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ABSTRACT

Motivation: A backtrace through a dynamic programming algo-
rithm’s intermediate results in search of an optimal path, or to
sample paths according to an implied probability distribution, or
as the second stage of a forward–backward algorithm, is a task
of fundamental importance in computational biology. When there
is insufficient space to store all intermediate results in high-speed
memory (e.g. cache) existing approaches store selected stages of the
computation, and recompute missing values from these checkpoints
on an as-needed basis.
Results: Here we present an optimal checkpointing strategy, and
demonstrate its utility with pairwise local sequence alignment of
sequences of length 10 000.
Availability: Sample C++-code for optimal backtrace is available in
the Supplementary Materials.
Contact: leen@cs.rpi.edu
Supplementary information: Supplementary data is available at
Bioinformatics online.

1 INTRODUCTION
Dynamic programming algorithms are often used to find an
optimal solution by backtracking through intermediate values
of the computation. Typical examples are that of chain
matrix multiplication, string algorithms such as longest common
subsequence, the Viterbi (1967) algorithm for hidden Markov
models, and sequence alignment algorithms such as those of
Needleman and Wunsch (1970) and Smith and Waterman (1981).
Dynamic programming algorithm backtraces are also used for
random sampling, where the score for each possible backtrace path
is deemed to be (proportional to) the probability of the path, and it
is desired to choose a path according to that probability distribution.
A typical example is the algorithm of Ding and Lawrence (1999)
for the sampling of RNA secondary structure. A third use for
dynamic programming backtraces is as the second step of a forward–
backward algorithm, such as that of Baum–Welch (Baum et al.,
1970) for finding the parameters of a hidden Markov model.
Sometimes a trade-off with run time allows a problem to be solved
without a backtrace through stored results, e.g. sequence alignment
(Durbin et al., 2006, Section 2.6; Myers and Miller, 1998; Waterman,
1995, page 211) and Baum–Welch (Miklós and Meyer, 2005), but
this is not always the case.

When there is not enough space to store all intermediate results
in high-speed memory, checkpointing strategies are employed,
whereby selected stages of the computation are stored, and missing
information is recomputed from these checkpoints on an as-
needed basis. A stage of the computation, also known as a
frontier, is a set of intermediate values that are sufficient for
making subsequent computations. For instance, in a 2D dynamic
programming algorithm that computes a small number of values for
each (i,j) in a grid from the neighboring ‘earlier’ values associated
with (i−1,j), (i,j−1) and (i−1,j−1), we could define a stage
as a row of the computation grid. In this case, stage k would be
the values associated with the cells {(k,j) : j= jmin ...jmax}, and the
stage k values would be sufficient for computing values for cell
(i,j) for any i>k. Similarly one could use columns to define stages.
In many cases it makes sense to have overlapping stages; in the
above example stage k might be the k-th diagonal frontier, i.e. the
computation values associated with the cells {(i,j) : i+j∈{k−1,k}}.

Herein we will describe an optimal checkpointing strategy that
provably minimizes the number of stage re-computations necessary
in performing a backtrace with limited high-speed memory. The
algorithm is simple and efficient. Note that, because this limited-
memory approach can be used to allow significant increases in
locality of reference, it can provide more efficient computations
even when the amount of high-speed memory might otherwise be
considered sufficient.

We build upon a previous approach that is fairly memory-efficient,
which is described in Bioinformatics (Grice et al., 1997; Wheeler
and Hughey, 2000). With memory enough to store M stages, their
‘2-level’ algorithm uses the memory to compute the first M stages,
but then retains only the M-th stage as a checkpoint, discarding
the previous ones. Using the remaining M −1 memory locations,
the algorithm computes stages M +1,...,2M −1, and then uses the
(2M −1)th stage as the second checkpoint. It continues this process,
using the (M +(M −1)+(M −2))th stage as its third checkpoint, and
so forth, up to and including M +(M −1)+···+1=M(M +1)/2 as
its M-th checkpoint. Thus, if N =M(M +1)/2 stages are needed
in the backtrace, they can be achieved with M =O(

√
N) memory

locations; in the backtrace, each missing stage is computed using the
space freed by discarding the checkpoints that are no longer needed.

Because the algorithm needs to compute each stage at most twice,
once in the forward pass to create the checkpoints and once during
the backtrace, the overall number of stage computations of the
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memory-reduced algorithm is at most double what it would have
been.

Wheeler and Hughey (2000) also generalize their 2-level
algorithm to an ‘L-level’ algorithm, where L is any positive integer.
With M memory locations, the L-level algorithm can compute

NWH(M,L)=
(

M +L−1
L

)
M→∞−→ ML

L! (1)

stages, where this formula works for any integers L and M so long
as the binomial coefficient

(n
d
)

is defined to be n!/d!(n−d)! when
d ≥0 and n−d ≥0, and zero otherwise. The asymptotic limit is as
M →∞ for fixed L. For the M, L≥1 algorithm, the k-th stage to be
checkpointed is

Ck(M,L)=
k∑

j=1

NWH(M −(j−1),L−1) (2)

That is, the first stage to be a checkpoint is the last stage that would
be a checkpoint under the (L−1)-level algorithm. Generally, the
k-th stage to be checkpointed is beyond the (k−1)th checkpoint by
an amount that would be the last checkpoint for an (L−1)-level
algorithm that uses the remaining M −(k−1) memory locations.
Equation (2) solves to

Ck(M,L)=NWH(M,L)−NWH(M −k,L) . (3)

The number of stage computations for the L-level algorithm to
compute NWH(M,L) stages using M memory locations is given by
the recursion

TWH(M,L)

=



M if L=1 and
NWH(M,L)+∑M

k=1
(
TWH(k,L−1)−1

)
if L≥2,

(4)

because the L-level algorithm first computes all NWH(M,L) stages,
to get the L-level checkpoints; it then provides access to the
stages in reverse order by working with the L-level checkpoints
in reverse order; the L-level algorithm uses the (L−1)-level
algorithm to generate the missing intervening stages. However,
1 is subtracted, because the last computation of each (L−1)-level
algorithm invocation produces an L-level checkpoint that we already
had available. Thus, this last computation for each (L−1)-level
algorithm invocation is not performed. Equation (4) solves to

TWH(M,L)

=
(

M +L−1
1 M −1 L−1

)
−
(

M +L−1
L−1

)
+1

= NWH(M,L)

(
L

M −1

M

)
+1

M→∞−→ ML

(L−1)! . (5)

where this formula works for any integers L and M so long as the

trinomial coefficient

(
a+b+c
a b c

)
is defined to be (a+b+c)!/a!b!c!

when a,b,c≥0, and zero otherwise. Thus we have a multiplier for

Fig. 1. Low memory comparison of algorithms. This figure exhibits the
effect on the run time at low memory levels. Clockwise from the top, the
curves come in 12 pairs, one each for M =2,3,4,5,6,7,8,9,10,12,15 and
20 memory locations. Within each pair, the curve for the L-level algorithm
of Wheeler and Hughey (2000) is first; as M increases these curves become
increasingly ‘fractal’, with jumps in the run time at several scales. The curve
for the optimal checkpointing algorithm is second in each pair; these curves
are piecewise linear.

the number of stage computations of approximately L for M ∼ L
√

L!N
memory locations. Computed values of NWH(M,L) and TWH(M,L)
for small M and L are given in Table 1 and plotted in Figure 1.

The main drawback to the L-level algorithm is that it can perform
badly for a value of N that falls between NWH(M,L−1) and
NWH(M,L), for some L. Wheeler and Hughey (2000) propose
an ‘(L,L−1)-level’ algorithm that performs better for these
intermediate values of N , but it is not optimal. Wheeler and Hughey
(2000) also discuss (L,L−1,...)-level algorithms and an optimal
checkpointing algorithm, but do not provide a quick computation for
choosing optimal checkpoints, nor do they give formulae to compute
the number of stage computations for general values of M and N .

2 METHODS
The choice of the stages to checkpoint can be framed as an optimization
problem. We write T (M,N) for the number of stage computations that are
needed by the optimal checkpointing algorithm for a backtrace through N
stages, using room for M stages. When N ≤M, there is ample memory,
and T (M,N)=N . At the other extreme, if M =1 there is room to compute
only one stage, and N >1 stages cannot be computed even with an infinite
amount of time available. [Following the lead of Wheeler and Hughey (2000)
we bar in-place calculations.]

If N >M >1, and if we choose C as the first stage to checkpoint, then
we begin by computing the first C stages, 1,...,C, by alternating the use
of two memory locations. We store stage C, discarding the previous ones.
Then, using the remaining M −1 memory locations, we recursively perform
an optimal backtrace on the final N −C stages, C+1,...,N . Next, we present
the retained stage C to the user. Finally, we discard stage C and recursively
perform an optimal backtrace on the initial C−1 stages, using the full M
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Table 1. The number of stages and run time for both the algorithm of Wheeler and Hughey (2000) and the optimal checkpointing algorithm

Alg. L TWH(M,L)/NWH(M,L) Topt(M,L)/Nopt(M,L)

1 2 3 4 5 6 7 1 2 3 4 5 6 7

M =1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1
2 2/2 4/3 7/4 11/5 16/6 22/7 29/8 3/2 6/4 12/6 20/8 30/10 42/12 56/14
3 3/3 9/6 21/10 41/15 71/21 113/28 169/36 3/3 13/8 34/15 70/24 125/35 203/48 308/63
4 4/4 16/10 46/20 106/35 211/56 379/84 631/120 4/4 22/13 70/29 170/54 350/90 644/139 1092/203
5 5/5 25/15 85/35 225/70 505/126 1009/210 1849/330 5/5 33/19 123/49 343/104 798/195 1638/335 3066/539
6 6/6 36/21 141/56 421/126 1051/252 2311/462 4621/792 6/6 46/26 196/76 616/181 1596/377 3612/713 7392/1253
7 7/7 49/28 217/84 721/210 1981/462 4753/924 10297/1716 7/7 61/34 292/111 1020/293 2910/671 7194/1385 15 972/2639

For the L-level backtracking algorithm of Wheeler and Hughey (2000) with memory suitable for storage of M stages, the left side of this table shows both NWH(M,L), the number
of stages that can be produced in reverse order, and TWH(M,L), the number of stage computations required for that backtrace. [See Equations (1) and (5).] For instance, to perform a
backtrace on N =36 stages with M =3 memory locations requires the (L=7)-level algorithm and requires T =169 stage computations. It is not straightforward to predict the number
of stage computations for other values of N (Fig. 1).

For the optimal checkpointing algorithm presented here, the right side of this table shows both Nopt (M,L), a number of stages that can be produced in reverse order, and
T (M,Nopt (M,L)), the number of stage computations required for that backtrace. [See Equations (7) and (11).] When the number of stages is between Nopt (M,L) and Nopt (M,L+1),
the optimal number of stage computations T (M,N) is computed via linear interpolation. For instance, to do the backtrace on N =36 stages with M =3 memory locations, we observe
that N falls between Nopt (M =3,L=5)=35 and Nopt (M =3,L=6)=48. Thus, the algorithm requires T (M =3,N =36)=T (M =3,N =35)+6(36−35)=131 stage computations.
Thus, in this case, the number of stage computations for the L-level algorithm of Wheeler and Hughey (2000) is 29% higher.

memory locations. Thus, with an optimal choice for C, we have the recursion
for T (M,N):

T (M,N)= (6)


N if N ≤M,
+∞ if N >M =1,

minC




C
+T (M −1,N −C)
+T (M,C−1)


 if N >M >1.

Note that Wheeler and Hughey (2000) give a different recursion for
optimal checkpointing. Translated into our notation, their recursion is
T (M,N)=minC{C+T (M −1,N −C)+T (M,C)−1}. This error may have
impeded their further progress.

A straightforward computation of this recursion would require O(MN2)
time (Wheeler and Hughey, 2000). However, in the following we will show
a mathematical solution to the recursion that permits the calculation of all
the needed checkpoints in O(N) time.

As with the analysis of the L-level algorithm of Wheeler and Hughey
(2000), we find it easier to initially restrict our attention to special values of
N . The main contribution of this work is our subsequent generalization to
arbitrary values of N .

2.1 Special values for the number of stages
With storage for M ≥1 stages, and for any integer L≥1, we will define a
special number of stages Nopt(M,L), and we will calculate Topt(M,L), the
number of stage computations required for a backtrace through Nopt(M,L)
stages using M memory locations. Let

Nopt(M,L)=
(

M +L−1
L

)
+
(

M +L−2
L−1

)
−1 (7)

=
(

M +L−1
L

)(
1+ L

M +L−1

)
−1

M→∞−→ ML

L! .

For M,L>1, with N =Nopt(M,L) stages, we set

C(M,N)=Nopt(M,L−1)+1=N −Nopt(M −1,L) , (8)

the unique optimum checkpoint stage for the problem with M
memory locations and N =Nopt(M,L) stages (see Appendix for proofs).

Plugging C(M,N)=Nopt(M,L−1)+1 and N −C(M,N)=Nopt(M −1,L)
into Equation (6), we obtain

Topt(M,L)

=




N if L=1 or
M =1, and

Nopt(M,L−1)+1
+Topt(M −1,L)+Topt(M,L−1) if L,M >1.

(9)

This solves to

Topt(M,L)

=
(

M +L−1
1 M −1 L−1

)
+
(

M +L−2
1 M −1 L−2

)

−2

(
M +L−2

L−2

)
(10)

= (
Nopt(M,L)+1

)(
L

M −1

M

)
(11)

×
(

1+ 1

(M −1)(M +2L−1)

)
M→∞−→ ML

(L−1)! ,

where Equation (11) is defined for M ≥2 only. Computed values of
Nopt(M,L) and Topt(M,L) for small M and L are given in Table 1 and plotted
in Figure 1.

As with the L-level algorithm of Wheeler and Hughey (2000), with the
optimal checkpointing algorithm, we have a multiplier for the number of
stage computations of approximately L for M ∼ L

√
L!N memory locations.

However, we shall now see that, with the optimal checkpointing algorithm,
we easily achieve this multiplier for the number of stage computations even
when the number of stages N is arbitrary.

2.2 General values for the number of stages
When N falls between two optimal values, Nopt(M,L) and Nopt(M,L+1),
we can compute the number of stage computations T (M,N) by linear
interpolation between Nopt(M,L) and Nopt(M,L+1) (see Appendix for
proofs). Noting that

T (M,Nopt(M,L+1))−T (M,Nopt(M,L))

Nopt(M,L+1)−Nopt(M,L)
=L+1 (12)
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void backtrace(
BIGINT Mckpt, // previous checkpoint memory location
BIGINT M , // M unused memory locations
BIGINT Nckpt, // previous checkpoint stage
BIGINT N , // backtrace through N stages
BIGINT L, // applicable level
BIGINT Nopt , // Nopt(M, L)
void (*advance)(BIGINT Mfrom, BIGINT Mto, BIGINT Nto, void *p),
void (*available)(BIGINT M , BIGINT N , void *p),
void *p) // See the figure legend for advance, available, and p

{
while (N > M )
{

BIGINT Noptm; // Nopt(M − 1, L)
BIGINT Noptl ; // Nopt(M, L − 1)
BIGINT C; // Nckpt + C is the next stage to checkpoint
Noptm = ((Nopt + 1)(M − 1)(M + 2L − 2))/((M + 2L − 1)(M + L − 2)) − 1;
Noptl = ((Nopt + 1)L(M + 2L − 3))/((M + 2L − 1)(M + L − 2)) − 1;
C = min(Nopt + 1, N − Noptm);
// Compute stage Nckpt + C from stage Nckpt, by alternate use of two memory locations Mckpt + 1 and Mckpt + 2
(*advance)(Mckpt, Mckpt + 1 + ((C − 1)%2), Nckpt + 1, p);
for (BIGINT i = 2; i ≤ C; ++i)

(*advance)(Mckpt + 2 − ((C − i)%2), Mckpt + 1 + ((C − i)%2), Nckpt + i, p);
// Backtrace through stages Nckpt + C + 1, . . . , Nckpt + N
backtrace(Mckpt + 1, M − 1, Nckpt + C, N − C, L, Noptm , advance, available, p);
// Present stage Nckpt + C to the user
(*available)(Mckpt + 1, Nckpt + C, p);
// Backtrace through stages Nckpt + 1, . . . Nckpt + C − 1 via tail recursion
N = C − 1;
L = L − 1;
Nopt = Noptl ;

}
// Handle ample memory case, N ≤ M
for (BIGINT i = 1; i ≤ N ; ++i)

(*advance)(Mckpt + i − 1, Mckpt + i, Nckpt + i, p);
for (BIGINT i = N ; i ≥ 1; −−i)

(*available)(Mckpt + i, Nckpt + i, p);
}

Fig. 2. The optimal checkpointing algorithm in pseudo-C++, for a backtrace through N stages using memory sufficient for M stages. Using Equation (7), find
the level L=max

{
L :Nopt(M,L)≤N

}
. For the convention that the memory locations are labeled 0,...,M −1 and the stages are labeled 0,...,N −1, invoke

backtrace(−1, M, −1, N , L, Nopt(M,L), advance, available, p); where advance is a pointer to a callback function that computes stage Nto, to be stored in
memory location Mto, from the immediately preceding stage, which is stored in memory location Mfrom unless Nto is the first stage; where available is a
pointer to a callback function invoked during backtrace so that the user can make use of stage N , stored in memory location M; and where p is a user-supplied
pointer to applicable stage-independent information. BIGINT should be an integer type able to handle integers a little larger than NM2. Note that, although
the backtrace routine directs the callback routines on the use of the memory locations, the actual allocation and access of the memory is not handled by the
backtrace routine. Further, note that if the generality is not required, the pointer parameters, advance, available and p, can be eliminated, and their use in the
body of the function can be replaced by ‘hard-wired’ calls to appropriate functions. See the Supplementary Materials for C++ source code.

we derive

T (M,N)=T (M,Nopt(M,L))+(L+1)(N −Nopt(M,L)) , (13)

for N ≥M >1.
Furthermore, for N between Nopt(M,L) and Nopt(M,L+1), it is optimal to

choose the initial checkpoint C(M,N) so that C(M,N)−1 and N −C(M,N)
fall between the values that they would have had to equal, if N had equaled
Nopt(M,L) or Nopt(M,L+1). That is, we must choose C(M,N) so as to

simultaneously satisfy

Nopt(M,L−1)≤C(M,N)−1≤Nopt(M,L) (14)

and

Nopt(M −1,L)≤N −C(M,N)≤Nopt(M −1,L+1) . (15)

In practice, we choose the largest legal value,

C(M,N)=min{Nopt(M,L)+1,N −Nopt(M −1,L)} . (16)
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The optimal checkpointing algorithm is presented in Figure 2. Note that we
include not just M, and N , but also a level L and a special stage Nopt(M,L)
in the parameter list for the recursive subroutine, because the availability
of values for L and Nopt(M,L) greatly speeds the calculations of Nopt(M −
1,L) and Nopt(M,L−1), which are needed in the calculations of optimal
checkpoints:

Nopt(M,L−1)

= (
Nopt(M,L)+1

) L(M +2L−3)

(M +2L−1)(M +L−2)
−1 (17)

Nopt(M −1,L)

= (
Nopt(M,L)+1

) (M −1)(M +2L−2)

(M +2L−1)(M +L−2)
−1 . (18)

It is imperative that the required calculations be impervious to integer
overflows. We initially prevented overflow in integer calculations, such
as abc/de for Equations (17) and (18), by canceling all common factors
between each variable in the numerator and each variable in the denominator.
This approach requires 3×2=6 invocations of Euclid’s algorithm for
finding a greatest common divisor. Such a procedure leaves the value
of each denominator variable at 1 and, when Nopt(M,L)+1 can be
represented as an integer, the numerator variable values are sufficiently
small enough to permit all the needed computations—so long as extra
care is taken when verifying that the initial value of N is less than
Nopt(M,L+1).

To handle computations where the number of stages exceeds the largest
unsigned integer, often 232 −1≈4×109, we modified our C++ software
implementation to use a C++ class that manipulates integers of arbitrary
size.

3 SOFTWARE
Sample C++-code for optimal backtrace is available in the
Supplementary Materials.

4 RESULTS
We applied the algorithm to pairwise local alignments (Smith and
Waterman, 1981) of sequences of up to 3000 nucleotides of human
DNA with sequences of up to 2864 nucleotides of rodent DNA. For
the largest of the alignments, to keep within a 125 MB limit for total
memory use, we restricted ourselves to M = 486 stages of storage for
the N = 2864 stages. For these choices, L = 1, Nopt(M = 486,L =
1) = 486, and T (M = 486,N = 2864) = 5242. Thus, the multiplier
for the number of stage computations is T/N = 5242/2864 ≈ 1.83
for memory use M/N =486/2864≈17%. The algorithm ran in
70 s, but would have run much more slowly if it had tried to use
memory for all 2864 stages, because the resulting memory swapping
would have been onerous. In contrast, the 2-level algorithm of
Wheeler and Hughey (2000) computes checkpoints for stages 486,
971, 1455, 1938 and 2420, and requires two computations for all
other stages with index under 2420. Thus its total number of stage
computations is 2864+ (2420−5) = 5279, only slightly worse than
5242.

The same calculation performed on a pair of sequences, each
10 000 nucleotides long, takes 12 min to run in 125 MB of
memory, a memory size sufficient to store only 138 stages
instead of the full 10 000 stages. For a problem of this size,

L = 2, Nopt(M = 138,L = 2)=9728, and T (M = 138,N = 10000) =
20134. Thus, the multiplier for the number of stage computations is
T/N = 20134/10000 ≈ 2.01 for memory use M/N =138/10000≈
1.4%. In contrast, the 3-level algorithm of Wheeler and Hughey
(2000) is at a particular disadvantage in that it computes its
only 3-level checkpoint at stage 9591, with subsequent 2-level
checkpoints at 9728, 9864, and 9999. The algorithm requires 29 448
stage computations, significantly worse than 20 134. With 1 GB of
memory, sufficient for storing 1104 stages for the pairwise alignment
of sequences of length 10 000 nucleotides, the optimal checkpointing
algorithm requires 18 896 stage computations, whereas the 2-level
algorithm of Wheeler and Hughey (2000) requires 19 891 stage
computations, almost 1000 more.

On similar datasets, using a probabilistic model that defines a
probability distribution on the set of possible alignments, we used
the optimal backtrace algorithm to compute a centroid (Ding and
Lawrence, 1999), also known as a posterior decoding (Miyazawa,
1995). This task requires a dynamic programming calculation during
the backtrace that is comparable to the calculation performed during
the forward pass. With sufficient memory, the total computation
would require 2N stage computations, thus the multiplier for the
number of stage computations with limited memory is

Ttwoway(M,N)

Ttwoway(N,N)
= T (M,N)+N

2N
M→∞−→ L+1

2
; (19)

this value is better than L, the multiplier of the number of stage
computations for the cheaper backtrace tasks.

We also can draw independent samples from the probability
distribution on the set of possible alignments. Here, the run time is as
slow as the centroid calculation only when the number of samples to
be drawn is of the order of the smaller of the two sequence lengths.

5 DISCUSSION
We have provided an algorithm for optimal backtrace through a
dynamic programming algorithm when memory is limited. The
algorithm improves upon previous work via the simplicity and speed
of the calculation for the index of the optimal checkpoint, and via
achievement of optimal performance for a problem of arbitrary size.

A few variations are worthy of consideration. Generally, for
backtrace computations, whether or not they are achieved with the
optimal checkpointing algorithm described here, the first stage is
computed from initial or boundary conditions, and each subsequent
stage is computed from the immediately preceding stage. Thus, at
least conceptually, the first stage requires special treatment. If this
distinction makes implementation of the advance callback routine
difficult, it may be prudent to compute and permanently store the
first stage in the first memory location, and to run the optimal
checkpointing algorithm so as to provide an optimally computed
backtrace through the remaining N −1 stages using M −1 memory
locations. The number of stage computations for this approach is
1+T (M −1,N −1).

As already described for both optimal checkpointing and the
L-level algorithm of Wheeler and Hughey (2000), in the limit
as the number of memory locations M goes to infinity with a
fixed multiplier L for the number of stage computations, we can
backtrace through N ∼ML/L! stages with T ∼ML/(L−1)! stage
computations. However, for the case when memory is severely
limited, it is instructive to look at the asymptotics for a fixed value
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of M, with L tending to infinity. For this situation we have

NWH(M,L)
L→∞−→ LM−1

(M −1)! (20)

TWH(M,L)
L→∞−→ LM (M −1)

M!
∼

(
M −1

M
M−1
√

(M −1)!
)

N
M

M−1 (21)

Nopt(M,L)
L→∞−→ 2

LM−1

(M −1)! (22)

Topt(M,L)
L→∞−→ 2

LM (M −1)

M!

∼
(

M −1

M
M−1

√
(M −1)!

2

)
N

M
M−1

∼
(

M−1

√
1

2

)
TWH(M,L) . (23)

Thus, in these low-memory situations, the optimal algorithm is
asymptotically faster than the L-level algorithm of Wheeler and
Hughey (2000), even when the latter is applied to its optimal
problem sizes NWH(M,L). The speed multiplier is M−1

√
2, which is

approximately 1+(0.693/(M −1.347)) for moderate values of M.
See Table 1 and Figure 1.

6 CONCLUSION
When high-speed memory is limited, dynamic programming
algorithm backtraces make use of checkpoints for re-computing
needed intermediate values. We have provided an easy-to-use
algorithm for optimally selecting the checkpoints.
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APPENDIX: PROOF OF RUN TIME
So that this section is self-contained, we will restate the relevant assumptions
and definitions.

We define the following functions and will prove their usefulness
presently.

Nopt(M,L)=
(

M +L−1
L

)
+
(

M +L−2
L−1

)
−1 (A1)

Topt(M,L) (A2)

=
(

M +L−1
1 M −1 L−1

)
+
(

M +L−2
1 M −1 L−2

)

−2

(
M +L−2

L−2

)

We take as given that the number of stage computations required satisfies:

T (M,N)= (A3)


N if N ≤M,
+∞ if N >M =1,

minC




C
+T (M −1,N −C)
+T (M,C−1)


 if N >M >1,

where a choice of value for C that minimizes this last expression for a given
N and M is called an optimal first checkpoint, C(M,N).

Theorem. Let N be the number of stages to be made available in a backtrace
using storage for M stages. For a choice of N and M, define

L = max{L :N ≥Nopt(M,L)} . (A4)

We will show that

T (M,N)=T (M,Nopt(M,L))+(L+1)(N −Nopt(M,L)) (A5)

for N ≥M ≥1, where the second term is deemed zero if N =Nopt(M,L), even
when L=+∞. We will show that, when N >M >1, the value of an optimal
first checkpoint C(M,N) satisfies

Nopt(M,L−1)≤C(M,N)−1≤Nopt(M,L) (A6)

and

Nopt(M −1,L)≤N −C(M,N)≤Nopt(M −1,L+1) . (A7)

Proof. The proof will be by induction on N and M. We have two base cases:
first, a base case for a low value of N and, second, a base case for a low
value of M.

Base case, N =M ≥1
We wish to show that Equation (A5) correctly matches Equation (A3) when
N =M ≥1.
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We put L=1 into Equation (A1) for Nopt(M,L) and Equation (A2) for
Topt(M,L):

Nopt(M,L)=
(

M
1

)
+
(

M −1
0

)
−1=M (A8)

Topt(M,L)=
(

M
M −1

)
+0−0=M , (A9)

where the trinomial terms with L−2 vanish by our convention. Thus, for this
base case, Equation (A4) indicates that L=1. It follows that Equation (A5)
gives T (M,N)=M, which is in agreement with Equation (A3) because
N =M.

Base Case, N >M =1
We wish to show that Equation (A5) correctly matches Equation (A3) when
N >M =1.

We put M =1 into Equation (A1) for Nopt(M,L) and Equation (A2) for
Topt(M,L):

Nopt(M,L)=
(

L
L

)
+
(

L−1
L−1

)
−1=1 (A10)

Topt(M,L)=
(

L
L−1

)
+
(

L−1
L−2

)
−2

(
L−1
L−2

)
=1 (A11)

Thus, for this base case, Equation (A4) indicates that L=+∞. Because N
is strictly greater than Nopt(M,L) (for any L) it follows that Equation (A5)
gives T (M =1,N >1)=+∞, in agreement with Equation (A3), as desired.

General Case, N >M >1
We assume that the theorem is proved true for N ′ ≥M ′ ≥1, when N ′ ≤N and
M ′ ≤M but (N ′,M ′) 
= (N,M). We will show that checkpoint choices C′ and
C′′ =C′ +1 will give the same number of stage computations if both C′ and
C′′ satisfy the restrictions of Equations (A6) and (A7). We will show that if C′′
is too high to satisfy these restrictions then use of C′ will lead to fewer stage
computations; we will show that if C′ is too low to satisfy these restrictions
then use of C′′ will lead to fewer stage computations. Together these will
demonstrate that the restrictions are optimal and that they can be satisfied
simultaneously. We will then show that satisfaction of the restrictions implies
Equation (A5).

Let T ′(M,N) and T ′′(M,N) be the number of stage computations required
given that C′ or C′′, respectively, is chosen as the first checkpoint, and optimal
checkpoints are used in all remaining subproblems:

T ′(M,N)=C′ +T (M −1,N −C′)+T (M,C′ −1) , (A12)

and

T ′′(M,N)=C′′ +T (M −1,N −C′′)+T (M,C′′ −1) . (A13)

Set L1 to be the unique integer such that

Nopt(M,L1 −1)≤C′ −1<Nopt(M,L1) , (A14)

and observe that

Nopt(M,L1 −1)<C′′ −1≤Nopt(M,L1) . (A15)

Set L2 to be the unique integer such that

Nopt(M −1,L2)<N −C′ ≤Nopt(M −1,L2 +1) , (A16)

and observe that

Nopt(M −1,L2)≤N −C′′ <Nopt(M −1,L2 +1) . (A17)

Using our induction hypothesis [Equation (A5)], we thus compute that

T ′′(M,N)−T ′(M,N) (A18)

= (C′′ −C′)

+(T (M −1,N −C′′)−T (M −1,N −C′))

+(T (M,C′′ −1)−T (M,C′ −1)) (A19)

= 1−(L2 +1)+L1 =L1 −L2 . (A20)

We observe that when both C′ and C′′ satisfy the restrictions given as
Equations (A6) and (A7) then L1 =L2 and the stages C′ and C′′ make equally
good choices as a checkpoint. When C′′ is too large for the restrictions then
L1 >L2, and when C′ is too small for the restrictions then L1 <L2. Thus, we
have verified that the restrictions define an optimal first checkpoint.

Finally, using the induction hypothesis, we compute T (M,N) to verify
that it yields Equation (A5), using a value of C satisfying the restrictions of
Equations (A6) and (A7).

T (M,N)

= C+T (M−1,N −C)+T (M,C−1) (A21)

= C

+Topt(M−1,L)+(L+1)(N −C−Nopt(M−1,L))

+Topt(M,L−1)+L(C−1−Nopt(M,L−1)) (A22)

= Topt(M−1,L)+Topt(M,L−1)+Nopt(M,L−1)+1

+(L+1)(N−Nopt(M−1,L)−Nopt(M,L−1)−1) (A23)

= Topt(M,L)+(L+1)(N −Nopt(M,L)) , (A24)

as desired. For the last equality, we have used Nopt(M,L)=Nopt(M−
1,L)+Nopt(M,L−1)+1 and Topt(M,L)=Topt(M−1,L)+Topt(M,L−1)+
Nopt(M,L−1)+1, which are easily proved from Equations (A1) and (A2).
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