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In statistics and machine learning, the bias–variance tradeoff (or dilemma) is the problem of
simultaneously minimizing two sources of error that prevent supervised learning algorithms from
generalizing beyond their training set:

The bias is error from erroneous assumptions in the learning algorithm. High bias can cause an
algorithm to miss the relevant relations between features and target outputs (underfitting).
The variance is error from sensitivity to small fluctuations in the training set. High variance can
cause overfitting: modeling the random noise in the training data, rather than the intended outputs.

The bias–variance decomposition is a way of analyzing a learning algorithm's expected generalization
error with respect to a particular problem as a sum of three terms, the bias, variance, and a quantity
called the irreducible error, resulting from noise in the problem itself.

This tradeoff applies to all forms of supervised learning: classification, regression (function fitting),[1][2]

and structured output learning. It has also been invoked to explain the effectiveness of heuristics in
human learning.
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Motivation
The bias–variance tradeoff is a central problem in supervised learning. Ideally, one wants to choose a
model that both accurately captures the regularities in its training data, but also generalizes well to
unseen data. Unfortunately, it is typically impossible to do both simultaneously. High-variance learning
methods may be able to represent their training set well, but are at risk of overfitting to noisy or
unrepresentative training data. In contrast, algorithms with high bias typically produce simpler models
that don't tend to overfit, but may underfit their training data, failing to capture important regularities.
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Function and noisy data.
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A function (red) is approximated
using radial basis functions (blue).
Several trials are shown in each
graph. For each trial, a few noisy
data points are provided as
training set (top). For a wide
spread (image 2) the bias is high:
the RBFs cannot fully
approximate the function
(especially the central dip), but the
variance between different trials is

Models with low bias are usually more complex (e.g. higher-order
regression polynomials), enabling them to represent the training set
more accurately. In the process, however, they may also represent a
large noise component in the training set, making their predictions
less accurate - despite their added complexity. In contrast, models
with higher bias tend to be relatively simple (low-order or even
linear regression polynomials), but may produce lower variance
predictions when applied beyond the training set.

Bias–variance decomposition of squared
error
Suppose that we have a training set consisting of a set of points

 and real values  associated with each point . We
assume that there is a functional, but noisy relation

, where the noise, , has zero mean and variance
.

We want to find a function , that approximates the true
function  as well as possible, by means of some learning
algorithm. We make "as well as possible" precise by measuring the
mean squared error between  and : we want  to
be minimal, both for  and for points outside of our
sample. Of course, we cannot hope to do so perfectly, since 
contains noise ; this means we must be prepared to accept an
irreducible error in any function we come up with.

Finding an  that generalizes to points outside of the training set
can be done with any of the countless algorithms used for
supervised learning. It turns out that whichever function  we
select, we can decompose its expected error on an unseen sample 
as follows:[3]:34[4]:223
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low. As spread decreases (image 3
and 4) the bias decreases: the blue
curves more closely approximate
the red. However, depending on
the noise in different trials the
variance between trials increases.
In the lowermost image the
approximated values for x=0
varies wildly depending on where
the data points were located.

Where:

and

The expectation ranges over different choices of the training set , all sampled
from the same distribution. The three terms represent:

the square of the bias of the learning method, which can be thought of the error caused by the
simplifying assumptions built into the method. E.g., when approximating a non-linear function

 using a learning method for linear models, there will be error in the estimates  due to
this assumption;
the variance of the learning method, or, intuitively, how much the learning method  will
move around its mean;
the irreducible error . Since all three terms are non-negative, this forms a lower bound on the
expected error on unseen samples.[3]:34

The more complex the model  is, the more data points it will capture, and the lower the bias will be.
However, complexity will make the model "move" more to capture the data points, and hence its
variance will be larger.

Derivation

The derivation of the bias–variance decomposition for squared error proceeds as follows.[5][6] For
notational convenience, abbreviate  and . First, note that for any random variable

, we have
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Since  is deterministic

.

This, given  and , implies .

Also, since 

Thus, since  and  are independent, we can write

Q.E.D.

Application to classification
The bias–variance decomposition was originally formulated for least-squares regression. For the case of
classification under the 0-1 loss (misclassification rate), it's possible to find a similar decomposition.[7][8]

Alternatively, if the classification problem can be phrased as probabilistic classification, then the
expected squared error of the predicted probabilities with respect to the true probabilities can be
decomposed as before.[9]

Approaches
Dimensionality reduction and feature selection can decrease variance by simplifying models. Similarly, a
larger training set tends to decrease variance. Adding features (predictors) tends to decrease bias, at the
expense of introducing additional variance. Learning algorithms typically have some tunable parameters
that control bias and variance, e.g.:

(Generalized) linear models can be regularized to increase their bias.
In artificial neural networks, the variance increases and the bias decreases with the number of
hidden units.[1] Like in GLMs, regularization is typically applied.
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In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below).
In Instance-based learning, regularization can be achieved varying the mixture of prototypes and
exemplars.[10]

In decision trees, the depth of the tree determines the variance. Decision trees are commonly
pruned to control variance.[3]:307

One way of resolving the trade-off is to use mixture models and ensemble learning.[11][12] For example,
boosting combines many "weak" (high bias) models in an ensemble that has greater variance than the
individual models, while bagging combines "strong" learners in a way that reduces their variance.

K-nearest neighbors

In the case of k-nearest neighbors regression, a closed-form expression exists that relates the
bias–variance decomposition to the parameter k:[4]:37, 223

where  are the k nearest neighbors of x in the training set. The bias (first term) is a
monotone rising function of k, while the variance (second term) drops off as k is increased. In fact, under
"reasonable assumptions" the bias of the first-nearest neighbor (1-NN) estimator vanishes entirely as the
size of the training set approaches infinity.[1]

Application to human learning
While widely discussed in the context of machine learning, the bias-variance dilemma has been
examined in the context of human cognition, most notably by Gerd Gigerenzer and co-workers in the
context of learned heuristics. They have argued (see references below) that the human brain resolves the
dilemma in the case of the typically sparse, poorly-characterised training-sets provided by experience by
adopting high-bias/low variance heuristics. This reflects the fact that a zero-bias approach has poor
generalisability to new situations, and also unreasonably presumes precise knowledge of the true state of
the world. The resulting heuristics are relatively simple, but produce better inferences in a wider variety
of situations.[13]

Geman et al.[1] argue that that the bias-variance dilemma implies that abilities such as generic object
recognition cannot be learned from scratch, but require a certain degree of “hard wiring” that is later
tuned by experience. This is because model-free approaches to inference require impractically large
training sets if they are to avoid high variance.

See also

Bias of an estimator
Gauss–Markov theorem
Hyperparameter optimization
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Minimum-variance unbiased estimator
Model selection
Regression model validation
Supervised learning
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