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   Monte Carlo methods in Machine learning 

Based partially on  
https://machinelearningmastery.com/monte-carlo-samplig-or-probability 
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Main idea 
•  Monte Carlo methods are a class of techniques for randomly sampling a 

probability distribution 
•  Example: compute the area under a curve (pic. From Wikipedia). 
•  Generate points, i.e. couples (x,y) randomly, count the number of points that 

are under the curve (n) vs. all points generated (N). The area is approximated 
with  n/N 
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Example & Convergence 

•  randomly draw samples from a Gaussian distribution with 
the specified mean (mu), standard deviation (sigma), and 
sample size 

•  Convergence to zero error = approx. 1/sqrt(#trials), not too fast 
. 
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Monte Carlo in Machine learning 
Resampling algorithms. 

Monte Carlo methods provide the basis for resampling techniques like the 
bootstrap method for estimating a quantity, such as the accuracy of a model on 
a limited dataset. 

Random hyperparameter tuning. 

Random sampling of model hyperparameters when tuning a model is a Monte 
Carlo method 

Monte Carlo methods also provide the basis for randomized or stochastic 
optimization algorithms, such as the popular 
Simulated Annealing optimization technique. 
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Theory of Machine learning 
Peter Flach Book pp.124-126, Tom Mitchell, Machine Learning Chapter 7 

We seek theory to relate: 

•  Probability of successful learning 

•  Number of training examples 

•  Complexity of hypothesis space 

•  Accuracy to which target concept is approximated 

•  Manner in which training examples presented 
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Two roles for Bayesian methods 
Tom Mitchell, Machine Learning Chapter 6 

•  Provides practical learning algorithm 

•  Provides conceptual frameworks 

  gold standard for evaluationg other learning algorithms  
  insight to Occam;s razor 
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Brute Force MAP Hypothesis Learner 

H … hypotheses 
D … learning data 
hMAP … maximum a posteriori hypothesis 
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VC-dimension 
Leede Lee, Quora,Updated March 7, 2017 

•  In binary classification, for a given dataset with 𝑚 points in a 𝑛-dimensional  points in a 𝑛-dimensional -dimensional 
real number space, there are 2m labeling scheme for it. For instance, for a 
dataset with 2 fixed points whose Cartesian coordinates are (0,0) and (1,0), 
these points can be labeled {+,+}, {+,-}, {-,+}, {-, -}, so there are 2x2=4 
labeling schemes for the dataset. 

•  We say a hypothesis class 𝐻 can “shatter” a GIVEN dataset 𝑆, if for ANY  can “shatter” a GIVEN dataset 𝑆, if for ANY , if for ANY 
labeling scheme of 𝑆, there are always at least a hypothesis ℎ within 𝐻 that , there are always at least a hypothesis ℎ within 𝐻 that  that 
can correctly predict every point’s label. 

•  Finally, we say the VC-dimension of the hypothesis class 𝐻 is 𝑑, if the highest  is 𝑑, if the highest , if the highest 
cardinality (i.e. the number of points) of dataset which 𝐻 can shatter is 𝑑.  can shatter is 𝑑. . 

•  VC-dimension refers to Vapnik–Chervonenkis dimension, originally put 
forward by Vladimir Vapnik and Alexey Chervonenkis. Roughly, it measures 
a hypothesis class’s capacity, or expressive power. 
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VC-dimension: Examples 

•  The VC-dimension is the size of the largest set of instances that can be 
shattered by a particular hypothesis language or model class.  

•  VC-dimension of a linear classifier in d dimensions is d +1: a threshold on the 
real line can shatter two points but not three (since the middle point cannot be 
separated from the other two by a single threshold) 

•  The VC-dimension of  1NN (kNN for k=1) is infinite. 
•  the VC-dimension of conjunctive concepts over d Boolean literals is  d.  

 (= concepts or binary classifiers) 
•  The VC-dimension can be used to bound the difference between sample error 

and true error of a hypothesis (more in Flach p.126) 
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Learnability 
Peter Flach Book pp.124-126, Tom Mitchell, Machine Learning Chapter 7 

We seek theory to relate: 
•  Probability of successful learning 
•  Number of training examples 
•  Complexity of hypothesis space 
•  Accuracy to which target concept is approximated 
•  Manner in which training examples presented 

To start things up we need a learning model 
One of the most common (although rather pessimistic) 

Probably approximately correct (PAC) learning  
(L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.) 
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PAC Learning 

Theorem:  
The concept class C is PAC learnable iff the VC dimension of C is finite. 

The concept class C is PAC learnable by L => L can generalize. 
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Kolmogorov complexity and Inductive inference  

Kolmogorov complexity of an object, such as a piece of text, is the length of a 
shortest computer program (in a predetermined programming language) that 
produces the object as output. It is a measure of the computational resources 
needed to specify the object. 

MDL and learning decision tree 
 code the decision tree and exceptions to reach the minimum message length 
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Example 
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Example 
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Example 
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Example 

+ single exception  
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Example 

+ single exception  
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How to code a decision tree and exceptions 

Perfect tree 

Imperfect tree 

Summary 
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Information sources 

•  Tom Mitchell, Machine Learning  
•  Peter Flach Book  
•  http://work.caltech.edu/lectures.html 
•  Li & Vitanyi, An Introduction to Komogorov Complexity and Its Applications 


