Proof Call a formula independent of $\sigma_{\mathscr{I}_A}$ if its value does not depend on $\sigma_{\mathscr{I}_A}$. Let $A' = \forall x A_1(x)$ be a (not necessarily proper) subformula of A, where A' is *not* contained in the scope of any other quantifier. Then $v_{\sigma_{\mathscr{I}_A}}(A') = T$ iff $v_{\sigma_{\mathscr{I}_A}}[x \leftarrow d](A_1)$ for all $d \in D$. But x is the only free variable in A_1 , so A_1 is independent of $\sigma_{\mathscr{I}_A}$ since what is assigned to x is replaced by the assignment $[x \leftarrow d]$. A similar results holds for an existential formula $\exists x A_1(x)$.

The theorem can now be proved by induction on the depth of the quantifiers and by structural induction, using the fact that a formula constructed using Boolean operators on independent formulas is also independent.

By the theorem, if A is a closed formula we can use the notation $v_{\mathscr{J}}(A)$ without mentioning an assignment.

Example 7.21 Let us check the truth values of the formula $A = \forall x p(a, x)$ under the interpretations given in Example 7.17:

- $v_{\mathscr{I}_1}(A) = T$: For all $n \in \mathscr{N}$, $0 \le n$.
- $v_{\mathscr{I}_2}(A) = F$: It is not true that for all $n \in \mathscr{N}$, $1 \le n$. If n = 0 then $1 \le 0$.
- $v_{\mathscr{I}_3}(A) = F$: There is no smallest integer.
- $v_{\mathcal{I}_4}(A) = T$: By definition, the null string is a substring of every string.

The proof of the following theorem is left as an exercise.

Theorem 7.22 Let $A' = A(x_1, ..., x_n)$ be a (non-closed) formula with free variables $x_1, ..., x_n$, and let \mathcal{I} be an interpretation. Then:

- $v_{\sigma_{\mathscr{I}_A}}(A') = T$ for some assignment $\sigma_{\mathscr{I}_A}$ iff $v_{\mathscr{I}}(\exists x_1 \cdots \exists x_n A') = T$.
- $v_{\sigma_{\mathscr{I}_A}}(A') = T$ for all assignments $\sigma_{\mathscr{I}_A}$ iff $v_{\mathscr{I}}(\forall x_1 \cdots \forall x_n A') = T$.

7.3.2 Validity and Satisfiability

Definition 7.23 Let A be a closed formula of first-order logic.

- A is true in \mathscr{I} or \mathscr{I} is a model for A iff $v_{\mathscr{I}}(A) = T$. Notation: $\mathscr{I} \models A$.
- A is valid if for all interpretations \mathscr{I} , $\mathscr{I} \models A$. Notation: $\models A$.
- A is satisfiable if for some interpretation \mathscr{I} , $\mathscr{I} \models A$.
- A is unsatisfiable if it is not satisfiable.
- A is falsifiable if it is not valid.

Example 7.24 The closed formula $\forall x p(x) \to p(a)$ is valid. If it were not, there would be an interpretation $\mathscr{I} = (D, \{R\}, \{d\})$ such that $v_{\mathscr{I}}(\forall x p(x)) = T$ and $v_{\mathscr{I}}(p(a)) = F$. By Theorem 7.22, $v_{\sigma_{\mathscr{I}}}(p(x)) = T$ for all assignments $\sigma_{\mathscr{I}}$, in particular for the assignment $\sigma_{\mathscr{I}}'$ that assigns d to x. But p(a) is closed, so $v_{\sigma_{\mathscr{I}}'}(p(a)) = v_{\mathscr{I}}(p(a)) = F$, a contradiction.

Example 7.25

- ∀x∀y(p(x, y) → p(y, x))
 The formula is satisfiable in an interpretation where p is assigned a symmetric relation like =. It is not valid because the formula is falsified in an interpretation that assigns to p a non-symmetric relation like <.
- $\forall x \exists y p(x, y)$ The formula is satisfiable in an interpretation where p is assigned a relation that is a total function, for example, $(x, y) \in R$ iff y = x + 1 for $x, y \in \mathcal{Z}$. The formula is falsified if the domain is changed to the negative numbers because there is no negative number y such that y = -1 + 1.
- $\exists x \exists y (p(x) \land \neg p(y))$ This formula is satisfiable only in a domain with at least two elements.
- $\forall xp(a,x)$ This expresses the existence of an element with special properties. For example, if p is interpreted by the relation \leq on the domain \mathcal{N} , then the formula is true for a=0. If we change the domain to \mathscr{Z} the formula is false for the same assignment of \leq to p.
- $\forall x(p(x) \land q(x)) \leftrightarrow (\forall xp(x) \land \forall xq(x))$ The formula is valid. We prove the forward direction and leave the converse as an exercise. Let $\mathscr{I} = (D, \{R_1, R_2\}, \{\})$ be an arbitrary interpretation. By Theorem 7.22, $v_{\sigma_{\mathscr{I}}}(p(x) \land q(x)) = T$ for all assignments $\sigma_{\mathscr{I}}$, and by the inductive definition of an interpretation, $v_{\sigma_{\mathscr{I}}}(p(x)) = T$ and $v_{\sigma_{\mathscr{I}}}(q(x)) = T$ for all assignments $\sigma_{\mathscr{I}}$. Again by Theorem 7.22, $v_{\mathscr{I}}(\forall xp(x)) = T$ and $v_{\mathscr{I}}(\forall xq(x)) = T$, and by the definition of an interpretation $v_{\mathscr{I}}(\forall xp(x) \land \forall xq(x)) = T$. Show that \forall does not distribute over disjunction by constructing a falsifying in-
- terpretation for $\forall x (p(x) \lor q(x)) \leftrightarrow (\forall x p(x) \lor \forall x q(x))$. • $\forall x (p(x) \to q(x)) \to (\forall x p(x) \to \forall x q(x))$ We leave it as an exercise to show that this is a valid formula, but its converse

7.3.3 An Interpretation for a Set of Formulas

 $(\forall x p(x) \to \forall x q(x)) \to \forall x (p(x) \to q(x))$ is not.

In propositional logic, the concept of interpretation and the definition of properties such as satisfiability can be extended to sets of formulas (Sect. 2.2.4). The same holds for first-order logic.

Definition 7.26 Let $U = \{A_1, \ldots\}$ be a set of formulas where $\{p_1, \ldots, p_m\}$ are all the predicates appearing in all $A_i \in S$ and $\{a_1, \ldots, a_k\}$ are all the constants appearing in all $A_i \in S$. An *interpretation* \mathcal{I}_U for S is a triple:

$$(D, \{R_1, \ldots, R_m\}, \{d_1, \ldots, d_k\}),$$