Efficient relational learning from sparse data

Luboš Popelínský

Knowledge Discovery Group

Faculty of Informatics, Masaryk University in Brno, Czechia

popel@fi.muni.cz

http://www.fi.muni.cz/kd

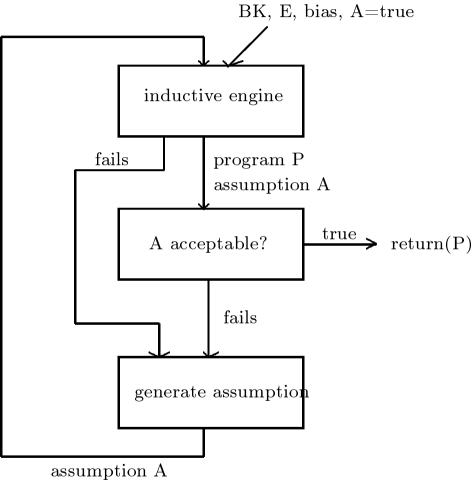
Relational learning - learning in first-order logic

Exact learning - learning from exact data

Sparse data - not more than 5 training examples

Generate&test top-down algoritms - from the most general hypothesis

Assumption-based learning



Generic algorithm of assumption-based learning

Given:

domain knowledge BK, example set E, bias, assumption A = true inductive engine I, overgeneral program P function f, that computes an assumption A acceptability module AM

- 1. Call I on $BK \cup P, E \cup A, bias$.
 - if I succeeds resulting in program P'
 then call AM to validate the assumption A.
 if A is accepted then return(P') else go to (2).
 - else go to (2).
- 2. Call f to generate a new assumption A. If it fails, return(fail) and stop else go to (1).

WiM

```
inductive engine Markus^+
   depth-first search
   automatic setting of bias
   multiple predicate learning
   2nd-order schema may be employed
generator of assumptions
   choose the simplest positive example
   find its near-miss
acceptability criterion
   membership oracle
```

WiM: results

2 – 4 examples for learning most of ILP benchmark predicates (list processing, Peanova aritmetika)

learning from positive examples only; negative examples, if any, generated with WiM itself

max. 1 query to the user

less dependent on quality of examples

easy to use

CRUSTACEAN , SKILit a WiM : Randomly generated examples

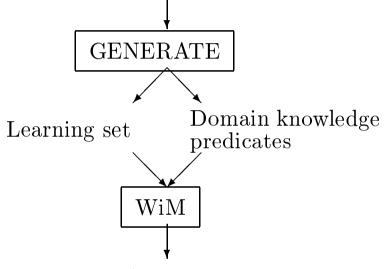
	CRUSTACEAN		SKILit			WiM		
	2	3	2	3	5	2	3	5
member	0.65	0.76	0.70	0.89	0.95	0.80	0.97	0.97
last	0.74	0.89	0.71	0.72	0.94	0.76	0.89	0.94
append	0.63	0.74	0.76	0.80	0.89	0.77	0.95	0.95
delete	0.62	0.71	0.75	0.88	1.00	0.85	0.88	0.97
reverse	0.80	0.86	0.66	0.85	0.87	0.85	0.95	0.99

Randomly generated examples: Learning with assumptions

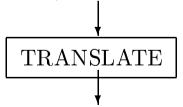
# pos.	2			3			5		
	bez	S	TP	bez	S	TP	bez	S	ТР
last	0.885	0.896	6	0.906	0.934	7	0.932	0.971	8
delete	0.882	0.962	8	0.857	0.937	7	0.874	0.943	7
leq	0.380	0.703	0	0.527	0.795	4	0.572	0.932	9
length	0.540	0.659	0	0.692	0.816	1	0.728	0.956	4

DWiM schema

database schema and object descriptions in F-logic



the new class/attribute definition in FOL



the new class/attribute definition in F-logic

Spatial database schema BRIDGE LINEAR PLANAR Object1 \ Geometry Geometry Object 2 BUILDING FORESTRY HIGHWAY_BRIDGE RIVER ` ROAD RAILWAY Named Named State FOREST_HOUSE WOOD FOREST Importance Forest

Inductive query language for mining in geographic data [PKDD'98]

```
extract characteristic rule

for bridge

for bridge

from road, river.

extract discriminate rule

for forest

in contrast to wood

from point of view area.

bridge(X,Y):-

road(X),roadGeometry(X,Z),

river(Y),riverGeometry(Y,U),

member(V,Z),member(W,U),W=V.

forest(F):-

geometry(F,GForest),

area(GForest,Area),

100 < Area.
```

extract dependency rule

for differentHouses

from forestHouse, forest, building

where building(B, GB),

not forestHouse(B, F)

from point of view distance, less

```
differentHouses(FH,F,H) :-
    distance(FH,F,D1),
    distance(H,F,D2),
    D1<D2.</pre>
```