/* * OVERVIEW * * Powering up: * Immediately after reset, we power down the entire system. * We wake up only after the button is pressed for a sufficiently long time. * * Heater output: * The heater output is driven by Timer/Counter 1 in PWM mode. * We want to be able to measure the battery voltage both when the * output is on, and when the output is off. So we set the T/C1 clock * prescaler so that the T/C1 is slow enough, we enable the T/C1 interrupts * both on compare match and on overflow. After the interrupt, we trigger * the battery voltage measurement with ADC. * * ADC: * To avoid transients, we measure each battery state (when the heater is on * and when it is off) separately, and we drop the first few readings. * We calculate a running average of the readings to achieve higher accuracy. * * Buttons: * There are two buttons (+ and -). Any button can wake the system up from * the power-down state. * TODO: When the system is woken up by the "-" button, * it starts with the minimum output power, when it is woken up by the "+" * button, it start with the maximum output power. * When running, the "-" button is used for decreasing the output power, * the "+" button is for increasing it. * When on the lowest power state, the "-" button switches the system off. * Long "-" button press switches the system off, long "+" button * press sets the output power to maximum. * * Status LED: * When powering up by a button press, the LED goes on to provide a visual * feedback, and is switched off after the button is released. * After a button press, the # of blinks of the LED reflects the * chosen output power level for some time. Afterwards, it displays * the battery level. * When the battery is completely exhausted, the output power is switched * off, the LED keeps blinking for some time, and then the whole system is * switched off to avoid deep discharge of the battery. * * Timing: * The firmware is timed by the Watchdog Timer interrupt. Most of the * processing is done from the main loop, IRQs only set various flags * or trigger other events. */ #include #include #include #include #include #include #include "logging.h" /* waking up from the power down state by a button press */ #define WAKEUP_POLL 50 // msec #define WAKEUP_LIMIT 5 // times WAKEUP_POLL /* which state (output on or output off) are we measuring now */ static volatile unsigned char adc_type, adc_drop; #define ADC_RUNAVG_SHIFT 5 // running average shift on batt_on, batt_off static volatile uint16_t batt_on, batt_off; // measured voltage /* * The voltage divider has 1M5 and 300K resistors (i.e. it measures 1/6th of * the real voltage), ADC uses 1.1V internal reference. * Macro to calculate upper eight bits of the ADC running-averaged value * from the voltage in milivolts. */ #define ADC_1100MV_VALUE 1071 // measured, not exactly 1100 #define MV_TO_ADC8(mV) ((unsigned char)(((uint32_t)(1UL << ADC_RUNAVG_SHIFT) \ * (1024UL * (mV)) \ / (6UL * ADC_1100MV_VALUE)) >> 8)) static unsigned char batt_levels[] = { MV_TO_ADC8(3350), MV_TO_ADC8(3700), MV_TO_ADC8(3900), }; #define BATT_N_LEVELS (sizeof(batt_levels) / sizeof(batt_levels[0])) /* output power and PWM calculation */ #define PWM_TOP 255 #define PWM_MAX (PWM_TOP - 8) // to allow for ADC "batt_off" measurements /* * The values in power_levels[] array are voltages at which the load * would give the expected power (we don't have sqrt() function, * so we cannot use mW values directly. They can be calculated as * voltage[V] = sqrt(load_resistance[Ohm] * expected_power[W]) * or * voltage[mV] = sqrt(load_resistance[mOhm] * expected_power[mW]) * * I use 1.25 W as minimum power, each step is sqrt(2)*previous_step, * so the 5th step is 5 W. */ static unsigned char power_levels[] = { MV_TO_ADC8(1581), // 1250 mW for 2 Ohm load MV_TO_ADC8(1880), // 1768 mW for 2 Ohm load MV_TO_ADC8(2236), // 2500 mW for 2 Ohm load MV_TO_ADC8(2659), // 3536 mW for 2 Ohm load MV_TO_ADC8(3162), // 5000 mW for 2 Ohm load }; #define N_POWER_LEVELS (sizeof(power_levels) / sizeof(power_levels[0])) static unsigned char power_level = 0; // selected power level static unsigned char power_level_changed; // for visual feedback #define LED_PWRCHANGE_COUNT 3 #define LED_BATTEMPTY_COUNT 60 /* timing by WDT */ static volatile unsigned char jiffies, next_clock_tick; /* button press duration (in jiffies) */ #define BUTTON_SHORT_MIN 1 #define BUTTON_LONG_MIN 10 /* ========= Analog to Digital Converter (battery voltage) ========== */ static void adc_init() { power_adc_enable(); ADCSRA = _BV(ADEN) // enable | _BV(ADPS1) | _BV(ADPS0) // clk/8 = 125 kHz | _BV(ADIE); // enable IRQ ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0); // 1.1V reference, PB3 pin, single-ended DIDR0 |= _BV(ADC3D); // PB3 pin as analog input } static void adc_susp() { ADCSRA &= ~_BV(ADEN); // disable ADC DIDR0 &= ~_BV(ADC3D); // disable analog input on PB3 power_adc_disable(); } static void adc_start_measurement() { ADCSRA |= _BV(ADSC); } ISR(ADC_vect) { uint16_t adcw = ADCW; if (adc_drop) { adc_drop--; ADCSRA |= _BV(ADSC); return; } // TODO: We may want to disable ADC after here to save power, // but compared to the heater power it would be negligible, // so don't bother with it. if (adc_type == 0) { if (batt_off) { batt_off += adcw - (batt_off >> ADC_RUNAVG_SHIFT); } else { batt_off = adcw << ADC_RUNAVG_SHIFT; } } else { if (batt_on) { batt_on += adcw - (batt_on >> ADC_RUNAVG_SHIFT); } else { batt_on = adcw << ADC_RUNAVG_SHIFT; } } } /* ===================== Timer/Counter1 for PWM ===================== */ static void pwm_init() { power_timer1_enable(); DDRB |= _BV(PB4); PORTB &= ~_BV(PB4); // TCCR1 = _BV(CS10); // clk/1 = 1 MHz TCCR1 = _BV(CS11) | _BV(CS13); // clk/512 = 2 kHz GTCCR = _BV(COM1B1) | _BV(PWM1B); OCR1C = PWM_TOP; // OCR1B = steps[0]; OCR1B = 0; TIMSK = _BV(OCIE1B) | _BV(TOIE1); } static void pwm_susp() { TCCR1 = 0; TIMSK = 0; GTCCR = 0; PORTB &= ~_BV(PB4); } ISR(TIM1_OVF_vect) { adc_drop = 2; adc_type = 1; adc_start_measurement(); } ISR(TIM1_COMPB_vect) { adc_drop = 2; adc_type = 0; adc_start_measurement(); } static void pwm_set(unsigned char pwm) { OCR1B = pwm; } /* ===================== Status LED on pin PB2 ======================= */ static void status_led_init() { DDRB |= _BV(PB2); PORTB &= ~_BV(PB2); } static void status_led_on() { PORTB |= _BV(PB2); } static void status_led_off() { PORTB &= ~_BV(PB2); } static unsigned char status_led_is_on() { return PORTB & _BV(PB2) ? 1 : 0; } /* ================== Buttons on pin PB0 and PB1 ===================== */ static void buttons_init() { DDRB &= ~(_BV(PB0) | _BV(PB1)); // set as input PORTB |= _BV(PB0) | _BV(PB1); // internal pull-up GIMSK &= ~_BV(PCIE); // disable pin-change IRQs PCMSK = 0; // disable pin-change IRQs on all pins of port B } static void buttons_susp() { buttons_init(); GIMSK |= _BV(PCIE); PCMSK |= _BV(PCINT0) | _BV(PCINT1); } static unsigned char buttons_pressed() { return ( (PINB & _BV(PB0) ? 0 : 1) | (PINB & _BV(PB1) ? 0 : 2) ); } static unsigned char buttons_wait_for_release() { uint16_t wake_count = 0; do { if (++wake_count > WAKEUP_LIMIT) status_led_on(); // inform the user _delay_ms(WAKEUP_POLL); } while (buttons_pressed()); status_led_off(); return wake_count > WAKEUP_LIMIT; } ISR(PCINT0_vect) { // empty - let it wake us from sleep, but do nothing else } /* ==== Watchdog Timer for timing blinks and other periodic tasks ==== */ static void wdt_init() { next_clock_tick = 0; jiffies = 0; WDTCR = _BV(WDIE) | _BV(WDP1); // interrupt mode, 64 ms } static void wdt_susp() { wdt_disable(); } ISR(WDT_vect) { next_clock_tick = 1; jiffies++; } /* ====== Hardware init, teardown, powering down and waking up ====== */ static void hw_setup() { power_all_disable(); pwm_init(); adc_init(); status_led_init(); wdt_init(); } static void hw_suspend() { adc_susp(); pwm_susp(); status_led_init(); // we don't have a separate _susp() here buttons_susp(); wdt_susp(); power_all_disable(); } static void power_down() { hw_suspend(); do { // G'night set_sleep_mode(SLEEP_MODE_PWR_DOWN); sleep_enable(); sleep_bod_disable(); sei(); sleep_cpu(); // G'morning cli(); sleep_disable(); // allow wakeup by long button-press only } while (!buttons_wait_for_release()); // OK, wake up now hw_setup(); } /* ============ Status LED blinking =================================== */ static unsigned char blink_on_time, blink_off_time, n_blinks; static unsigned char blink_counter; static unsigned char battery_level() { unsigned char i, adc8; // NOTE: we use 8-bit value only, so we don't need lock to protect // us against concurrently running ADC IRQ handler: adc8 = batt_off >> 8; for (i = 0; i < BATT_N_LEVELS; i++) if (batt_levels[i] > adc8) break; return i; } static void status_led_next_pattern() { static unsigned char battery_exhausted; if (power_level_changed) { power_level_changed--; n_blinks = power_level + 1; } else { unsigned char b_level = battery_level(); if (b_level) { battery_exhausted = 0; } else if (battery_exhausted) { if (!--battery_exhausted) power_down(); } else { battery_exhausted = LED_BATTEMPTY_COUNT; } n_blinks = b_level + 1; } blink_on_time = 2; blink_off_time = 1; blink_counter = 10; } static void timer_blink() { if (blink_counter) { blink_counter--; } else if (!status_led_is_on()) { status_led_on(); blink_counter = blink_on_time; } else if (n_blinks) { --n_blinks; status_led_off(); blink_counter = blink_off_time; } else { status_led_next_pattern(); } } /* ======== Button press detection and handling ===================== */ static void button_pressed(unsigned char button, unsigned char long_press) { // ignore simlultaneous button 1 and 2 press // Note: we set power_level_changed after each button press, // even when the power is at maximum, to provide visual feedback // with status LED. if (long_press) { if (button == 1) { power_down(); return; } else if (button == 2) { power_level = N_POWER_LEVELS-1; } } else { // short press if (button == 1) { if (power_level > 0) { --power_level; } else { power_down(); return; } } else if (button == 2) { if (power_level < N_POWER_LEVELS-1) { ++power_level; } } } power_level_changed = LED_PWRCHANGE_COUNT; status_led_next_pattern(); } static unsigned char button_state, button_state_time; static void timer_check_buttons() { unsigned char newstate = buttons_pressed(); if (newstate == button_state) { if (newstate && button_state_time < BUTTON_LONG_MIN) ++button_state_time; if (newstate && button_state_time >= BUTTON_LONG_MIN) { status_led_on(); } return; } if (newstate) { button_state = newstate; button_state_time = 0; return; } // just released if (button_state_time >= BUTTON_SHORT_MIN) button_pressed(button_state, button_state_time >= BUTTON_LONG_MIN ? 1 : 0); button_state = newstate; button_state_time = 0; } /* ===================== Output power control ======================== */ static void calculate_power_level() { uint32_t pwm; unsigned char batt_on8; if (battery_level() == 0 || batt_on == 0) { pwm_set(0); // TODO power_down() after some time return; } batt_on8 = batt_on >> 8; pwm = (uint32_t)PWM_TOP * power_levels[power_level] * power_levels[power_level]; pwm /= (uint32_t)batt_on8 * batt_on8; if (pwm > PWM_MAX) pwm = PWM_MAX; log_byte(0x10 + power_level); log_byte(batt_on8); log_byte(pwm & 0xFF); pwm_set(pwm); } int main() { log_init(); #if 0 log_word(batt_levels[0]); log_word(batt_levels[1]); log_word(batt_levels[2]); log_flush(); #endif log_byte(power_levels[0]); log_byte(power_levels[4]); log_flush(); power_down(); sei(); // we try to be completely IRQ-driven, so just wait for IRQs here while(1) { cli(); set_sleep_mode(SLEEP_MODE_IDLE); sleep_enable(); // keep BOD active, no sleep_bod_disable(); sei(); sleep_cpu(); sleep_disable(); // FIXME: Maybe handle new ADC readings as well? if (next_clock_tick) { next_clock_tick = 0; timer_blink(); // this has to be after the timer_blink() call // to override the status LED during long button press timer_check_buttons(); if ((jiffies & 0x0F) == 0) { calculate_power_level(); #if 0 log_byte(0xcc); log_byte(i); log_byte(batt_off >> 8); log_byte(batt_on >> 8); #endif } log_flush(); } } }