Predicate logic

Language
e constants
e variables
® connectives
e quantifiers — universal V, existential 3
e predicate symbols — predicate = n-ary relation
function symbols

punctuation




Formulas

terms = constants, variables, f(t1, ..., t,)

ground terms = variable—free terms
atomic formula R(t1, ..., t, ), arity, arguments

formulas

— atomic formulas

- F,FOPG(@OP=A,V,— )
- dF,VF

sentence = no free occurence of any variable (all variables are
bound)

open formula = without quantifiers




Substitution

e only free variables

e If the term t contains an occurence of some variable & (which is

necessarily free in ) we say that ¢ is substitutable for the free

variable v in the formula A(v) if all occurencies of x in ¢

remains free in A(v/t)

Example:A = dx P(x, y)

A(y/z) = dxP(x, 2)

A(y/2) = dzP(x, 2)

A(y/ f(z,2)) = JaP(z, f(z, 2)).
but not

A(y/ f(z,x)) = FxP(z, f(x,2))




Axiomatic system for predicate calculus

e axioms (A, B, C' = formulas):
A A= (B=A)
Ay (A= (B=0C))=((A=B)=A="0C))
As; (-B=-A)= (A= B)
Ay (Vx)a(x) — aft) for any term that is substitutable for x
in o
As (Vx)(a — B) — (a — (Vx)0) if a contains no
occurence of x

® two inference rules

Modus Ponens




Generalization From Yx o infer o

e proof = a finite sequence of formulas




Prenex normal forms

e DNF, CNF
QCBl...Qiljn((All\/...\/Alll)/\(Agl\/...\/AQLQ)/\...

A( Ay VooV Ay )

e Example:

Vavy3Vw((P(z,y) V —Q(2)) A (R(z, w) vV R(y, w)))

e Every formula ¢ has a prenex equivalent.




Algorithm

. Remove the quantifiers that are not used
. Rename variables so that each quantifier has a unique variable
. Eliminate all connectives but =, A a VvV

. Move negation to the right
Ve A -——>dr—A
—~(ANB)-—>-AV =B apod.

. Move quantifiers to the left (op € {A,V},Q € {V,3}):
A op QB ——> Qxz(A op B)
QrA op B-—>Qxz(A op B)




6. Use distributive laws

AV(BANC)-->(AVB)AN(AV ()

(ANB)VC -->(AVC)AN(BVC(C)




Skolemization

Skolem Normal Form - NF with universal quantifiers

Vry... Ve, yP(x1,...,Tn,Y)
——>
Vry.. Ve, P(x1,...,Tn, f(T1,...,20))

Example:

Vedy(x +y =0) ——> Va(x + f(z) =0)

For the domain of integers with the operation + : f = inverse

number,

not equivalent but equisatisfiable




Skolemization: Algorithm

1. transform the formula into NF

2. replace all existentially quantified variables with Skolem
functions.
Arguments of SF = all universally quantified vars that have
appeared before the variable.

Example 2: Vady—(P(x,y) = VzR(y)) V =3xQ(x)

1. Vo JyVao ((P(z1,y) V-Q(x2)) A (—R(y) V =Q(x2)))
2. Ve 1Vro((P(x, f(x1)) V 2Q(x2)) AN (mR(f(x1)) V
—Q(z2)))

e Example 3: VxIyVz3dw(P(x,y) V -Q(z,w))







Herbrand’s Theorem |

e |ooking for the simplest interpretation; Skolem normal form, all
the constants (maybe +1), functions and predicate symbols

Herbrand universe U (\S') = all such terms
Example:

For S = {P(f(0))

¢
U(S) =10, £(0), f(£(0)), fF(£(f(0))), ..}

Herbrand base B(.S') = all atomic formulas build upon U (.S);
B(S) ={P(t1,...,tn)|t; €

U(S), P ... a predicate symbol from.S'}

Example:

For § = {P(f(0))},

B(5) = {P(0), P(f(0)), P(f(f(0))), ...}




Herbrand’s Theorem Il

e Herbrand structure (in Czech interpretace) is a subset of B(.S).

e Herbrand model M (.S') of S is an Herbrand structure which is
model of S, i.e. every sentence f .S s true in M (.S).

e Herbrand’s Theorem: Let .S be a set of open formulas of a
language L. Either
1. S has an Herbrand model or

2. S is unsatifiable and, in particular, there are finitely many
ground instances of elements of S whose conjunction is

unsatisfiable.

Consequence: we do not need to explore any other structures but
Herbrand




Resolution in predicate logic — introduction

e based on refutation
e suitable for automated theorem proving

e formulas in Skolem normal form

— clause = disjunction of literals (atoms or negation of atoms),
represented as a set

— formula = conjunction of clauses, represented as a set

e Example:

vavy((P(z, f(x)) vV =Q(y)) A (~R(f(z)) V ~Q(y)))

—>

WPz, f(2), ~Qy)}, {~R(f(2)), ~Q(y) )}




Unification

e a substitution ¢ is a unifier for S = {E1, ..., Eo}if
EFiop=Fyp=...=FE,0,ie., So¢is singleton.

S is said to be unifiable if it has a unifier.

e a unifier ¢ for S is a most general unifier (mgu) for S if, for every
unifier ¢ for S, there is a substitution A such that A = ¥

up to renaming variables there is only one result applying an

mgu




Unification — Examples

1. a unifier for { P(x, c), P(b,c)} is
¢ = {x/b};is there any other?

. aunifier for { P(f(x),y), P(f(a),w)}is
¢ = {ZIZ/CL, y/w}
butalso v = {z/a,y/a,w/a},
oc={x/a,y/b,w/b} etc.

APz, a), P(b,c)}, {P(f(x),2), Pla,w)},
{P(m,w),ﬂP(a,w)},
1P(z,y,2), P(a,0)}, {R(x), P(x)}

are not unifiable




mgu?

in (2.) ¢ is the mgu: ¥ = ¢p{w/a}, o0 = p{w/b}




Resolution in predicate logic — preliminaries

e variables are local for a clause (pozn.: Vx(A(x) A B(x)) <
(VxA(x) AVaB(x)) & (VzA(x) AVyB(y)))

l.e. there is no relation between variables equally named

e standardization of vars = renaming, necessary
{{P(z)},{—P(f(x))}} is unsatisfiable. Without renaming a

variable no unification can be performed




Resolvent — Examples

Example 1: { P(z,a)}, {—P(x,x)}
e rename vars: { P(x1,a)}

e mgu({P(x1,a), P(x,x)}) ={x1/a,x/a}
e resolvent [

Example 2: { P(x,y), ~R(x)}, {—-P(a,b)}
e mgu({P(z,y), Pla,b)}) = {z/a,y/b;

e apply mguto {—R(x)}
e resolvent {—R(a)}



Resolution rule in predicate logic

(1, (5 clauses that have no variables in common in the

form
Ch = Ci L {P(fl)v s 7P(f’n)}’
02 — Cé L] {ﬁp(gl)a sy _'P(?j’m)}
respectively. If ¢ is an mgu for

{P(Z1),...,P(Z,),P(y1),..., P(¥m)},
then C ¢ U Cl¢ is a resolvent of C'; and Cs
(also called the child of parents C'; and C5).




Resolution rule in predicate logic Il

e Resolution proofs of C from S is a finite sequence
C1,Cs,...,Cn = C of clauses such that each C}; is either a
member of .S or a resolvent of clauses C;, Cy, for 7, k < i

resolution tree proof C from S is a labeled binary tree

the root is labeled

the leaves are labeled with elements of .S and

if any nonleaf node is labeled with C'5 and its immediate
successors are labeled with Cy, C'; then C5 is a resolvent Cy
and ('

e (resolution) refutation of S is a deduction of O from .S




Resolution — Examples |

e choose the set of literal

1P(z,y), P(f(2), f(2)), P(f(a), fa)), P(f(w), f(w))}
e mgu ¢ = {z/f(a),y/f(a),z/a,w/a}
o (1 =1{Q(x),~R(y)}, C1¢ = {Q(f(a)), ~R(f(a))}
o Cy = {~N(u),"R(w)}, C3¢ = {~N(u), ~R(a)}

e the resolvent

C19p U3¢ = {Q(f(a)), ~R(f(a)), ~N(u),~R(a)}




Resolution in the predicate logic

e is sound (soundness) and complete

e systematic attempts at generating resolution proofs possible
but redundant and inefficient: the search space is t0o huge

e what strategy of generating resolvents to choose?




Linear resolution

{{P(xvx)}v{_'P(xvy)v_'P(ywz)vp(zwx)}v{P(av b)}v{_'P(bv
{—=P(z,y), " P(y, 2), P(z,z)} {P(a,b)}

/

z/a,y/b x/a,y/b

{—-P(b,z), P(z,a) {—P(b,a)}

=/ //b

{—~P(b,0)}  {P(z,z)}

a:/bl A)

O

sound and complete




Ll-resolution

linear input resolution

{{P(az,az)},{ﬂP(a},y),ﬁP(y,z),P(z,x)},{P(a, b)}v{_'P(ba

{=P(,a)} {-P(z,y), ~P(y,2), P(z,z)}

x/a,z/b
/ / Az/b

{—=P(a,y),~P(y,b) {P(a,b)}

y/b //b

{=P(,b)}  {P(z,z)}

:c/bl //b

O




Ll-resolution Il

sound but not complete in general

Ex..: S = {{p, ¢}, {p, ¢}, {-p, ¢}, {-p, ~q}}




{—p, ~q} {p, —q}

-

{—q} {p,q}

-

{p} {—p,q}

-

{q} {p,—q}

{-p,q}

LI-resolution is complete for Horn clauses




Horn clause

max. one positive literal

which of {{p, ¢}, {p, ¢}, {—p, ¢}, {—p, g}, {p}} are
Horn clauses?

an alternative notation

{p < a},{p — ¢}, {true — p}
the Prolog notation

rule P :— (J.

fact P.

goal ?—




LD-resolution

e from LI-resolution to an ordered resolution

e works with an ordered clauses; |[P(x), ~R(x, f(y)), ~Q(a)]

It G = [_IAl, _IAQ, PN _lAn] and

H = |By,—B1,—Bs, ..., B,,] are ordered clauses and ¢ an
mgu for By and A;),

then the (ordered) resolvent of G a H is the ordered clause

(A1, ~ A2, ..., ~Ai_1¢, ~Bid, ~Bag, ..., Bmd, ~Ais16, ...}

LD — Linear Definite




LD-resolution

{[P(CC,CE)], [P(z,x),—lp(x7y),—|P(y, Z)]» [P(aab)]a [_'P(bv CL)]

[—P(b, a)] [P(z,z), 7 P(x,y), 7 P(y, 2)]

x/a,z/b

[-P(a,y), ~P(y,b)] [P(a,b)]

y/a

[—P(a,a)]




LD-resolution is sound and complete for Horn clauses.




SLD-resolution

e |LD-resolution with a selection rule

e A selection rule R s a function that chooses a literal from every
nonempty ordered clause C'.

e If no R is mentioned we assume that the standard one of
choosing the leftmost literal is intended.

e Example: G = |- A1, —A,, ..., A,
H = [By,~Bi,—Bs,...,—B,
The resolvent of G and H for ¢ = mgu(By, A1) is
= B1¢, B¢, ..., 7 Bnd,~As¢, ..., AP

SLD-resolution is sound and complete for Horn clauses




SLD-resolution

selection rule = the leftmost literal
[_'P(bv a)] [P(Zax)vﬁp(xvy)’ﬁp(yvz)]

x/a,z/b
faz/ /,z/b

[—P(a,y), ~P(y,b)] [P(a,b)]

y/b

[~ P(b,0)]
x/b

O




For
P ={|P(a,b)], |P(x,2)|,|P(z,x),~P(z,y), Py, 2)] },

find all solutions (i.e. substitutions of variables) of the goal
~P(y,a)]




[—P(y,a)] [P (z,z)]

x/a,h A,y/a

[—P(y,a)] [P (=, -’L‘) ~P(z,y),~P(y,z)]

Z/y,wx A z/y,z/a

[—P(a,w),~P(w,y)] [P (a,b)]

N

[=P(b,y)] [P (z,z)]

x/b% A,y/b



SLD-trees

all SLD-derivations for a given goal G and the program P

1. [P(z,y),~Q(x,2), 7 R(z,y)] : , )]
2. [P(x,x),nS(x)]

3. [Q(z,b)]

4. [Q(b,a)]




[—IQ(ZC,Z),R(Z,CB)]

VX

[—R(b,x)] [~R(a,b)[-R(a,z),R(a,x)] [T (x,a)] [T (x,b)]
6 | | 11| | 10

Uiz /al Uia /p) Uiz /al




