Building Corpora from Scratch
European Masters in Language & Speech, Tutorial 8

Pavel Rychlý

Faculty of Informatics
Masaryk University
Brno, Czech Republic

13–14 July, 2005
Outline of Part I

1. Introduction to Text Corpora
Outline of Part I

1. Introduction to Text Corpora

2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems
Outline of Part I

1. Introduction to Text Corpora
2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems
3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Outline of Part II

4 Textutils/coreutils
- Unix Text Tools
- Text Tools Documentation
- Text Tools Examples
- XML Processing
Outline of Part II

4 Textutils/coreutils
 • Unix Text Tools
 • Text Tools Documentation
 • Text Tools Examples
 • XML Processing

5 Regular Expressions
Outline of Part III

6 Part of Speech Tagging
 • Part of Speech Tagging
 • Lemmatization
Outline of Part III

6 Part of Speech Tagging
 ■ Part of Speech Tagging
 ■ Lemmatization

7 Word Sketch Engine
 ■ Corpus Query Language
 ■ Defining Grammatical Relations
Outline

1 Introduction to Text Corpora

2 Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems

3 Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
What is Text Corpus

purpose Source of language usage examples.
What is Text Corpus

purpose
Source of language usage examples.

form
- big collection of texts
- in electronic form
- unified format
- structured
- annotated
- balanced
Corpus Formats

collection/archive different formats, format depends on text source/type

bank unified format, document structure, meta-information

vertical text simple text format with tokenization, one token per line

binary data used in applications (indexes, statistics)
Character Encoding

8 bit
- 256 characters
- ASCII – 7 bit standard (the base for most 8 bit)
- ISO-Latin standards:
 Western (ISO-8859-1/15),
 Central European (ISO-8859-2), …

Unicode
- 32 bit per character
- UTF-8 – from 1 to 4 bytes per character
Outline

1. Introduction to Text Corpora

2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems

3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Pre-computer (Age 1)
Adapted from Adam Kilgarriff’s presentation

- Oxford English Dictionary
- 20 million index cards
Corpus Concordancing (Age 2)
KWIC Concordance

1 arity, which will be used to take a party of under-privileged children to D
2 from outside. You are invited to a party and after a couple of drinks you d
3 tion, we believe politicians of all parties will listen to our views. &equo
4 ould be reaching agreement with all parties concerned, as to which events,
5 lack people. I have certainly been party to one or two discussions amongst
6 . These should be discussed by both parties before entering into the relatio
7 presents They had hosted a cocktail party at Kensington palace, for example
8 akes. By midnight the end-of-course party is in full swing, but most cadet
9 e should be a right for the injured party to terminate the contract. A mana
10 by the Safran Peoples’ Liberation Party. This presents the powerful neigh
11 s. Ahead I could see the rest of my party plodding towards the final slope t
12 cial ethic. The two main political parties – the Tories and the Liberals –
13 ritish successes in Perth The small party of British players competing in th
14 to help control. One member of the party went to summon the rescue team and
15 rket society fashion magazine. The party was held at his flat which was a l
16 security and secrecy than any Tory Party Conference: it seems that bootleg

■ From 1980
■ Computerised
■ COBUILD project was innovator

try online
Corpus Concordancing (Age 2)
Coloured-Pens Method

1 political association
2 social event
3 group of people
4 person in an agreement/dispute
5 to be party to something...
Age 2: limitations

As corpora get bigger: too much data
Age 2: limitations

As corpora get bigger: too much data

- 50 lines for a word: read all
- 500 lines: could read all, takes a long time
- 5000 lines: no
Collocations (Age 3)

Solution:
list of words occurring in neighbourhood of headword, with frequencies

try online
Collocations (Age 3)

Solution:
list of words occurring in neighbourhood of headword, with frequencies

Problem:
too much data - how to summarise?
Collocations (Age 3)

- **Solution:**
 list of words occurring in neighbourhood of headword, with frequencies

- **Problem:**
 too much data - how to summarise?

- **Sorted by salience**
Collocations (Age 3)

- Which words?:
 - next word
 - last word
 - window, +1 to +5
 - window, -5 to -1

- How sorted?
 - most common collocates – but for most nouns it’s the
 - most salient collocates – how to measure salience?
Mutual Information

- Church and Hanks 1989
- How much more often does a word pair occur, than one might expect by chance: MI

try online
Mutual Information

- Church and Hanks 1989
- How much more often does a word pair occur, than one might expect by chance: MI
- Adjust to emphasise higher-frequency collocates: $MI \times \log(joint\text{frequency})$
Mutual Information

- Church and Hanks 1989
- How much more often does a word pair occur, than one might expect by chance: MI

 ![try online](http://example.com/tryonline.png)

- Adjust to emphasise higher-frequency collocates: $MI \times \log(jointfrequency)$

- more measures at www.collocations.de
Word Sketch (Age 4)

A corpus-derived one-page summary of a word’s grammatical and collocational behaviour
Word Sketch
How to create one

- Large well-balanced corpus
- Parse to find subjects, objects, heads, modifiers etc
- One list for each grammatical relation
- Statistics to sort each list, as before
The Word Sketch Engine

- **Input:**
 - any corpus, any language
 - Lemmatised, part-of-speech tagged
 - specification of grammatical relations

- Word sketches integrated with

- Corpus query system
 - Supports complex searching, sorting etc
 - IMS-Stuttgart formalism (also for corpus input)
 - Corpus searches and grammar writing
The Word Sketch Engine Functions

- KWIC concordance
- Sorting, filtering etc
- Word sketch
- Automatic thesaurus
- Sketch difference
discriminate near-synonyms
Outline

1. Introduction to Text Corpora
2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems
3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Learning a Foreign Language

- Global world with many languages
- Need to communicate
 - read, write, speak
 - language consumption/production
Tools for Language Learning

- Text books
- Using the language: going abroad
- Dictionaries
Tools for Language Learning

- Text books
- Using the language: going abroad
- Dictionaries
- Good for speaking, reading
Tools for Language Learning

- Dictionary
 - condense knowledge about words
 - limited space
 - only selected features, phrases, examples
- Not enough information
- Collocations (powerful/strong tea)
- Prepositions
Tools for Language Learning

- Dictionary
 - condense knowledge about words
 - limited space
 - only selected features, phrases, examples
 - Not enough information
- Collocations (powerful/strong tea)
- Prepositions
- Use Corpus
 - Source of **real usage** of the language
 - Search for specific features of words
Outline

1. Introduction to Text Corpora
2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems
3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Huge area of Language Modelling

- PoS Tagging
- Speech to Text Transcription
Huge area of Language Modelling

- PoS Tagging
- Speech to Text Transcription
- Global statistics of token (word) sequences
- Probability of the following token(s)
Outline

1 Introduction to Text Corpora

2 Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems

3 Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Training & Testing & Evaluation of NLP Systems

- Evaluation (comparison) of NLP systems’ performance
- Testing hypothesis, performance, precision, recall, …
- Training machine learning tools, …
Outline

1. Introduction to Text Corpora
2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems
3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Text Selection

- Browse web
- Select your papers/books
- Save as plain text
Outline

1. Introduction to Text Corpora

2. Using Corpora
 - Lexicography
 - Language Learning
 - Language Modelling
 - Training & Testing & Evaluation of NLP Systems

3. Creating Own Text Corpus
 - Text Selection
 - Corpus Builder
Corpus Builder

http://corpora.fi.muni.cz/buildcorp/
Corpus Builder

- login/password: your last name
- select the first corpus (without 2 suffix)
- upload files
- tag, lematize
- setup web
- test it: try to find words
Outline

4 Textutils/coreutils
 ■ Unix Text Tools
 ■ Text Tools Documentation
 ■ Text Tools Examples
 ■ XML Processing

5 Regular Expressions
Unix Text Tools Tradition

- Unix has tools for text processing from the very beginning (1970s)
- Small, simple tools, each tool doing only one operation
- Pipe (pipeline): powerful mechanism to combine tools
Short Description of Basic Text Tools

- **cat**: concatenate files and print on the standard output
- **head**: output the first part (few lines) of files
- **tail**: output the last part (few lines) of files
- **sort**: sort lines of text files
- **uniq**: remove duplicate lines from a sorted file
- **comm**: compare two sorted files line by line
- **wc**: print the number of newlines, words, and bytes in files
- **cut**: remove sections (columns) from each line of files
- **join**: join lines of two files on a common field
- **paste**: merge lines of files
- **tr**: translate or delete characters
Short Description of Basic Text Tools

- **egrep**: prints lines matching a pattern
- **(g)awk**: pattern scanning and processing language
- **sed**: stream editor, use for substring replacement
 - *use* **perl** `-p` for extended regular expressions
Outline

4 Textutils/coreutils
 - Unix Text Tools
 - Text Tools Documentation
 - Text Tools Examples
 - XML Processing

5 Regular Expressions
info run info and select from a menu or run directly:
- info coreutils
- info head, info sort, ...
- info gawk

man
- man 7 regex
- man grep, man awk, man tail, ...

–help most tools display a short help message on the
--help option
- sort --help, uniq --help, ...
Unix Text Tools Packages
Where to find it

- set of system tools
- different sets and different features/options on each Unix type
- GNU textutils
- GNU coreutils – textutils + shellutils + fileutils
- other GNU packages: grep, sed, gawk
Unix Text Tools Packages
Where to find it

■ set of system tools
■ different sets and different features/options on each Unix type
■ GNU textutils
■ GNU coreutils – textutils + shellutils + fileutils
■ other GNU packages: grep, sed, gawk
■ installed on all Linux machines
■ on Windows: install mingw32/cygwin, then coreutils, grep, ...

Pavel Rychlí
Building Corpora from Scratch
Outline

4 Textutils/coreutils
 - Unix Text Tools
 - Text Tools Documentation
 - Text Tools Examples
 - XML Processing

5 Regular Expressions
Text Tools Usage

- command line tools – enter command in a terminal (console) window
- command name followed by options and arguments
- options start with -
- quote spaces and metacharacters: ’, ”, $
- redirect input and output from/to files using <, >
- use | less to only display a result without saving
Text Tools Example 1

task Convert plain text file to a vertical text.

input plain.txt

output plain.vert

solutions

- `tr -s ' ' '
' <plain.txt >plain.vert`
- `tr -sc a-zA-Z0-9 '
' <plain.txt >plain.vert`
- `perl -ne 'print "$&
" while /\w+|[^\w\s]/g' plain.txt >plain.vert`
Text Tools Example 1

task Convert plain text file to a vertical text.

input plain.txt

output plain.vert

solutions

```bash
tr -s ' ' '
' < plain.txt > plain.vert
```
Text Tools Example 1

task Convert plain text file to a vertical text.

input plain.txt

output plain.vert

solutions

```
tr -s ' ' '
' <plain.txt >plain.vert
```

```
tr -sc a-zA-Z0-9 '
' <plain.txt >plain.vert
```
Text Tools Example 1

task Convert plain text file to a vertical text.

input plain.txt

output plain.vert

solutions

```
tr -s ' ' '
' <plain.txt >plain.vert

tr -sc a-zA-Z0-9 '
' <plain.txt >plain.vert

perl -ne 'print "$&\n" while /(^\s+|[^\w\s]+)/g' plain.txt >plain.vert
```
Text Tools Example 2

task Create a word list

input vertical text

output list of all unique words with frequencies

solutions

```
sort plain.vert | uniq -c >dict
sort plain.vert | uniq -c | sort -rn | head -10
```
Text Tools Example 2

task Create a word list

input vertical text

output list of all unique words with frequencies

solutions

```
sort plain.vert | uniq -c >dict
sort plain.vert | uniq -c | sort -rn | head -10
```
Text Tools Example 3

- **task**: Corpus/list size
- **input**: vertical text/word list
- **output**: number of tokens/different words
- **solutions**

solutions

```
wc -l plain.vert
wc -l dict
grep -c -i '^[a-z0-9]*$' plain.vert
```
Text Tools Example 3

task Corpus/list size
input vertical text/word list
output number of tokens/different words

solutions

```
wc -l plain.vert
wc -l dict
grep -c -i '^[a-z0-9]*$' plain.vert
```
Text Tools Example 4

task Create a list of bigrams

input vertical text

output list of bigrams

solution

tail +2 plain.vert |paste - plain.vert |sort |uniq -c >bigram
Text Tools Example 4

task Create a list of bigrams

input vertical text

output list of bigrams

solution

```bash
tail +2 plain.vert | paste - plain.vert \
   | sort | uniq -c >bigram
```

Pavel Rychlý Building Corpora from Scratch
Text Tools Example 5

task Filtering
input word list
output selected values from word list
solutions
Text Tools Example 5

Task: Filtering
Input: word list
Output: selected values from word list

Solutions:
grep '^[0-9]*$' dict
awk '$1 > 100' dict
Text Tools Debuging

- data driven programming
- cut the pipeline a display partial results
- try single command with a test input
Text Tools Exercise

task Find all words from a word list differing with s/z alternation only:
apologize/apologise
Text Tools Exercise

task Find all words from a word list differing with s/z alternation only: apologize/apologise

solutions

```bash
tr s z < dict | sort | uniq -d >szaltern
```
Text Tools Exercises

- Find all words from a word list differing with s/z alternation only, and each alternation has higher frequency than 50.
Text Tools Exercises

- Find all words from a word list differing with s/z alternation only, and each alternation has higher frequency than 50 and display their frequencies.
Text Tools Exercises

- Find all words from a word list differing with s/z alternation only, and each alternation has higher frequency than 50 and display their frequencies
- Find all words which occurs in the word list only with capital letter (names).
Outline

4 Textutils/coreutils
- Unix Text Tools
- Text Tools Documentation
- Text Tools Examples
- XML Processing

5 Regular Expressions
XML Processing

- XML is text format, use text tools
- API
 - SAX Simple API for XML
 - DOM Document Object Model
XML API SAX
Simple API for XML

- event driven processing
- events:
 - start/end of an element
 - element attribute (with value)
 - text
- calls a function/method for each event
- minimal memory requirements, suitable for large documents
XML API DOM
Document Object Model

- XML document stored as a tree
- methods for accessing (finding/traversing) document parts
- tree modification methods
- whole structure in memory
- very good for random access
Regular Expression Basics

- RE – pattern that describes a set of strings
- most characters matches itself
- meta-characters – special meaning
 - The period ‘.’ matches any single character.
 - The preceding item is optional and will be matched at most once.
 - The preceding item will be matched zero or more times.
 - Character classes – matches any single character in the list.
 - Matches the empty string at the beginning/end of a line or string.
Regular Expression Documentation

- read documentation
- info grep
- man 7 regex
Outline

6 Part of Speech Tagging
- Part of Speech Tagging
 - Lemmatization

7 Word Sketch Engine
- Corpus Query Language
 - Defining Grammatical Relations
Part of Speech Tagging

- adding more information to corpus
- getting much better results
 - local structure, finding specific features
 - global structure, more attributes to model
Part of Speech Tagging

Tagger Types

- statistical
- rules based
Part of Speech Tagging

Tagger Types

- statistical
- rules based
- Brill’s tagger
 - very good if trained on a small corpus
Part of Speech Tagging

Tagger Types

- statistical
- rules based
- Brill’s tagger
 - very good if trained on a small corpus
- combinations
Tag-set

- if there is a tagger, use it
- think about future purpose/applications
- simple tag-set is better
- complex tag-set can be reduced
Outline

6 Part of Speech Tagging
 ■ Part of Speech Tagging
 ■ Lemmatization

7 Word Sketch Engine
 ■ Corpus Query Language
 ■ Defining Grammatical Relations
Lemmatization

- usage depends on language
Lemmatization

- usage depends on language
- many languages don’t need it: Chinese, English (use case folding)
Lemmatization

- usage depends on language
- many languages don’t need it: Chinese, English (use case folding)
- for many languages it is a necessity: Czech
Lemmatizers

- many taggers provide lemmatization
Lemmatizers

- many taggers provide lemmatization
- from PoS tagged corpus:
 could be a set of regular expression substitutions
Do you have a tagger and lemmatizer for your language?
Outline

6 Part of Speech Tagging
 - Part of Speech Tagging
 - Lemmatization

7 Word Sketch Engine
 - Corpus Query Language
 - Defining Grammatical Relations
The Word Sketch Engine
Summary from the first part

- **Input:**
 - any corpus, any language
 - Lemmatised, part-of-speech tagged
 - specification of grammatical relations

- Word sketches integrated with

- Corpus query system
 - Supports complex searching, sorting etc
 - IMS-Stuttgart formalism (also for corpus input)
 - Corpus searches and grammar writing
Corpus Query Language

- Query – pattern matching a set of single tokens or token sequences
Corpus Query Language

- Query – pattern matching a set of single tokens or token sequences
- Each token consists of attributes (depending on corpus configuration).
- Use [attribute="value"] for each token sub-pattern.
CQL Examples 1

- *New query* link or *Concordance* button
- CQL entry box

```cql
[word="dream"]
[word="Dream"]
[lc="dream"]
[lemma="dream"]
[lupos="dream-n"]
[word="The"] [word="dream"]
[word="the"] [lemma="dream"]
[tag="AJ0"] [lupos="dream-n"]
```
Value is a regular expression in a `[attribute=”value”]` expression.

```plaintext
[word="dream.*"]
[word="[dD]ream"]
[word="[0-9]*"] [lc="dreams"]
[tag="NN."] [lempos="dream-v"]
[word="[0-9]{5,}" [word="\."]
[word="\(" [word="0[0-9]{3}" [word="\)"]
[word="[A-Z][0-9A-Z]{2,3}" [word="[0-9][0-9A-Z]{2}" ]
```
CQL Examples 3

Boolean combinations (AND, OR and NOT) of \([\text{attribute}=”\text{value}”]\) expressions. Use: \&, \|, !=, ()

\[
\begin{align*}
\text{[word}=”\text{dream}” \& \text{tag}=”\text{NN1}”] \\
\text{[lemma}=”\text{dream}” \& \text{tag}=”\text{VV.”}]
\end{align*}
\]

\[
\begin{align*}
\text{[word}=”\text{dream}” \mid \text{word}=”\text{Dream}”]
\end{align*}
\]

\[
\begin{align*}
\text{[word}=”\text{the}” \mid \text{tag}=”\text{DPS}”][\text{lempos}=”\text{dream-n}” \& \text{tag}=”\text{NN2}”]
\end{align*}
\]

\[
\begin{align*}
\text{[word}=”\text{the}” \mid (\text{tag}=”\text{DPS}” \& \text{lemma}!”\text{my}”))[\text{lemma}=”\text{dream}”]
\end{align*}
\]
CQL Examples 4

Regular expressions on token level:

? optional token
* any number of repetition
\{N\} exact number of repetition
[] any token

[tag="DPS"] [] [lemma="dream"]
[tag="DPS"] [tag="AJ0"]? [lemma="dream"]
[tag="AJ0"]{2} [lemma="dream"]
[word="the"] []{0,3} [lempos="dream-n"]
CQL Examples 5

within keyword at the end of a query

- within <s> restricts result to one sentence
- within <bncdoc id="A0."> restricts result to a subcorpus

[lemma="dream"] within <bncdoc id="A0.">
[word="the"] []{3,5} [lemma="dream"]
[word="the"] []{3,5} [lemma="dream"] within <s>
CQL Examples 6

More *within* combinations

[lemma="dream"] within <bncdoc author=".*Smith.*">
[lemma="dream"] within <bncdoc wriaud="Teenager" & wriase="Female">
[word="the"] [{3,5} [lemma="dream"] within <s> within <bncdoc id="A0."/>

Structure boundaries

<s> [lemma="dream"]
[word="\?"] </bncdoc>
<head /> within <bncdoc alltyp="Written-to-be-spoken">
CQL Examples 8

Global condition

- numeric labels of tokens
- testing agreement or disagreement of attribute values

\[
\text{[tag!="NN."] [word="and"] [tag!="NN."]}
\]
Global condition

- numeric labels of tokens
- testing agreement or disagreement of attribute values

\[
\text{[tag!="NN."]} \ [\text{word=\"and\"}] \ [\text{tag!="NN."}] \\
1:[\text{tag!="NN."}] \ [\text{word=\"and\"}] \ 2:[\text{tag!="NN."}] \ & \ 1.\text{tag} = 2.\text{tag}
\]
Outline

6 Part of Speech Tagging
 ■ Part of Speech Tagging
 ■ Lemmatization

7 Word Sketch Engine
 ■ Corpus Query Language
 ■ Defining Grammatical Relations
Grammatical Relations Definition

- plain text file
- a set of queries for each GR
- queries contain labels for keyword and collocate
- processing options
GR Definition Examples

‘adverb’ gramrel definition
=adverb
 1:[] 2:"AV."
 2:"AV." 1:[]

‘and/or’ gramrel definition
=and/or
*SYMMETRIC
 1:[] [word="and"|word="or"] 2:[] & 1.tag = 2.tag
'modifier' and 'modify' gramrels definition

*DUAL
=modifier/modify
 2:
 1:

*UNARY
=wh_word
1:
 1:[] [tag="AVQ"]|tag="DTQ"|tag="PNQ"]

*TRINARY
=pp_%s
1:[tag="N.."]|tag="AJ."] 3:
 2:
 3:

Pavel Rychlý
Building Corpora from Scratch
Summary

Use simple Unix text tools for processing text files and computation of global statistics. Use a powerful graphical user interface for local corpus exploration: Word Sketch Engine: www.sketchengine.co.uk Manatee/Bonito: www.textforge.cz

Pavel Rychlý

Building Corpora from Scratch
Summary

- Use simple Unix text tools for processing text files and computation of global statistics.
Summary

- Use simple **Unix text tools** for processing text files and computation of **global** statistics.
- Use a powerful **graphical user interface** for local corpus exploration:
Summary

- Use simple Unix text tools for processing text files and computation of global statistics.
- Use a powerful graphical user interface for local corpus exploration:
 - Word Sketch Engine: www.sketchengine.co.uk
Summary

- Use simple **Unix text tools** for processing text files and computation of **global** statistics.
- Use a powerful **graphical user interface** for local corpus exploration:
 - Word Sketch Engine: www.sketchengine.co.uk
 - Manatee/Bonito: www.textforge.cz