
1

Introduction to Logic:
Inductive Classification

Based on the ML lecture by Raymond J. Mooney
University of Texas at Austin

2

Sample Category Learning Problem

•  Instance language: <size, color, shape>
–  size ∈ {small, medium, large}
–  color ∈ {red, blue, green}
–  shape ∈ {square, circle, triangle}

•  C = {positive, negative} H:C=positive, ¬H:C=negative

•  D: Example Size Color Shape Category
1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative

3

Sample Category Learning Problem
•  we will work with a prolog notation, Horn clauses

•  examples = ternary predicate category(Size, Color, Shape)
•  positive:

 category(small, red, circle). category(large, red, circle).
•  negative:

 category(small, red, triangle). category(large, blue, circle).

•  hypothesis
 category(Size, Color, Shape) :- …, Vari = valuei , …

4

Hypothesis Selection

•  Many hypotheses are usually consistent with
the training data.
–  red & circle

5

Hypothesis Selection

•  Many hypotheses are usually consistent with
the training data.
–  red & circle

 category(Size, Color, Shape) :- Color=red, Shape=circle

6

Hypothesis Selection

•  Many hypotheses are usually consistent with
the training data.
–  red & circle

 category(Size, Color, Shape) :- Color=red, Shape=circle
–  (small & circle) or (large & red)

7

Hypothesis Selection

•  Many hypotheses are usually consistent with
the training data.
–  red & circle

 category(Size, Color, Shape) :- Color=red, Shape=circle
–  (small & circle) or (large & red)

 category(Size, Color, Shape) :- Size=small, Shape=circle.

8

Hypothesis Selection

•  Many hypotheses are usually consistent with
the training data.
–  red & circle

 category(Size, Color, Shape) :- Color=red, Shape=circle
–  (small & circle) or (large & red)

 category(Size, Color, Shape) :- Size=small, Shape=circle.

 category(Size, Color, Shape) :- Size=large, Color=red.

9

Hypothesis Selection

•  Many hypotheses are usually consistent with the training
data.
–  red & circle

 category(Size, Color, Shape) :- Color=red, Shape=circle

–  (small & circle) or (large & red)
 category(Size, Color, Shape) :- Size=small, Shape=circle.
 category(Size, Color, Shape) :- Size=large, Color=red.

–  (small & red & circle) or (large & red & circle)

10

Bias

•  any criteria other than consistency with the training data that
is used to select a hypothesis.

 A hypothesis space that does not include all possible classification
functions on the instance space incorporates a bias in the type of
classifiers it can learn.

•  search bias, termination condition
•  language bias

 maximal length of clauses
 maximal number of clauses
 max. number of attribute repetition (e.g. for numeric
attributes)

11

Inductive Bias

•  Any means that a learning system uses to choose between
two functions that are both consistent with the training data
is called inductive bias.

•  Inductive bias can take two forms:
–  Language bias: The language for representing concepts defines a

hypothesis space that does not include all possible functions (e.g.
conjunctive descriptions).

–  Search bias: The language is expressive enough to represent all
possible functions (e.g. disjunctive normal form) but the search
algorithm embodies a preference for certain consistent functions
over others (e.g. syntactic simplicity). Includes also termination
condition.

12

Examples of bias

•  search bias
 search heuristics

•  termination condition
 number of iterations
 consistency condition, or weaker: a number of negative
examples covered

•  language bias
 maximal length of clauses
 maximal number of clauses
 max. number of attribute repetition (e.g. for numeric
attributes)

13

Generalization

•  Hypotheses must generalize to correctly classify
instances not in the training data.

•  Simply memorizing training examples is a
consistent hypothesis that does not generalize. But
…

•  Occam’s razor:
– Finding a simple hypothesis helps ensure

generalization.

14

Hypothesis Space

•  Restrict learned functions a priori to a given hypothesis
space, H, of functions h(x) that can be considered as
definitions of c(x).

•  For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive
hypotheses represented by a vector of n constraints

 <c1, c2, … cn> where each ci is either:
–  X, a variable indicating no constraint on the ith feature
–  A specific value from the domain of the ith feature
–  Ø indicating no value is acceptable

•  Sample conjunctive hypotheses are
–  <big, red, Z>
–  <X, Y, Z> (most general hypothesis)
–  < Ø, Ø, Ø> (most specific hypothesis)

15

Inductive Learning Hypothesis

•  Any function that is found to approximate the target
concept well on a sufficiently large set of training
examples will also approximate the target function well on
unobserved examples.

•  Assumes that the training and test examples are drawn
independently from the same underlying distribution.

•  This is a fundamentally unprovable hypothesis unless
additional assumptions are made about the target concept
and the notion of “approximating the target function well
on unobserved examples” is defined appropriately (cf.
computational learning theory).

16

Category Learning as Search

•  Category learning can be viewed as searching the
hypothesis space for one (or more) hypotheses that are
consistent with the training data.

•  Consider an instance space consisting of n binary features
which therefore has 2n instances.

•  For conjunctive hypotheses, there are 4 choices for each
feature: Ø, T, F, X, so there are 4n syntactically distinct
hypotheses.

•  However, all hypotheses with 1 or more Øs are equivalent,
so there are 3n+1 semantically distinct hypotheses.

•  The target binary categorization function in principle could
be any of the possible 22^n functions on n input bits.

•  Therefore, conjunctive hypotheses are a small subset of the
space of possible functions, but both are intractably large.

•  All reasonable hypothesis spaces are intractably large or
even infinite.

17

Learning by Enumeration

•  For any finite or countably infinite hypothesis
space, one can simply enumerate and test
hypotheses one at a time until a consistent one is
found.

 For each h in H do:
 If h is consistent with the training data D,
 then terminate and return h.
•  This algorithm is guaranteed to terminate with a

consistent hypothesis if one exists; however, it is
obviously computationally intractable for almost
any practical problem.

18

Efficient Learning

•  Is there a way to learn conjunctive concepts
without enumerating them?

•  How do human subjects learn conjunctive
concepts?

•  Is there a way to efficiently find an unconstrained
boolean function consistent with a set of discrete-
valued training instances?

•  If so, is it a useful/practical algorithm?

19

Conjunctive Rule Learning
•  Conjunctive descriptions are easily learned by finding all commonalities

shared by all positive examples.

•  Must check consistency with negative examples. If inconsistent,
no conjunctive rule exists.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative

Learned rule: category(Size,Color,Shape):-
Color=red, Shape=circle.

20

Limitations of Conjunctive Rules

•  If a concept does not have a single set of necessary and
sufficient conditions, conjunctive learning fails.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative

category(Size,Color,Shape):- Color=red, Shape=circle.
Inconsistent with negative example #5!

21

Disjunctive Concepts

•  Concept may be disjunctive.

Example Size Color Shape Category
1 small red circle positive
2 large red circle positive
3 small red triangle negative
4 large blue circle negative
5 medium red circle negative
Learned:

category(Size,Color,Shape):- Size=small, Shape=circle.

category(Size,Color,Shape):- Size=large, Color=red.

22

Using the Generality Structure

•  By exploiting the structure imposed by the generality of
hypotheses, an hypothesis space can be searched for
consistent hypotheses without enumerating or explicitly
exploring all hypotheses.

•  An instance, x∈X, is said to satisfy an hypothesis, h, iff
h(x)=1 (positive)

•  Given two hypotheses h1 and h2, h1 is more general than
or equal to h2 (h1≥h2) iff every instance that satisfies h2
also satisfies h1.

•  Given two hypotheses h1 and h2, h1 is (strictly) more
general than h2 (h1>h2) iff h1≥h2 and it is not the case that
h2 ≥ h1.

•  Generality defines a partial order on hypotheses.

23

Examples of Generality

•  Conjunctive feature vectors
–  <X, red, Z> is more general than <X, red, circle>
–  Neither of <X, red, Z> and <X, Y, circle> is more

general than the other.

•  Axis-parallel rectangles in 2-d space

–  A is more general than B
–  Neither of A and C are more general than the other.

A
B

C

24

Sample Generalization Lattice

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

25

Sample Generalization Lattice

<X, Y, Z>

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

26

Sample Generalization Lattice

<X,Y,circ> <big,Y,Z> <X,red,Z> <X,blue,Z> <sm,Y,Z> <X,Y,squr>

<X, Y, Z>

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

27

Sample Generalization Lattice

<X,Y,circ> <big,Y,Z> <X,red,Z> <X,blue,Z> <sm,Y,Z> <X,Y,squr>

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr>

<X, Y, Z>

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

28

Sample Generalization Lattice

<X,Y,circ> <big,Y,Z> <X,red,Z> <X,blue,Z> <sm,Y,Z> <X,Y,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr>

<X, Y, Z>

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

29

Sample Generalization Lattice

< Ø, Ø, Ø>

<X,Y,circ> <big,Y,Z> <X,red,Z> <X,blue,Z> <sm,Y,Z> <X,Y,squr>

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr>

< X,red,circ><big,Y,circ><big,red,Z><big,blue,Z><sm,Y,circ><X,blue,circ> <X,red,squr><sm.Y,sqr><sm,red,Z><sm,blue,Z><big,Y,squr><X,blue,squr>

<X, Y, Z>

Size: X ∈ {sm, big} Color: Y ∈ {red, blue} Shape: Z ∈ {circ, squr}

Number of hypotheses = 33 + 1 = 28

30

Minimal Specialization and Generalization

•  Procedures generalize-to and specialize-against are
specific to a hypothesis language and can be complex.

•  For conjunctive feature vectors:
–  generalize-to: unique
–  specialize-against: not unique, can convert each VARIABLE to an

alernative non-matching value for this feature.
•  Inputs:

–  h = <X, red, Z>
–  i = <small, red, triangle>

•  Outputs:
–  <big, red, Z>
–  <medium, red, Z>
–  <X, red, square>
–  <X, red, circle>

31

No Panacea
•  No Free Lunch (NFL) Theorem (Wolpert, 1995)
 Law of Conservation of Generalization Performance (Schaffer, 1994)

–  One can prove that improving generalization performance on unseen data
for some tasks will always decrease performance on other tasks (which
require different labels on the unseen instances).

–  Averaged across all possible target functions, no learner generalizes to
unseen data any better than any other learner.

•  There does not exist a learning method that is uniformly better than
another for all problems.

•  Given any two learning methods A and B and a training set, D, there
always exists a target function for which A generalizes better (or at
least as well) as B.

32

Logical View of Induction

•  Deduction is inferring sound specific conclusions from
general rules (axioms) and specific facts.

•  Induction is inferring general rules and theories from
specific empirical data.

•  Induction can be viewed as inverse deduction.
–  Find a hypothesis h from data D such that

•  h ∪ B |― D
 where B is optional background knowledge

•  Abduction is similar to induction, except it involves
finding a specific hypothesis, h, that best explains a set of
evidence, D, or inferring cause from effect. Typically, in
this case B is quite large compared to induction and h is
smaller and more specific to a particular event.

33

Induction and the Philosophy of Science

•  Bacon (1561-1626), Newton (1643-1727) and the sound
deductive derivation of knowledge from data.

•  Hume (1711-1776) and the problem of induction.
–  Inductive inferences can never be proven and are always subject to

disconfirmation.
•  Popper (1902-1994) and falsifiability.

–  Inductive hypotheses can only be falsified not proven, so pick
hypotheses that are most subject to being falsified.

•  Kuhn (1922-1996) and paradigm shifts.
–  Falsification is insufficient, an alternative paradigm that is clearly

elegant and more explanatory must be available.
•  Ptolmaic epicycles and the Copernican revolution
•  Orbit of Mercury and general relativity
•  Solar neutrino problem and neutrinos with mass

•  Postmodernism: Objective truth does not exist; relativism;
science is a social system of beliefs that is no more valid
than others (e.g. religion).

34

Ockham (Occam)’s Razor

•  William of Ockham (1295-1349) was a Franciscan
friar who applied the criteria to theology:
–  “Entities should not be multiplied beyond

necessity” (Classical version but not an actual quote)
–  “The supreme goal of all theory is to make the

irreducible basic elements as simple and as few as
possible without having to surrender the adequate
representation of a single datum of
experience.” (Einstein)

•  Requires a precise definition of simplicity.
•  Acts as a bias which assumes that nature itself is

simple.
•  Role of Occam’s razor in machine learning

remains controversial.

35

Decision Trees
•  Tree-based classifiers for instances represented as feature-vectors.

Nodes test features, there is one branch for each value of the feature,
and leaves specify the category.

•  Can represent arbitrary conjunction and disjunction. Can represent any
classification function over discrete feature vectors.

•  Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).
–  red ∧ circle → pos
–  red ∧ circle → A
 blue → B; red ∧ square → B
 green → C; red ∧ triangle → C

color
red blue green

shape

circle square triangle
neg pos

pos neg neg

color
red blue green

shape

circle square triangle
 B C

 A B C

36

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

37

shape
circle square triangle

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.

<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +

pos
<small, red, square>: -
neg pos

<big, blue, circle>: -
neg neg

38

Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples.
 Else pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

39

Picking a Good Split Feature

•  Goal is to have the resulting tree be as small as possible,
per Occam’s razor.

•  Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

•  Top-down divide-and-conquer method does a greedy
search for a simple tree but does not guarantee to find the
smallest.
–  General lesson in ML: “Greed is good.”

•  Want to pick a feature that creates subsets of examples that
are relatively “pure” in a single class so they are “closer”
to being leaf nodes.

•  There are a variety of heuristics for picking a good test, a
popular one is based on information gain that originated
with the ID3 system of Quinlan (1979).

40

Entropy
•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary

classification is:

 where p1 is the fraction of positive examples in S and p0 is the fraction of
negatives.

•  If all examples are in one category, entropy is zero (we define 0⋅log(0)=0)
•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.
•  Entropy can be viewed as the number of bits required on average to encode the

class of an example in S where data compression (e.g. Huffman coding) is used
to give shorter codes to more likely cases.

•  For multi-class problems with c categories, entropy generalizes to:

)(log)(log)(020121 ppppSEntropy −−=

∑
=

−=
c

i
ii ppSEntropy

1
2)(log)(

41

Entropy Plot for Binary Classification

42

Information Gain
•  The information gain of a feature F is the expected reduction in entropy

resulting from splitting on this feature.

 where Sv is the subset of S having value v for feature F.
•  Entropy of each resulting subset weighted by its relative size.
•  Example:

–  <big, red, circle>: + <small, red, circle>: +
–  <small, red, square>: - <big, blue, circle>: -

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

2+, 2 -: E=1
 size

big small
1+,1- 1+,1-
E=1 E=1

Gain=1-(0.5⋅1 + 0.5⋅1) = 0

2+, 2 - : E=1
 color

red blue
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

2+, 2 - : E=1
 shape

circle square
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

43

Bayesian Categorization

•  Determine category of xk by determining for each yi

•  P(X=xk) can be determined since categories are
complete and disjoint.

)(
)|()()|(

k

iki
ki xXP

yYxXPyYPxXyYP
=

===
===

∑∑
==

=
=

===
===

m

i k

iki
m

i
ki xXP

yYxXPyYPxXyYP
11

1
)(

)|()()|(

∑
=

=====
m

i
ikik yYxXPyYPxXP

1
)|()()(

44

Bayesian Categorization (cont.)

•  Need to know:
–  Priors: P(Y=yi)
–  Conditionals: P(X=xk | Y=yi)

•  P(Y=yi) are easily estimated from data.
–  If ni of the examples in D are in yi then P(Y=yi) = ni / |D|

•  Too many possible instances (e.g. 2n for binary features) to
estimate all P(X=xk | Y=yi).

•  Still need to make some sort of independence assumptions
about the features to make learning tractable.

45

Naïve Bayesian Categorization

•  If we assume features of an instance are independent given
the category (conditionally independent).

•  Therefore, we then only need to know P(Xi | Y) for each
possible pair of a feature-value and a category.

•  If Y and all Xi and binary, this requires specifying only 2n
parameters:
–  P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi
–  P(Xi=false | Y) = 1 – P(Xi=true | Y)

•  Compared to specifying 2n parameters without any
independence assumptions.

)|()|,,()|(
1

21 ∏
=

==
n

i
in YXPYXXXPYXP L

46

Naïve Bayes Example

Probability positive negative
P(Y) 0.5 0.5

P(small | Y) 0.4 0.4
P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4
P(red | Y) 0.9 0.3
P(blue | Y) 0.05 0.3
P(green | Y) 0.05 0.4
P(square | Y) 0.05 0.4
P(triangle | Y) 0.05 0.3
P(circle | Y) 0.9 0.3

Test Instance:
<medium ,red, circle>

47

Naïve Bayes Example

Probability positive negative
P(Y) 0.5 0.5

P(medium | Y) 0.1 0.2
P(red | Y) 0.9 0.3

P(circle | Y) 0.9 0.3

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)
 0.5 * 0.1 * 0.9 * 0.9
 = 0.0405 / P(X)

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
 0.5 * 0.2 * 0.3 * 0.3
 = 0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium ,red, circle>

48

Instance-based Learning.
K-Nearest Neighbor

•  Calculate the distance between a test point
and every training instance.

•  Pick the k closest training examples and
assign the test instance to the most common
category amongst these nearest neighbors.

•  Voting multiple neighbors helps decrease
susceptibility to noise.

•  Usually use odd value for k to avoid ties.

49

5-Nearest Neighbor Example

50

Applications

•  Data mining:
 mining in IS MU - e-learning tests; ICT
competencies

•  Text mining: text categorization, part-of-speech
(morphological) tagging, information extraction

 Spam filtering, Czech newspaper analysis, reports
on flood, firemen data vs. web

•  Web mining: web usage analysis, web content
mining

 e-commerce, stubs in Wikipedia, web pages of
SME

