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Introduction to Logic: 
Inductive Classification 

Based on the ML lecture by Raymond J. Mooney 
University of Texas at Austin 
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Sample Category Learning Problem 

•  Instance language: <size, color, shape> 
–  size ∈ {small, medium, large} 
–  color ∈ {red, blue, green} 
–  shape ∈ {square, circle, triangle} 

•  C = {positive, negative} H:C=positive, ¬H:C=negative 

•  D: Example Size Color Shape Category 
1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 
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Sample Category Learning Problem 
•  we will work with a prolog notation, Horn clauses 

•  examples = ternary predicate category(Size, Color, Shape)   
•  positive:  

 category(small, red, circle).  category(large, red, circle).   
•  negative:  

 category(small, red, triangle). category(large, blue, circle). 

•  hypothesis  
 category(Size, Color, Shape) :- …, Vari = valuei , … 
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 
–  red & circle  
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 
–  red & circle  

 category(Size, Color, Shape) :- Color=red, Shape=circle 
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 
–  red & circle  

 category(Size, Color, Shape) :- Color=red, Shape=circle 
–  (small & circle) or (large & red)  
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 
–  red & circle  

 category(Size, Color, Shape) :- Color=red, Shape=circle 
–  (small & circle) or (large & red)  

 category(Size, Color, Shape) :- Size=small, Shape=circle. 
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 
–  red & circle  

 category(Size, Color, Shape) :- Color=red, Shape=circle 
–  (small & circle) or (large & red)  

 category(Size, Color, Shape) :- Size=small, Shape=circle. 

 category(Size, Color, Shape) :- Size=large, Color=red. 
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Hypothesis Selection 

•  Many hypotheses are usually consistent with the training 
data. 
–  red & circle  

 category(Size, Color, Shape) :- Color=red, Shape=circle 

–  (small & circle) or (large & red)  
 category(Size, Color, Shape) :- Size=small, Shape=circle. 
 category(Size, Color, Shape) :- Size=large, Color=red. 

–  (small & red & circle) or (large & red & circle) 
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Bias 

•  any criteria other than consistency with the training data that 
is used to select a hypothesis. 

 A hypothesis space that does not include all possible classification 
functions on the instance space incorporates a bias in the type of 
classifiers it can learn. 

•  search bias, termination condition 
•  language bias 

 maximal length of clauses 
 maximal number of clauses 
 max. number of attribute repetition (e.g. for numeric 
attributes)  
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Inductive Bias 

•  Any means that a learning system uses to choose between 
two functions that are both consistent with the training data 
is called inductive bias. 

•  Inductive bias can take two forms: 
–  Language bias: The language for representing concepts defines a 

hypothesis space that does not include all possible functions (e.g. 
conjunctive descriptions). 

–  Search bias: The language is expressive enough to represent all 
possible functions (e.g. disjunctive normal form) but the search 
algorithm embodies a preference for certain consistent functions 
over others (e.g. syntactic simplicity). Includes also termination 
condition. 
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Examples of bias 

•  search bias 
 search heuristics  

•  termination condition 
 number of iterations 
 consistency condition, or weaker: a number of negative 
examples covered 

•  language bias 
 maximal length of clauses 
 maximal number of clauses 
 max. number of attribute repetition (e.g. for numeric 
attributes)  
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Generalization 

•  Hypotheses must generalize to correctly classify 
instances not in the training data. 

•  Simply memorizing training examples is a 
consistent hypothesis that does not generalize. But 
… 

•  Occam’s razor: 
– Finding a simple hypothesis helps ensure 

generalization. 



14 

Hypothesis Space 

•  Restrict learned functions a priori to a given hypothesis 
space, H, of functions h(x) that can be considered as 
definitions of c(x). 

•  For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive 
hypotheses represented by a vector of n constraints 

    <c1, c2, … cn> where each ci is either: 
–  X, a variable indicating no constraint on the ith feature 
–  A specific value from the domain of the ith feature 
–  Ø indicating no value is acceptable 

•  Sample conjunctive hypotheses are 
–  <big, red, Z> 
–  <X, Y, Z> (most general hypothesis) 
–  < Ø, Ø, Ø> (most specific hypothesis) 



15 

Inductive Learning Hypothesis 

•  Any function that is found to approximate the target 
concept well on a sufficiently large set of training 
examples will also approximate the target function well on 
unobserved examples. 

•  Assumes that the training and test examples are drawn 
independently from the same underlying distribution. 

•  This is a fundamentally unprovable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory). 
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Category Learning as Search 

•  Category learning can be viewed as searching the 
hypothesis space for one (or more) hypotheses that are 
consistent with the training data. 

•  Consider an instance space consisting of n binary features 
which therefore has 2n instances. 

•  For conjunctive hypotheses, there are 4 choices for each 
feature: Ø, T, F, X, so there are 4n syntactically distinct 
hypotheses. 

•  However, all hypotheses with 1 or more Øs are equivalent, 
so there are 3n+1 semantically distinct hypotheses. 

•  The target binary categorization function in principle could 
be any of the possible 22^n functions on n input bits. 

•  Therefore, conjunctive hypotheses are a small subset of the 
space of possible functions, but both are intractably large. 

•  All reasonable hypothesis spaces are intractably large or 
even infinite. 
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Learning by Enumeration 

•  For any finite or countably infinite hypothesis 
space, one can simply enumerate and test 
hypotheses one at a time until a consistent one is 
found. 

       For each h in H do:   
              If h is consistent with the training data D, 
                   then terminate and return h. 
•  This algorithm is guaranteed to terminate with a 

consistent hypothesis if one exists; however, it is 
obviously computationally intractable for almost 
any practical problem. 
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Efficient Learning 

•  Is there a way to learn conjunctive concepts 
without enumerating them? 

•  How do human subjects learn conjunctive 
concepts? 

•  Is there a way to efficiently find an unconstrained 
boolean function consistent with a set of discrete-
valued training instances? 

•  If so, is it a useful/practical algorithm? 
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Conjunctive Rule Learning 
•  Conjunctive descriptions are easily learned by finding all commonalities 

shared by all positive examples. 

•  Must check consistency with negative examples. If inconsistent, 
no conjunctive rule exists.  

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 

Learned rule: category(Size,Color,Shape):- 
Color=red, Shape=circle.  



20 

Limitations of Conjunctive Rules 

•  If a concept does not have a single set of necessary and 
sufficient conditions, conjunctive learning fails. 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

category(Size,Color,Shape):- Color=red, Shape=circle.  
Inconsistent with negative example #5! 
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Disjunctive Concepts 

•  Concept may be disjunctive. 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 
Learned:  

category(Size,Color,Shape):- Size=small, Shape=circle.           

category(Size,Color,Shape):- Size=large, Color=red.  
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Using the Generality Structure 

•  By exploiting the structure imposed by the generality of 
hypotheses, an hypothesis space can be searched for 
consistent hypotheses without enumerating or explicitly 
exploring all hypotheses. 

•  An instance, x∈X, is said to satisfy an hypothesis, h, iff 
h(x)=1 (positive) 

•  Given two hypotheses h1 and h2, h1 is more general than 
or equal to h2 (h1≥h2) iff every instance that satisfies h2 
also satisfies h1. 

•  Given two hypotheses h1 and h2, h1 is (strictly) more 
general than h2 (h1>h2) iff h1≥h2 and it is not the case that 
h2 ≥ h1. 

•  Generality defines a partial order on hypotheses. 
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Examples of Generality 

•  Conjunctive feature vectors 
–  <X, red, Z> is more general than <X, red, circle> 
–  Neither of <X, red, Z> and <X, Y, circle> is more 

general than the other. 

•  Axis-parallel rectangles in 2-d space 

–  A is more general than B 
–  Neither of A and C are more general than the other. 

A 
B 

C 
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Sample Generalization Lattice 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 
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Sample Generalization Lattice 

<X, Y, Z> 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 
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Sample Generalization Lattice 

<X,Y,circ>  <big,Y,Z> <X,red,Z>  <X,blue,Z>  <sm,Y,Z> <X,Y,squr>   

<X, Y, Z> 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 
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Sample Generalization Lattice 

<X,Y,circ>  <big,Y,Z> <X,red,Z>  <X,blue,Z>  <sm,Y,Z> <X,Y,squr>   

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr> 

<X, Y, Z> 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 
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Sample Generalization Lattice 

<X,Y,circ>  <big,Y,Z> <X,red,Z>  <X,blue,Z>  <sm,Y,Z> <X,Y,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr> 

<X, Y, Z> 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 
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Sample Generalization Lattice 

< Ø, Ø, Ø> 

<X,Y,circ>  <big,Y,Z> <X,red,Z>  <X,blue,Z>  <sm,Y,Z> <X,Y,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr> 

<X, Y, Z> 

Size: X ∈ {sm, big}     Color: Y ∈ {red, blue}     Shape: Z ∈ {circ, squr} 

Number of hypotheses = 33 + 1 = 28 
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Minimal Specialization and Generalization 

•  Procedures generalize-to and specialize-against are 
specific to a hypothesis language and can be complex. 

•  For conjunctive feature vectors: 
–  generalize-to: unique 
–  specialize-against: not unique, can convert each VARIABLE to an 

alernative non-matching value for this feature. 
•  Inputs: 

–  h = <X, red, Z> 
–  i = <small, red, triangle> 

•  Outputs: 
–  <big, red, Z> 
–  <medium, red, Z> 
–  <X, red, square> 
–  <X, red, circle> 
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No Panacea 
•  No Free Lunch (NFL) Theorem (Wolpert, 1995) 
      Law of Conservation of Generalization Performance (Schaffer, 1994) 

–  One can prove that improving generalization performance on unseen data 
for some tasks will always decrease performance on other tasks (which 
require different labels on the unseen instances). 

–  Averaged across all possible target functions, no learner generalizes to 
unseen data any better than any other learner. 

•  There does not exist a learning method that is uniformly better than 
another for all problems. 

•  Given any two learning methods A and B and a training set, D, there 
always exists a target function for which A generalizes better (or at 
least as well) as B. 
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Logical View of Induction 

•  Deduction is inferring sound specific conclusions from 
general rules (axioms) and specific facts. 

•  Induction is inferring general rules and theories from 
specific empirical data. 

•  Induction can be viewed as inverse deduction. 
–  Find a hypothesis h from data D such that 

•  h ∪ B |― D 
   where B is optional background knowledge 

•  Abduction is similar to induction, except it involves 
finding a specific hypothesis, h, that best explains a set of 
evidence, D, or inferring cause from effect. Typically, in 
this case B is quite large compared to induction and h is 
smaller and more specific to a particular event. 
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Induction and the Philosophy of Science 

•  Bacon (1561-1626), Newton (1643-1727) and the sound 
deductive derivation of knowledge from data. 

•  Hume (1711-1776) and the problem of induction. 
–  Inductive inferences can never be proven and are always subject to 

disconfirmation. 
•  Popper (1902-1994) and falsifiability. 

–  Inductive hypotheses can only be falsified not proven, so pick 
hypotheses that are most subject to being falsified. 

•  Kuhn (1922-1996) and paradigm shifts. 
–  Falsification is insufficient, an alternative paradigm that is clearly 

elegant and more explanatory must be available. 
•  Ptolmaic epicycles and the Copernican revolution 
•  Orbit of Mercury and general relativity 
•  Solar neutrino problem and neutrinos with mass 

•  Postmodernism: Objective truth does not exist; relativism; 
science is a social system of beliefs that is no more valid 
than others (e.g. religion). 
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Ockham (Occam)’s Razor 

•  William of Ockham (1295-1349) was a Franciscan 
friar who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote) 
–  “The supreme goal of all theory is to make the 

irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of simplicity. 
•  Acts as a bias which assumes that nature itself is 

simple. 
•  Role of Occam’s razor in machine learning 

remains controversial. 
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Decision Trees 
•  Tree-based classifiers for instances represented as feature-vectors.  

Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category. 

•  Can represent arbitrary conjunction and disjunction. Can represent any 
classification function over discrete feature vectors. 

•  Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF). 
–  red ∧ circle → pos 
–  red ∧ circle → A 
     blue → B;  red ∧ square → B 
     green → C;   red ∧ triangle → C 

color 
red blue green 

shape 

circle square triangle 
neg pos 

pos neg neg 

color 
red blue green 

shape 

circle square triangle 
  B   C 

  A   B   C 
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Top-Down Decision Tree Induction 

•  Recursively build a tree top-down by divide and conquer. 

<big, red, circle>: +       <small, red, circle>: + 
<small, red, square>: -  <big, blue, circle>: - 

color 
red blue green 

<big, red, circle>: +        
<small, red, circle>: + 
<small, red, square>: -   
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shape 
circle square triangle 

Top-Down Decision Tree Induction 

•  Recursively build a tree top-down by divide and conquer. 

<big, red, circle>: +       <small, red, circle>: + 
<small, red, square>: -  <big, blue, circle>: - 

<big, red, circle>: +        
<small, red, circle>: + 
<small, red, square>: -   

color 
red blue green 

<big, red, circle>: +        
<small, red, circle>: + 

pos 
<small, red, square>: -   
neg pos 

<big, blue, circle>: - 
neg neg 
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Decision Tree Induction Pseudocode 

DTree(examples, features) returns a tree 
  If all examples are in one category, return a leaf node with that category label. 
  Else if the set of features is empty, return a leaf node with the category label that 
         is the most common in examples. 
  Else pick a feature F and create a node R for it 
        For each possible value vi of F: 
               Let examplesi be the subset of examples that have value vi for F 

 Add an out-going edge E to node R labeled with the value vi. 

                       If examplesi is empty 
                      then attach a leaf node to edge E labeled with the category that 
                               is the most common in examples. 
                      else call DTree(examplesi , features – {F}) and attach the resulting 
                              tree as the subtree under edge E. 
        Return the subtree rooted at R.        
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Picking a Good Split Feature 

•  Goal is to have the resulting tree be as small as possible, 
per Occam’s razor. 

•  Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem. 

•  Top-down divide-and-conquer method does a greedy 
search for a simple tree but does not guarantee to find the 
smallest. 
–  General lesson in ML:  “Greed is good.” 

•  Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” 
to being leaf nodes. 

•  There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979). 
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Entropy 
•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary 

classification is: 

      where p1 is the fraction of positive examples in S and p0 is the fraction of 
negatives. 

•  If all examples are in one category, entropy is zero (we define 0⋅log(0)=0) 
•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1. 
•  Entropy can be viewed as the number of bits required on average to encode the 

class of an example in S where data compression (e.g. Huffman coding) is used 
to give shorter codes to more likely cases. 

•  For multi-class problems with c categories, entropy generalizes to: 
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Entropy Plot for Binary Classification 
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Information Gain 
•  The information gain of a feature F is the expected reduction in entropy 

resulting from splitting on this feature. 

     where Sv is the subset of S having value v for feature F. 
•  Entropy of each resulting subset weighted by its relative size. 
•  Example: 

–  <big, red, circle>: +          <small, red, circle>: + 
–  <small, red, square>: -     <big, blue, circle>: - 

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈
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2+, 2 -: E=1 
     size 

big          small 
1+,1-     1+,1- 
E=1        E=1 

Gain=1-(0.5⋅1 + 0.5⋅1) = 0 

2+, 2 - : E=1 
     color 

red          blue 
2+,1-     0+,1- 
E=0.918   E=0 

Gain=1-(0.75⋅0.918 + 
               0.25⋅0) = 0.311 

2+, 2 - : E=1 
     shape 

circle      square 
2+,1-     0+,1- 
E=0.918   E=0 

Gain=1-(0.75⋅0.918 + 
               0.25⋅0) = 0.311 
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Bayesian Categorization 

•  Determine category of xk by determining for each yi 

•  P(X=xk) can be determined since categories are 
complete and disjoint. 
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Bayesian Categorization (cont.) 

•  Need to know: 
–  Priors: P(Y=yi)  
–  Conditionals: P(X=xk | Y=yi) 

•  P(Y=yi) are easily estimated from data.  
–  If ni of the examples in D are in yi then P(Y=yi) =  ni / |D| 

•  Too many possible instances (e.g. 2n for binary features) to 
estimate all P(X=xk | Y=yi). 

•  Still need to make some sort of independence assumptions 
about the features to make learning tractable. 
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Naïve Bayesian Categorization 

•  If we assume features of an instance are independent given 
the category (conditionally independent). 

•  Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category. 

•  If Y and all Xi and binary, this requires specifying only 2n 
parameters: 
–  P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi 
–  P(Xi=false | Y) = 1 – P(Xi=true | Y) 

•  Compared to specifying 2n parameters without any 
independence assumptions. 
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Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(small | Y) 0.4 0.4 
P(medium | Y) 0.1 0.2 

P(large | Y) 0.5 0.4 
P(red | Y) 0.9 0.3 
P(blue | Y) 0.05 0.3 
P(green | Y) 0.05 0.4 
P(square | Y) 0.05 0.4 
P(triangle | Y) 0.05 0.3 
P(circle | Y) 0.9 0.3 

Test Instance: 
<medium ,red, circle> 
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Naïve Bayes Example 

Probability positive negative 
P(Y) 0.5 0.5 

P(medium | Y) 0.1 0.2 
P(red | Y) 0.9 0.3 

P(circle | Y) 0.9 0.3 

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X) 
                            0.5        *               0.1              *        0.9            *        0.9 
                        =  0.0405 / P(X)  

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)  
                                0.5       *              0.2               *        0.3             *     0.3 
                         =  0.009 / P(X) 

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1 

P(X) = (0.0405 + 0.009) = 0.0495  

= 0.0405 / 0.0495 = 0.8181 

= 0.009 / 0.0495 = 0.1818 

Test Instance: 
<medium ,red, circle> 
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Instance-based Learning. 
K-Nearest Neighbor 

•  Calculate the distance between a test point 
and every training instance. 

•  Pick the k closest training examples and 
assign the test instance to the most common 
category amongst these nearest neighbors. 

•  Voting multiple neighbors helps decrease 
susceptibility to noise.  

•  Usually use odd value for k to avoid ties. 
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5-Nearest Neighbor Example 
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Applications 

•  Data mining:  
 mining in IS MU - e-learning tests; ICT 
competencies 

•  Text mining: text categorization, part-of-speech 
(morphological) tagging, information extraction 

 Spam filtering, Czech newspaper analysis, reports 
on flood, firemen data vs. web 

•  Web mining: web usage analysis, web content 
mining 

 e-commerce, stubs in Wikipedia, web pages of 
SME 


