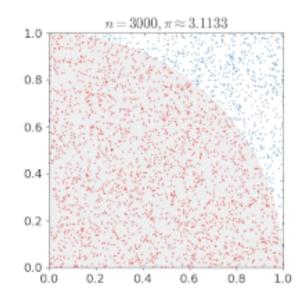
Monte Carlo methods in Machine learning

Based partially on

https://machinelearningmastery.com/monte-carlo-samplig-or-probability

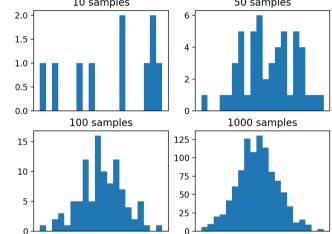
Main idea

- Monte Carlo methods are a class of techniques for randomly sampling a probability distribution
- Example: compute the area under a curve (pic. From Wikipedia).
- Generate points, i.e. couples (x,y) randomly, count the number of points that are under the curve (n) vs. all points generated (N). The area is approximated with n/N



Example & Convergence

• randomly draw samples from a Gaussian distribution with the specified mean (mu), standard deviation (sigma), and sample size 10 samples 50 samples



• Convergence to zero error = approx. 1/sqrt(#trials), not too fast

Monte Carlo in Machine learning

Resampling algorithms.

Monte Carlo methods provide the basis for resampling techniques like the <u>bootstrap method</u> for estimating a quantity, such as the accuracy of a model on a limited dataset.

Random hyperparameter tuning.

Random sampling of model hyperparameters when tuning a model is a Monte Carlo method

Monte Carlo methods also provide the basis for randomized or stochastic optimization algorithms, such as the popular <u>Simulated Annealing optimization technique</u>.

Theory of Machine learning

Peter Flach Book pp.124-126, Tom Mitchell, Machine Learning Chapter 7

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

Two roles for Bayesian methods

Tom Mitchell, Machine Learning Chapter 6

- Provides practical learning algorithm
- Provides conceptual frameworks

gold standard for evaluationg other learning algorithms insight to Occam;s razor

Brute Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

H ... hypotheses D ... learning data h_{MAP} ... maximum a posteriori hypothesis

VC-dimension

Leede Lee, Quora, Updated March 7, 2017

- In binary classification, for a given dataset with *m* points in a *n*-dimensional real number space, there are 2^m labeling scheme for it. For instance, for a dataset with 2 fixed points whose Cartesian coordinates are (0,0) and (1,0), these points can be labeled {+,+}, {+,-}, {-,+}, {-,-}, so there are 2x2=4 labeling schemes for the dataset.
- We say a hypothesis class *H* can "shatter" a GIVEN dataset *S*, if for ANY labeling scheme of *S*, there are always at least a hypothesis *h* within *H* that can correctly predict every point's label.
- Finally, we say the VC-dimension of the hypothesis class *H* is *d*, if the highest cardinality (i.e. the number of points) of dataset which *H* can shatter is *d*.
- VC-dimension refers to Vapnik–Chervonenkis dimension, originally put forward by Vladimir Vapnik and Alexey Chervonenkis. Roughly, it measures a hypothesis class's capacity, or expressive power.

VC-dimension: Examples

- The VC-dimension is the size of the largest set of instances that can be shattered by a particular hypothesis language or model class.
- VC-dimension of a linear classifier in d dimensions is d +1: a threshold on the real line can shatter two points but not three (since the middle point cannot be separated from the other two by a single threshold)

- The VC-dimension of 1NN (kNN for k=1) is infinite.
- the VC-dimension of conjunctive concepts over *d* Boolean literals is *d*.
 (= concepts or binary classifiers)
- The VC-dimension can be used to bound the difference between sample error and true error of a hypothesis (more in Flach p.126)

Learnability

Peter Flach Book pp.124-126, Tom Mitchell, Machine Learning Chapter 7

We seek theory to relate:

- Probability of successful learning
- Number of training examples
- Complexity of hypothesis space
- Accuracy to which target concept is approximated
- Manner in which training examples presented

To start things up we need a learning model One of the most common (although rather pessimistic)

Probably approximately correct (PAC) learning

(L. Valiant. *<u>A theory of the learnable.</u>* Communications of the ACM, 27, 1984.)

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Theorem:

The concept class C is PAC learnable **iff** the <u>VC dimension</u> of C is finite.

The concept class *C* is PAC learnable by L => L can generalize.

Kolmogorov complexity and Inductive inference

Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest <u>computer program</u> (in a predetermined <u>programming language</u>) that produces the object as output. It is a measure of the <u>computational</u> resources needed to specify the object.

MDL and learning decision tree

code the decision tree and exceptions to reach the minimum message length

No.	ATTRIBUTES				
	Outlook	Temperature	Humidity	Windy	
1	overcast	hot	high	not	N
2	overcast	hot	high	very	Ν
3	overcast	hot	high	medium	N
4	sunny	hot	high	not	Р
5	sunny	hot	high	medium	Р
6	rain	mild	high	not	Ν
7	rain	mild	high	medium	Ν
8	rain	hot	normal	not	Р
9	rain	cool	normal	medium	Ν
10	rain	hot	normal	very	N
11	sunny	cool	normal	very	Р
12	sunny	cool	normal	medium	P
13	overcast	mild	high	not	Ν
14	overcast	mild	high	medium	N
15	overcast	cool	normal	not	Р
16	overcast	cool	normal	medium	Р
17	rain	mild	normal	not	N
18	rain	mild	normal	medium	N
19	overcast	mild	normal	medium	Р
20	overcast	mild	normal	very	P
21	sunny	mild	high	very	Р
22	sunny	mild	high	medium	Р
23	sunny	hot	normal	not	Р
24	rain	mild	high	very	N

No.	ATTRIBUTES				CLASS
	Outlook	Temperature	Humidity	Windy	
1	overcast	hot	high	not	N
2	overcast	hot	high	very	N
3	overcast	hot	high	medium	N
4	sunny	hot	high	not	Р
5	sunny	hot	high	medium	Р
6	rain	mild	high	not	Ν
7	rain	mild	high	medium	Ν
8	rain	hot	normal	not	Р
9	rain	cool	normal	medium	N
10	rain	hot	normal	very	N
11	sunny	cool	normal	very	Р
12	sunny	cool	normal	medium	P
13	overcast	mild	high	not	Ν
14	overcast	mild	high	medium	N
15	overcast	cool	normal	not	Р
16	overcast	cool	normal	medium	Р
17	rain	mild	normal	not	N
18	rain	mild	normal	medium	N
19	overcast	mild	normal	medium	Р
20	overcast	mild	normal	very	Р
21	sunny	mild	high	very	Р
22	sunny	mild	high	medium	Р
23	sunny	hot	normal	not	Р
24	rain	mild	high	very	N

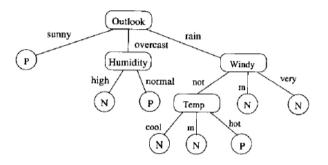


FIGURE 5.5. Perfect decision tree

No.	ATTRIBUTES				
	Outlook	Temperature	Humidity	Windy	
1	overcast	hot	high	not	N
2	overcast	hot	high	very	N
3	overcast	hot	high	medium	Ν
4	sunny	hot	high	not	Р
5	sunny	hot	high	medium	Р
6	rain	mild	high	not	N
7	rain	mild	high	medium	N
8	rain	hot	normal	not	Р
9	rain	cool	normal	medium	N
10	rain	hot	normal	very	N
11	sunny	cool	normal	very	Р
12	sunny	cool	normal	medium	P
13	overcast	mild	high	not	Ν
14	overcast	mild	high	medium	N
15	overcast	cool	normal	not	P
16	overcast	cool	normal	medium	Р
17	rain	mild	normal	not	N
18	rain	mild	normal	medium	N
19	overcast	mild	normal	medium	Р
20	overcast	mild	normal	very	P
21	sunny	mild	high	very	Р
22	sunny	mild	high	medium	Р
23	sunny	hot	normal	not	Р
24	rain	mild	high	very	N

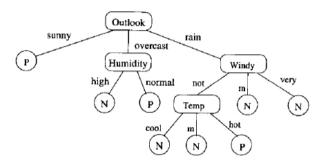
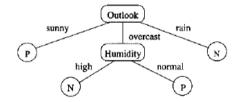


FIGURE 5.5. Perfect decision tree



No.	ATTRIBUTES				
	Outlook	Temperature	Humidity	Windy	
1	overcast	hot	high	not	N
2	overcast	hot	high	very	N
3	overcast	hot	high	medium	Ν
4	sunny	hot	high	not	Р
5	sunny	hot	high	medium	Р
6	rain	mild	high	not	N
7	rain	mild	high	medium	N
8	rain	hot	normal	not	Р
9	rain	cool	normal	medium	N
10	rain	hot	normal	very	N
11	sunny	cool	normal	very	Р
12	sunny	cool	normal	medium	P
13	overcast	mild	high	not	N
14	overcast	mild	high	medium	N
15	overcast	cool	normal	not	Р
16	overcast	cool	normal	medium	Р
17	rain	mild	normal	not	N
18	rain	mild	normal	medium	N
19	overcast	mild	normal	medium	Р
20	overcast	mild	normal	very	P
21	sunny	mild	high	very	Р
22	sunny	mild	high	medium	Р
23	sunny	hot	normal	not	Р
24	rain	mild	high	very	N

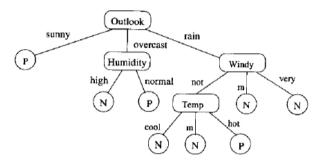
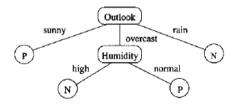


FIGURE 5.5. Perfect decision tree



+ single exception

No.	ATTRIBUTES				CLASS
	Outlook	Temperature	Humidity	Windy	
1	overcast	hot	high	not	N
2	overcast	hot	high	very	N
3	overcast	hot	high	medium	Ν
4	sunny	hot	high	not	Р
5	sunny	hot	high	medium	Р
6	rain	mild	high	not	N
7	rain	mild	high	medium	N
8	rain	hot	normal	not	Р
9	rain	cool	normal	medium	N
10	rain	hot	normal	very	N
11	sunny	cool	normal	very	Р
12	sunny	cool	normal	medium	P
13	overcast	mild	high	not	Ν
14	overcast	mild	high	medium	N
15	overcast	cool	normal	not	P
16	overcast	cool	normal	medium	Р
17	rain	mild	normal	not	N
18	rain	mild	normal	medium	N
19	overcast	mild	normal	medium	Р
20	overcast	mild	normal	very	P
21	sunny	mild	high	very	Р
22	sunny	mild	high	medium	Р
23	sunny	hot	normal	not	Р
24	rain	mild	high	very	N

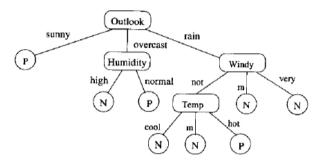
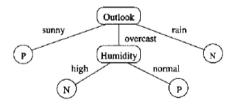


FIGURE 5.5. Perfect decision tree



+ single exception

How to code a decision tree and exceptions

Perfect tree For the tree in Figure 5.5, she writes down

1 Outlook 0 P 1 Humidity 0 N 0 P 1 Windy 0 N 0 N 1 Temperature 0 N 0 N 1 P.

Imperfect tree

1 Outlook 0 P 1 Humidity 0 N 0 P 0 N.

Coding the Exceptions Since the decision tree in Figure 5.4 is not perfect, we need to indicate where the exceptions are. In this case there is a single exception. The most straightforward way is to indicate its *position* among all 54 possible combinations of attributes. This costs $\log 54 \approx 5.75$ extra bits.

Summary

Thus, the encoding using the decision tree in Figure 5.4 uses 19.335 bits; the encoding using the decision tree in Figure 5.5 uses 25.585 bits. The MDL principle tells us to use the former method, which is also much shorter than the 54-bit plain encoding.

Information sources

- Tom Mitchell, Machine Learning
- Peter Flach Book
- <u>http://work.caltech.edu/lectures.html</u>
- Li & Vitanyi, An Introduction to Komogorov Complexity and Its Applications