Predicate logic

Language

- constants
- variables
- connectives
- ullet quantifiers universal \forall , existential \exists
- predicate symbols predicate = n-ary relation
- function symbols
- punctuation

Formulas

- terms = constants, variables, $f(t_1, ..., t_n)$ ground terms = variable–free terms
- ullet atomic formula $R(t_1,...,t_n)$, arity, arguments
- formulas
 - atomic formulas
 - $\neg F$, $F OP G (OP = \land, \lor, \rightarrow .)$
 - $-\exists F, \forall F$
- sentence = no free occurence of any variable (all variables are bound)
- open formula = without quantifiers

Substitution

- only free variables
- If the term t contains an occurrence of some variable x (which is necessarily free in t) we say that t is *substitutable* for the free variable v in the formula A(v) if all occurrencies of x in t remains free in A(v/t)
- Example: $A=\exists x P(x,y)$ $A(y/z)=\exists x P(x,z)$ $A(y/2)=\exists x P(x,2)$ $A(y/f(z,z))=\exists x P(x,f(z,z)).$ but not $A(y/f(x,x))=\exists x P(x,f(x,x))$

Axiomatic system for predicate calculus

• axioms (A, B, C = formulas):

$$\mathbf{A_1} \ A \Rightarrow (B \Rightarrow A)$$

$$\mathbf{A_2} \ (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$$

$$\mathbf{A_3} \ (\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B)$$

 ${\bf A_4} \ \, (\forall x)\alpha(x) \to \alpha(t)$ for any term that is substitutable for x in α

$${\bf A_5} \ (\forall x)(\alpha \to \beta) \to (\alpha \to (\forall x)\beta) \ {\it if} \ \alpha \ {\it contains no} \ {\it occurrence of} \ x$$

• two inference rules

Modus Ponens

$$\frac{A \qquad A \Rightarrow B}{B}$$

Prenex normal forms

• DNF, CNF

$$Qx_1 \dots Qx_n((A_{1_1} \vee \dots \vee A_{1_{l_1}}) \wedge (A_{2_1} \vee \dots \vee A_{2_{l_2}}) \wedge \dots \wedge (A_{m_1} \vee \dots \vee A_{m_{l_m}}))$$

• Example:

$$\forall x \forall y \exists z \forall w ((P(x,y) \vee \neg Q(z)) \wedge (R(x,w) \vee R(y,w)))$$

ullet Every formula ϕ has a prenex equivalent.

Algorithm

- 1. Remove the quantifiers that are not used
- 2. Rename variables so that each quantifier has a unique variable
- 3. Eliminate all connectives but \neg , \land a \lor
- 4. Move negation to the right

$$\neg \forall xA --> \exists x \neg A$$

$$\neg (A \land B) --> \neg A \lor \neg B \text{ apod.}$$

5. Move quantifiers to the left (op $\in \{\land, \lor\}, Q \in \{\forall, \exists\}$):

$$A ext{ op } QxB ext{-->} Qx(A ext{ op } B)$$

$$QxA ext{ op } B ext{-->} Qx(A ext{ op } B)$$

6. Use distributive laws

$$A \lor (B \land C) \longrightarrow (A \lor B) \land (A \lor C)$$

$$(A \land B) \lor C \longrightarrow (A \lor C) \land (B \lor C)$$

Skolemization

- Skolem Normal Form NF with universal quantifiers
- $\forall x_1 \dots \forall x_n \exists y P(x_1, \dots, x_n, y)$ --> $\forall x_1 \dots \forall x_n P(x_1, \dots, x_n, f(x_1, \dots, x_n))$
- Example:

$$\forall x \exists y (x + y = 0) \longrightarrow \forall x (x + f(x) = 0)$$

For the domain of integers with the operation +:f= inverse number,

• not equivalent but equisatisfiable

Skolemization: Algorithm

- 1. transform the formula into NF
- 2. replace all existentially quantified variables with Skolem functions.

Arguments of SF = all universally quantified vars that have appeared before the variable.

- Example 2: $\forall x \exists y \neg (P(x,y) \Rightarrow \forall z R(y)) \lor \neg \exists x Q(x)$
 - 1. $\forall x_1 \exists y \forall x_2 ((P(x_1, y) \lor \neg Q(x_2)) \land (\neg R(y) \lor \neg Q(x_2)))$
 - 2. $\forall x_1 \forall x_2 ((P(x_1, f(x_1)) \vee \neg Q(x_2)) \wedge (\neg R(f(x_1)) \vee \neg Q(x_2)))$
- Example 3: $\forall x \exists y \forall z \exists w (P(x,y) \lor \neg Q(z,w))$

Herbrand's Theorem I

- looking for the simplest interpretation; Skolem normal form, all the constants (maybe +1), functions and predicate symbols
- Herbrand universe U(S) = all such terms Example:

For
$$S = \{P(f(0))\},\$$

$$U(S) = \{0, f(0), f(f(0)), f(f(f(0))), \ldots\}$$

• Herbrand base B(S) = all atomic formulas build upon U(S);

$$B(S) = \{P(t_1, \dots, t_n) | t_i \in U(S), P \dots \text{ a predicate symbol from } S\}$$

Example:

For
$$S = \{P(f(0))\},$$

$$B(S) = \{P(0), P(f(0)), P(f(f(0))), \ldots\}$$

Herbrand's Theorem II

- ullet Herbrand structure (in Czech interpretace) is a subset of B(S).
- \bullet $\it Herbrand\ model\ M(S)$ of S is an Herbrand structure which is model of S , i.e. every sentence f S s true in M(S).
- ullet Herbrand's Theorem: Let S be a set of open formulas of a language L. Either
 - 1. S has an Herbrand model or
 - 2. S is unsatifiable and, in particular, there are finitely many ground instances of elements of S whose conjunction is unsatisfiable.

Consequence: we do not need to explore any other structures but Herbrand

Resolution in predicate logic – introduction

- based on refutation
- suitable for automated theorem proving
- formulas in Skolem normal form
 - clause = disjunction of literals (atoms or negation of atoms),
 represented as a set
 - formula = conjunction of clauses, represented as a set
- Example:

$$\forall x \forall y ((P(x, f(x)) \lor \neg Q(y)) \land (\neg R(f(x)) \lor \neg Q(y)))$$

$$\rightarrow \{\{P(x, f(x)), \neg Q(y)\}, \{\neg R(f(x)), \neg Q(y)\}\}\}$$

Unification

- ullet a substitution ϕ is a *unifier* for $S=\{E_1,\ldots,E_2\}$ if $E_1\phi=E_2\phi=\ldots=E_n\phi$, i.e., $S\phi$ is singleton. S is said to be *unifiable* if it has a unifier.
- a unifier ϕ for S is a *most general unifier (mgu) for* S if, for every unifier ψ for S, there is a substitution λ such that $\phi\lambda=\psi$ up to renaming variables there is only one result applying an mgu

Unification – Examples

- 1. a unifier for $\{P(x,c),P(b,c)\}$ is $\phi=\{x/b\}$; is there any other?
- 2. a unifier for $\{P(f(x),y),P(f(a),w)\}$ is $\phi=\{x/a,y/w\}$ but also $\psi=\{x/a,y/a,w/a\},$ $\sigma=\{x/a,y/b,w/b\} \text{ etc.}$
- 3. $\{P(x,a), P(b,c)\}, \{P(f(x),z), P(a,w)\},$ $\{P(x,w), \neg P(a,w)\},$ $\{P(x,y,z), P(a,b)\}, \{R(x), P(x)\}$ are not unifiable

mgu?

in (2.) ϕ is the mgu: $\psi = \phi\{w/a\}$, $\sigma = \phi\{w/b\}$

Resolution in predicate logic – preliminaries

- variables are local for a clause (pozn.: $\forall x (A(x) \land B(x)) \Leftrightarrow (\forall x A(x) \land \forall x B(x)) \Leftrightarrow (\forall x A(x) \land \forall y B(y))$ i.e. there is no relation between variables equally named
- standardization of vars = renaming, necessary $\{\{P(x)\}, \{\neg P(f(x))\}\} \text{ is unsatisfiable. Without renaming a variable no unification can be performed}$

Resolvent – Examples

Example 1: $\{P(x, a)\}, \{\neg P(x, x)\}$

- rename vars: $\{P(x_1, a)\}$
- $mgu({P(x_1, a), P(x, x)}) = {x_1/a, x/a}$
- resolvent □

Example 2: $\{P(x,y), \neg R(x)\}, \{\neg P(a,b)\}$

- $mgu({P(x,y), P(a,b)}) = {x/a, y/b}$
- apply mgu to $\{\neg R(x)\}$
- $\bullet \ \operatorname{resolvent} \ \{ \neg R(a) \}$

Resolution rule in predicate logic

 ${\cal C}_1$, ${\cal C}_2$ clauses that have no variables in common in the form

$$C_1 = C'_1 \sqcup \{P(\vec{x}_1), \dots, P(\vec{x}_n)\},\$$

 $C_2 = C'_2 \sqcup \{\neg P(\vec{y}_1), \dots, \neg P(\vec{y}_m)\}$

respectively. If ϕ is an mgu for

$$\{P(\vec{x}_1),\ldots,P(\vec{x}_n),P(\vec{y}_1),\ldots,P(\vec{y}_m)\},\$$

then $C_1'\phi \cup C_2'\phi$ is a *resolvent* of C_1 and C_2 (also called the *child* of *parents* C_1 and C_2).

Resolution rule in predicate logic II

- Resolution proofs of C from S is a finite sequence $C_1, C_2, ..., C_N = C$ of clauses such that each C_i is either a member of S or a resolvent of clauses C_j, C_k for j, k < i
- resolution tree proof C from S is a labeled binary tree the root is labeled C the leaves are labeled with elements of S and if any nonleaf node is labeled with C_2 and its immediate successors are labeled with C_0 , C_1 then C_2 is a resolvent C_0 and C_1
- \bullet (resolution) refutation of S is a deduction of \square from S

Resolution – Examples II

Ex. 3:
$$C_1 = \{Q(x), \neg R(y), P(x,y), P(f(z), f(z))\}$$
 a $C_2 = \{\neg N(u), \neg R(w), \neg P(f(a), f(a)), \neg P(f(w), f(w))\}$

choose the set of literal

$$\{P(x,y), P(f(z), f(z)), P(f(a), f(a)), P(f(w), f(w))\}$$

- $\bullet \, \operatorname{mgu} \phi = \{x/f(a), y/f(a), z/a, w/a\}$
- $C'_1 = \{Q(x), \neg R(y)\}, C'_1 \phi = \{Q(f(a)), \neg R(f(a))\}$
- $C_2' = \{\neg N(u), \neg R(w)\}, C_2' \phi = \{\neg N(u), \neg R(a)\}$
- the resolvent

$$C'_1 \phi \cup C'_2 \phi = \{Q(f(a)), \neg R(f(a)), \neg N(u), \neg R(a)\}$$

Resolution in the predicate logic

- is sound (soundness) and complete
- systematic attempts at generating resolution proofs possible but redundant and inefficient: the search space is too huge
- what strategy of generating resolvents to choose?

Linear resolution

sound and complete

LI-resolution

linear input resolution

LI-resolution II

sound but not complete in general

 $\mathsf{Ex.:}: S = \{\{p,q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\}\}$

LI-resolution is complete for Horn clauses

Horn clause

- max. one positive literal which of $\{\{p,q\},\{p,\neg q\},\{\neg p,q\},\{\neg p,\neg q\},\{p\}\}$ are Horn clauses?
- an alternative notation

$$\{p \leftarrow q\}, \{p \rightarrow q\}, \{true \rightarrow p\}$$

- the Prolog notation
- rule p :- q.

fact p

goal ?- p,q.

LD-resolution

- from LI-resolution to an ordered resolution
- works with an *ordered clauses*; $[P(x), \neg R(x, f(y)), \neg Q(a)]$

If $G=[\neg A_1, \neg A_2, \dots, \neg A_n]$ and $H=[B_0, \neg B_1, \neg B_2, \dots, \neg B_m] \text{ are ordered clauses and } \phi \text{ an mgu for } B_0 \text{ and } A_i),$

then the *(ordered) resolvent* of G a H is the ordered clause

$$[\neg A_1\phi, \neg A_2\phi, \dots, \neg A_{i-1}\phi, \neg B_1\phi, \neg B_2\phi, \dots, \neg B_m\phi, \neg A_{i+1}\phi, \dots, \neg A_n\phi]$$

LD - Linear Definite

LD-resolution

$$\{[P(x,x)], [P(z,x), \neg P(x,y), \neg P(y,z)], [P(a,b)], [\neg P(b,a)]\}$$

$$[\neg P(b,a)] \qquad [P(z,x), \neg P(x,y), \neg P(y,z)]$$

$$x/a,z/b$$

$$[\neg P(a,y), \neg P(y,b)] \qquad [P(a,b)]$$

$$y/a$$

$$[\neg P(a,a)] \qquad [P(x,x)]$$

$$x/a$$

$$| \neg P(x,x)|$$

SLD-resolution

- LD-resolution with a selection rule
- ullet A selection rule R s a function that chooses a literal from every nonempty ordered clause C.
- ullet If no R is mentioned we assume that the standard one of choosing the leftmost literal is intended.
- Example: $G=[\neg A_1, \neg A_2, \ldots, \neg A_n],$ $H=[B_0, \neg B_1, \neg B_2, \ldots, \neg B_m],$ The resolvent of G and H for $\phi=mgu(B_0, A_1)$ is $[\neg B_1\phi, \neg B_2\phi, \ldots, \neg B_m\phi, \neg A_2\phi, \ldots, \neg A_n\phi]$

SLD-resolution is sound and complete for Horn clauses

SLD-resolution

selection rule = the leftmost literal

Example

For

$$P = \{ [P(a,b)], [P(x,x)], [P(z,x), \neg P(x,y), \neg P(y,z)] \},\$$

find all solutions (i.e. substitutions of variables) of the goal

$$[\neg P(y,a)]$$

SLD-trees

all SLD-derivations for a given goal ${\cal G}$ and the program ${\cal P}$

1.
$$[P(x,y), \neg Q(x,z), \neg R(z,y)]$$
 5. $[Q(x,a), \neg R(a,x)]$ 9. $[S(x), \neg T(x,x)]$

$$2. [P(x,x), \neg S(x)]$$

3.
$$[Q(x,b)]$$

4.
$$[Q(b,a)]$$

5.
$$[Q(x,a), \neg R(a,x)]$$

6.
$$[R(b,a)]$$

7.
$$[S(x), \neg T(x,a)]$$
 11. $[T(b,a)]$

8.
$$[S(x), \neg T(x,b)]$$
 cíl: $[\neg P(x|x)]$

9.
$$[S(x), \neg T(x,x)]$$

9.
$$[S(x), T^T(x,x)]$$

10.
$$[T(a, b)]$$

11.
$$[T(b,a)]$$

Cíl:
$$[\neg P(x|x)]$$

