Notes on satisfiability

Skolemization

Resolution
Skolemization. An example

Example 1: Prove that $\forall x \phi(x, f(x)) \Rightarrow \forall x \exists y \phi(x, y)$ holds.
Skolemization. An example

Example 1: Prove that $\forall x \phi(x, f(x)) \Rightarrow \forall x \exists y \phi(x, y)$ holds.

Example 2: Prove that $\forall x \exists y \phi(x, y) \Rightarrow \forall x \phi(x, f(x))$ not.
Skolemization I

(Nerode, Shore, Logic for Applications)

Theorem 9.4 For every sentence ϕ in a given language \mathcal{L} there is a universal formula ϕ' in an expanded language \mathcal{L}' gotten by the addition of new function symbols such that ϕ and ϕ' are equisatisfiable.
Skolemization II

Theorem 9.4 For every sentence ϕ in a given language \mathcal{L} there is a universal formula ϕ' in an expanded language \mathcal{L}' gotten by the addition of new function symbols such that ϕ and ϕ' are equisatisfiable.

Lemma 9.5 For any sentence $\phi = \forall x_1 \ldots \forall x_n \exists y \psi$ of a language \mathcal{L} ϕ and $\phi' = \forall x_1 \ldots \forall x_n \psi(y/f(x_1, \ldots, x_n))$ are equisatisfiable when f is a function symbol not in \mathcal{L}.
Lemma 9.5 For any sentence $\phi = \forall x_1 \ldots \forall x_n \exists y \psi$ of a language \mathcal{L} and $\phi' = \forall x_1 \ldots \forall x_n \psi(y/f(x_1, \ldots, x_n))$ are equisatisfiable when f is a function symbol not in \mathcal{L}.

Proof: \mathcal{L}' ... \mathcal{L} extended with the function symbol f

If A' is a structure for \mathcal{L}' and A is a structure obtained from A' by omitting the function interpreting f, and $A' \models \phi'$ then $A \models \phi$.

On the other hand, if A is a structure for \mathcal{L} and $A \models \phi$, we can extend A to a structure A' by defining $f^{A'}$ so that for every $a_1, \ldots, a_n \in A = A'$, $A \models \psi(y/f(a_1, \ldots, a_n))$. Then $A' \models \phi'$. (n may be 0, f be a constant).
Resolution. An example

\{\{p, q\}, \{r, \neg q\}\}
Resolution. An example

\{ \{p, q\}, \{r, \neg q\} \} \text{ satisfiable } \Rightarrow \text{ the resolvent } \{p, r\} \text{ satisfiable}

\{p, r\} \text{ unsatisfiable } \Rightarrow \{\{p, q\}, \{r, \neg q\}\} \text{ unsatisfiable}
Resolution

Lemma 8.12 If the formula (i.e., set of clauses) $S = \{C_1, C_2\}$ is satisfiable and C is a resolvent of C_1 and C_2, then C is satisfiable. Any assignment \mathcal{A} satisfying S satisfies C.

Proof: $C_1 = \{l\} \cup C'_1$, $C_2 = \{\neg l\} \cup C'_2$, the resolvent is $C = C'_1 \cup C'_2$. As \mathcal{A} is an assignment that satisfies $S = \{C_1, C_2\}$ it cannot be that both $l \in \mathcal{A}$ and $\neg l \in \mathcal{A}$. Say $\neg l \notin \mathcal{A}$. As $\mathcal{A} \models C_2$ and $\neg l \notin \mathcal{A}$, $\mathcal{A} \models C'_2$ and so $\mathcal{A} \models C$. Similarly for $l \notin \mathcal{A}$.