D}

Note: randomly drawn instances, noise-free classifications

True Error of a Hypothesis

Instance space X

Definition: The true error (denoted $\left.\operatorname{error}_{\mathcal{D}}(h)\right)$ of hypothesis h with respect to target concept c and distribution \mathcal{D} is the probability that h will misclassify an instance drawn at random according to \mathcal{D}.

$$
\operatorname{error}_{\mathcal{D}}(h) \equiv \operatorname{Pr}_{x \in \mathcal{D}}[c(x) \neq h(x)]
$$

Two Notions of Error

Training error of hypothesis h with respect to target concept c

- How often $h(x) \neq c(x)$ over training instances

True error of hypothesis h with respect to c

- How often $h(x) \neq c(x)$ over future random instances

Our concern:

- Can we bound the true error of h given the training error of h ?
- First consider when training error of h is zero (i.e., $h \in V S_{H, D}$)

Exhausting the Version Space

Hypothesis space H

$$
\text { (} r=\text { training error, error }=\text { true error })
$$

Definition: The version space $V S_{H, D}$ is said to be ϵ-exhausted with respect to c and \mathcal{D}, if every hypothesis h in $V S_{H, D}$ has error less than ϵ with respect to c and \mathcal{D}.

$$
\left(\forall h \in V S_{H, D}\right) \operatorname{error}_{\mathcal{D}}(h)<\epsilon
$$

How many examples will ϵ-exhaust the VS?

Theorem: [Haussler, 1988].
If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ-exhausted (with respect to c) is less than

$$
|H| e^{-\epsilon m}
$$

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $\operatorname{error}(h) \geq \epsilon$
If we want to this probability to be below δ

$$
|H| e^{-\epsilon m} \leq \delta
$$

then

$$
m \geq \frac{1}{\epsilon}(\ln |H|+\ln (1 / \delta))
$$

Learning Conjunctions of Boolean Literals

How many examples are sufficient to assure with probability at least $(1-\delta)$ that
every h in $V S_{H, D}$ satisfies $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$
Use our theorem:

$$
m \geq \frac{1}{\epsilon}(\ln |H|+\ln (1 / \delta))
$$

Suppose H contains conjunctions of constraints on up to n boolean attributes (i.e., n boolean literals). Then $|H|=3^{n}$, and

$$
m \geq \frac{1}{\epsilon}\left(\ln 3^{n}+\ln (1 / \delta)\right)
$$

or

$$
m \geq \frac{1}{\epsilon}(n \ln 3+\ln (1 / \delta))
$$

How About EnjoySport?

$$
m \geq \frac{1}{\epsilon}(\ln |H|+\ln (1 / \delta))
$$

If H is as given in EnjoySport then $|H|=973$, and

$$
m \geq \frac{1}{\epsilon}(\ln 973+\ln (1 / \delta))
$$

... if want to assure that with probability $95 \%, V S$ contains only hypotheses with $\operatorname{error}_{\mathcal{D}}(h) \leq .1$, then it is sufficient to have m examples, where

$$
\begin{gathered}
m \geq \frac{1}{.1}(\ln 973+\ln (1 / .05)) \\
m \geq 10(\ln 973+\ln 20) \\
m \geq 10(6.88+3.00) \\
m \geq 98.8
\end{gathered}
$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is PAC-learnable by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0<\epsilon<1 / 2$, and δ such that $0<\delta<1 / 2$,
learner L will with probability at least $(1-\delta)$ output a hypothesis $h \in H$ such that $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1 / \epsilon, 1 / \delta, n$ and $\operatorname{size}(c)$.

Agnostic Learning

So far, assumed $c \in H$
Agnostic learning setting: don't assume $c \in H$

- What do we want then?
- The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$
m \geq \frac{1}{2 \epsilon^{2}}(\ln |H|+\ln (1 / \delta))
$$

derived from Hoeffding bounds:

$$
\operatorname{Pr}^{\operatorname{error}}\left(\mathrm{D}(h)>\operatorname{error}_{D}(h)+\epsilon\right] \leq e^{-2 m \epsilon^{2}}
$$

Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Three Instances Shattered

Instance space X

The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $V C(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $V C(H) \equiv \infty$.

VC Dim. of Linear Decision Surfaces

(a)
(b)

Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ϵ-exhaust $V S_{H, D}$ with probability at least $(1-\delta)$?

$$
m \geq \frac{1}{\epsilon}\left(4 \log _{2}(2 / \delta)+8 V C(H) \log _{2}(13 / \epsilon)\right)
$$

Mistake Bounds

So far: how many examples needed to learn?
What about: how many mistakes before convergence?

Let's consider similar setting to PAC learning:

- Instances drawn at random from X according to distribution \mathcal{D}
- Learner must classify each instance before receiving correct classification from teacher
- Can we bound the number of mistakes learner makes before converging?

Mistake Bounds: Find-S

Consider Find-S when $H=$ conjunction of boolean literals

Find-S:

- Initialize h to the most specific hypothesis $l_{1} \wedge \neg l_{1} \wedge l_{2} \wedge \neg l_{2} \ldots l_{n} \wedge \neg l_{n}$
- For each positive training instance x
- Remove from h any literal that is not satisfied by x
- Output hypothesis h.

How many mistakes before converging to correct h ?

Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

- Learn concept using version space Candidate-Elimination algorithm
- Classify new instances by majority vote of version space members

How many mistakes before converging to correct h ?

- ... in worst case?
- ... in best case?

Optimal Mistake Bounds

Let $M_{A}(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible $c \in C$, and all possible training sequences)

$$
M_{A}(C) \equiv \max _{c \in C} M_{A}(c)
$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake bound for C, denoted $\operatorname{Opt}(C)$, is the minimum over all possible learning algorithms A of $M_{A}(C)$.

$$
\operatorname{Opt}(C) \equiv \min _{\text {Aєlearning algorithms }} M_{A}(C)
$$

$$
V C(C) \leq O p t(C) \leq M_{\text {Halving }}(C) \leq \log _{2}(|C|)
$$

